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Some experiments investigating a possible L(1/4) algorithm

for the discrete logarithm problem in algebraic curves

Maike Massierer
∗

LORIA, Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

maike.massierer@inria.fr

Abstract. The function field sieve, a subexponential algorithm of complexity L(1/3) that
computes discrete logarithms in finite fields, has recently been improved to an algorithm of
complexity L(1/4) and subsequently to a quasi-polynomial time algorithm. We investigate
whether the new ideas also apply to index calculus algorithms for computing discrete loga-
rithms in Jacobians of algebraic curves. While we do not give a final answer to the question,
we discuss a number of ideas, experiments, and possible conclusions.

1 Introduction

The computation of discrete logarithms in certain classes of finite fields has recently been revolu-
tionized by a number of developments building on the well-known function field sieve algorithm.
As a result, pairing-based cryptosystems in small characteristic are no longer considered secure
(see e.g. [11]), to name just one implication of these spectacular results.

The L(1/3) subexponential complexity of the function field sieve was first improved by
Joux [18] to L(1/4 + o(1)), and then by Göloğlu, Granger, McGuire, and Zumbrägel [10] to
L(1/4). Shortly thereafter, Bărbulescu, Gaudry, Joux, and Thomé [4] presented the first quasi-
polynomial algorithm for computing discrete logarithms in finite fields. Granger, Kleinjung, and
Zumbrägel [12] took some important steps towards provability of the heuristic complexity results
by presenting an alternative descent method.

The computation of discrete logarithms in Jacobians of algebraic curves has developed essen-
tially in parallel to finite fields. The L(1/3) index calculus algorithm due to Enge, Gaudry, and
Thomé [8] for computing discrete logarithms in Jacobians of low degree curves has very much
in common with the function field sieve. In particular, many of the results that the function
field sieve is based on hold analogously for algebraic curves, such as the splitting probability of
polynomials and divisors, respectively.

The recent developments therefore raise the question of whether analogous improvements
can be made to the index calculus algorithm for curves, thus producing an L(1/4) or even
quasi-polynomial algorithm. In this article, we report some thoughts on this questions, focusing
particularly on the relation generation phase of the algorithm. While at this point, we are not
able to answer the question completely, we discuss some possible approaches, the primary goal
being to provide a basis for further discussion of this question in the scientific community.

We start by reviewing the concept of index calculus in general in Section 2, followed by a
more detailed discussion of the function field sieve and its successors in Section 3 and index
calculus in algebraic curves in Section 4. We then present some ideas for adaptation to curves
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in Section 5 and report on our experiments in Section 6. Finally, we discuss some possible
theoretical conclusions including a conjecture in Section 7.

Acknowledgements. We thank Pierrick Gaudry for numerous helpful discussions on the con-
tent of this article. We thank Claus Diem for his comments on our conjecture and for making
us aware of some of the results cited in Section 7.

2 Index calculus algorithms

One of the most prominent problems on which public key algorithms base their security is the
discrete logarithm problem.

Definition 1. Let G be a multiplicative group. Given g ∈ G and h ∈ 〈g〉, the discrete logarithm
problem (DLP) is to compute a number d ∈ Z/ ord(g)Z such that gd = h. We call d = logg h the
base-g discrete logarithm of h.

For simplicity, it is often assumed that G = 〈g〉, i.e. that G is a cyclic group. In this paper,
G is either a subgroup of the multiplicative group of a finite field of small characteristic or
the Jacobian of an algebraic curve of large genus defined over a finite field. In both cases, the
most efficient known attacks on the DLP are variants and further developments of a basic index
calculus algorithm, which we describe below.

Suppose we want to compute a discrete logarithm logg h. The main phase of index calculus
computes the discrete logarithms of all small primes of G. These are all primes of size below
a certain bound, the smoothness bound B, and the set of such small primes is called the factor
base FB . This phase can again be divided into two parts: First, one collects a sufficient number
(more precisely, |FB |) of relations between the factor base elements, then one solves a sparse
linear system in order to obtain the discrete logarithms of the factor base elements. Finally, the
individual logarithm phase of the algorithm computes logg h by rewriting this value as a sum
of discrete logarithms of the factor base elements, which were computed earlier. For a detailed
description of this index calculus method, see Algorithm 1.

Notice that both types of groups we are interested in are quotient groups. Therefore we write
G = G1/G2, and for ĝ ∈ G1, we denote by g = ĝ ·G2 the class of ĝ in G.

Algorithm 1 General outline of an index calculus algorithm

Input: h ∈ G = G1/G2 = 〈g〉, smoothness bound B
Output: d = logg h
1: Factor base: Construct factor base FB = {ĝ1, . . . , ĝr} ⊆ G1.
2: Relation collection: Construct relations of the form gαi =

∏r
j=1 g

mi(j+1)

j for i = 1, . . . , k >
r.

3: Linear algebra: Given the matrix M = (mij) ∈ (Z/|G|Z)k×(r+1), where mi1 = −αi for all
i = 1, . . . , k, compute a non-zero column vector γ = (γ1, . . . , γr+1)

⊤ such that Mγ = 0 and
γ1 = 1. Then we have γj+1 = logg gj for all j = 1, . . . , r.

4: Individual logarithm: Search for β such that gβh =
∏r

j=1 g
βj

j for some βj , output d =

−β +
∑r

j=1 βjγj+1.

Remark 1. Notice that the following slightly modified version of Algorithm 1 is equivalent. It
will be useful later on. In step 2, we collect relations of the form

∏r
j=1 g

mij

j = 1. In step 3, the
matrix M consists simply of the mij .
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In order to discuss the complexity of this algorithm, let us denote by

Lx(α, c) = exp
(

c(1 + o(1))(log x)α(log log x)1−α
)

the subexponential complexity in x, where x is usually the input size |G|, for 0 < α < 1 and a
constant c > 0. When we do not want to specify the constant, we often write only Lx(α), or
L(α) when the context is clear.

In both the case where G is a subgroup of the multiplicative group of a finite field and where
G is the subgroup of the Jacobian of an algebraic curve of large genus, Algorithm 1 has heuristic
complexity L(1/2) when steps 2 and 4 are implemented in a simple way: In step 2, we pick
random αi ∈ Z/|G|Z and check whether gαi splits over the factor base. In step 4, we pick
random β ∈ Z/|G|Z until we find one such that gβh splits over the factor base.

The crucial question in the complexity analysis of the above algorithm is with which prob-
ability an element of G splits over the factor base. If the factor base is defined in terms of the
smoothness bound B, we call such elements B-smooth.

For the sake of concreteness, let us first assume that G ⊆ F
×
qn , where Fqn is a finite field

of small characteristic, meaning that q < Lqn(1/2, 1/
√
2). Hence all elements of Fqn can be

represented uniquely by polynomials of degree at most n in Fq[x]. In this case, the small primes
are defined to be the monic irreducible polynomials of small degree, i.e. for a given smoothness
bound B we have the factor base

FB = {f ∈ Fq[x] | f monic, irreducible, deg f ≤ B}.

Hence an element of Fq[x] is B-smooth if all its irreducible factors have degree at most B. The
probability of this happening is given by the following result.

Theorem 1 ([20]). A polynomial over a finite field Fq of degree n is B-smooth with probability
u−u(1+o(1)), where u = n/B.

Using this result, a rough analysis of the index calculus algorithm in G ⊆ F
×
pn is as follows.

We choose B = logq Lqn(1/2, 1/
√
2), so that |FB | = Lqn(1/2, 1/

√
2). Then the probability that

a given element of Fqn , represented by a polynomial over Fq of degree less than n, is B-smooth,
is

u−u(1+o(1)) = exp(−u(1 + o(1)) log u) = Lqn(1/2, 1/
√
2)−1

for u = n
B =

√
2
(

log qn

log log qn

)1/2

, according to Theorem 1. Since we need to collect about

Lqn(1/2, 1/
√
2) relations, step 2 takes time Lqn(1/2, 1/

√
2)2 = Lqn(1/2,

√
2) (notice that smooth-

ness tests and polynomial factorization over Fq[x] can be done in time polynomial in q). The
linear system to be solved in step 3 is of size Lqn(1/2, 1/

√
2)×Lqn(1/2, 1/

√
2) and sparse, since

there are at most n entries per row. Hence it can be solved with Wiedemann’s or Lanczos’
algorithm in time Lqn(1/2, 1/

√
2)2 = Lqn(1/2,

√
2). In step 4, the expected number of tries until

we find a value for β such that gβh is smooth is uu(1+o(1)) = Lqn(1/2, 1/
√
2), which is the time

needed for the individual logarithm phase. Finally, since the factor base can clearly be enumer-
ated (step 1) in time Lqn(1/2, 1/

√
2), the total time of Algorithm 1 in the case of finite fields

is
Lqn(1/2,

√
2).

An analogous result can be proven for Jacobians of algebraic curves, since there is a smooth-
ness result for divisors similar to Theorem 1. Let C be a projective algebraic curve of genus g
given by an absolutely irreducible plane affine model C : C(x, y), where C ∈ Fq[x, y] and Fq is
the exact constant field of the function field of C. The arithmetic in the Jacobian of such curves
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is detailed in [17], and in particular, splitting a divisor into a sum of places can be performed
in polynomial time. The factor base consists of divisor classes represented by prime divisors of
degree bounded by B, therefore a divisor is B-smooth if it has only places of degree at most B
in its support. The smoothness probability of divisors is analogous to that of polynomials (and,
in fact, also that of integers or, more generally, elements of arithmetic semigroups):

Theorem 2 ([16, Theorem 13]). Let 0 < ε < 1, γ = 3
1−ε , and n,B with u = n

B be given such
that 3 logq(14g + 4) ≤ B ≤ nε and u ≥ 2 log(g + 1). Then for n and B sufficiently large (with
an explicit bound depending only on ε but not on q or g), the probability that a given effective
divisor on C of degree n is B-smooth is at least u−u(1+o(1)).

Using this theorem, we can show as above that index calculus in JacC(Fq), which is a group
of size approximately qg, has heuristic complexity Lqg (1/2,

√
2) for q, g → ∞.

The complexity results discussed in this section as well as the following section are always of
heuristic nature, since the complexity analysis relies on heuristic assumptions, for example that
the polynomials (respectively divisors) that are constructed in the computation have the same
smoothness probability as random polynomials (respectively, divisors) of the same degree and
that the linear system to be solved has full rank.

In the following we discuss the variants of Algorithm 1 that lead to first an L(1/3) and
then even L(1/4) and quasi-polynomial algorithms for finite fields of small characteristic, and an
L(1/3) algorithm for a certain type of algebraic curves. In our exposition, we concentrate mainly
on the relation collection phase of the algorithm, since it is the focus of this work.

3 Finite fields of small characteristic

The function field sieve, due to Adleman [1], and its successors are the best algorithms for
computing discrete logarithms in finite fields of small characteristic. The function field sieve gets
its name from the fact that relations are produced with the help of two different function fields,
a strategy originally developed in the number field sieve (which is good for factoring integers and
computing discrete logarithms in finite fields of large characteristic) and subsequently adapted
to finite fields of small characteristic. By searching for half-relations in each of the function
fields and then combining them into full relations afterwards, one is able to reduce the degree
of the polynomials that are required to be smooth, thus increasing the smoothness probability.
This leads to a relation collection phase of complexity L(1/3), as opposed to L(1/2) above. The
individual logarithm phase is also modified so that it has complexity L(1/3). The individual
logarithm is computed with a so-called descent strategy, where logg h is first written as a sum
of logarithms of elements of moderate degree, and then one proceeds recursively, writing each
summand as a sum of logarithms of elements of smaller degree, until one finally arrives at a sum
of logarithms of elements of small enough degree (i.e. all lying in the factor base). Combining
these two speed-ups, one gets an algorithm of overall complexity L(1/3). We now give some
more details of the relation collection phase, which can best be explained with the help of the
commutative diagram given in Figure 1, where K = Fq and the field L = Fqn on the bottom is
the field where the discrete logarithm is to be computed.

In order to produce relations, one starts with a polynomial φ ∈ Fq[x, y], typically of shape
φ(x, y) = a(x)y + b(x), and maps it via ψ1 and ψ2 into O1 and O2, respectively. If ψ1(φ) ∈ O1

and ψ2(φ) ∈ O2 are both B-smooth, then one maps both of these elements into Fqn via η1 and
η2, where they produce a relation of the form

η1(ψ1(φ)) = η2(ψ2(φ)),

4



Figure 1: Commutative diagram illustrating relation collection phase of FFS and its successors

K[x, y]

O1 = K[x, y]/f1(x, y) O2 = K[x, y]/f2(x, y)

L = K[x]/k(x)

ψ1 ψ2

η2η1

due to the commutativity of the diagram. The function fields involved are Fi = Quot(Oi) ⊇
Oi, i = 1, 2.

3.1 The original function field sieve

Applicability. The function field sieve computes discrete logarithms in a field Fqn = Fq[x]/k(x)
(with k monic and irreducible of degree n) of small characteristic, meaning that q ≤ Lqn(1/3).
Write K = Fq and L = Fqn .

Function fields. The function field sieve usually chooses f1 monic in y of degree d (a parameter
to be optimized in the complexity analysis) and of degree O(1) in x, and f2(x, y) = y − h(x)
where h has degree n/d. It is further required that f1(x, h(x)) ≡ 0 mod k, since this allows to
define the maps in the way specified below.

Thus the function fields involved are F1 = Quot(O1) = Fq(x)[y]/f1(x, y), an extension of
Fq(x) of degree d, and F2 = Quot(O2) = Fq(x)[y]/f2(x, y), which is in fact the rational function
field Fq(x), since it is a degree 1 extension of Fq(x). Let us write Oi = Fq[x, αi(x)] with
fi(x, αi(x)) = 0 for i = 1, 2, and notice that α2 = h.

Maps. We have ψ1 : y 7→ α1(x), ψ2 : y 7→ h(x) and ηi : P (x, αi(x)) 7→ P (x, h(x)). Notice that
the ηi are well-defined since we have fi(x, h(x)) ≡ 0 mod k.

Factor base. Since the Oi are in general not unique factorization domains, one considers ideals,
which factor uniquely. Hence one defines the factor base in terms of ideals in Oi:

F (i)
B = {〈ℓ(x), αi(x)− r(x)〉 | ℓ irreducible, deg ℓ ≤ B, fi(x, r(x)) ≡ 0 mod ℓ(x)}

and FB = F (1)
B ∪ F (2)

B .

Relations. In order to produce relations, one picks φ = a(x)y−b(x) ∈ Fq[x, y] with deg a, deg b ≤
e for some sieving parameter e (to be optimized in the complexity analysis). One imposes further
that a and b are coprime in order to avoid pairs (a, b) which are multiples of each other. We have
ψi(φ) = a(x)αi(x)− b(x), and it is easy to see that the ideal (a(x)αi(x)− b(x))Oi is smooth with

respect to the factor base F (i)
B if and only if the norm NFi|Fq(x)(a(x)αi(x) − b(x)) is B-smooth

as a polynomial (note that this is a polynomial, since aαi − b is a polynomial). Furthermore, we
have

NFi|Fq(x)(a(x)αi(x)− b(x)) = Resy(a(x)y − b(x), fi) = f
(h)
i (a, b)

5



where f
(h)
i (a, b) = fi(a/b)b

deg fi is the homogenization of fi, regarded as a polynomial in y.

By sieving, we find enough pairs (a, b) ∈ Fq[x]
2 such that f

(h)
i (a, b) are B-smooth for both

i = 1, 2; such pairs are called doubly B-smooth. By raising the decompositions to the respective
class numbers, we obtain factorizations into principal ideals, or equivalently by looking at the
generators of the ideals, half-relations in Oi, which can then be mapped via ηi into Fqn , thus
producing full relations there. For the many technical details we are skipping here, see e.g. [3].

Descent. In a first step, the descent rewrites the sought after logarithm as a sum of logarithms
of L(2/3)-smooth elements. Then it recursively descends the elements in the sum to elements of
FB by sieving elements of a lattice.

Complexity. Choose e = B = logq Lqn(1/3) such that |FB | = Lqn(1/3), and choose d =
(

n log q
logn

)1/3

. Working out the constants as shown e.g. in [3, Chapter 7.5], the function field sieve

has a total complexity of Lqn(1/3, (32/9)
1/3).

3.2 The Joux–Lercier variant of the function field sieve

Joux and Lercier [19] give a simplified version of FFS, where the function fields are no longer
visible as such, though they are still present “in the background” as described above, and one
no longer has to deal with ideals.

Applicability. As before, this variant of the function field sieve applies to fields Fqn =
Fq[x]/k(x), and we write K = Fq, L = Fqn .

Function fields. Let f1(x, y) = γ1(y) − x and f2(x, y) = y − γ2(x) for γi of degree di with
d1d2 ≥ n, and assume that k | γ1(γ2(x))− x.

The function fields involved are F1 = Fq(x)[y]/(γ1(y)−x), an extension of Fq(x) of degree d1,
and F2 = Fq(x)[y]/(y − γ2(x)), which is in fact the rational function field (since it is a degree 1
extension of Fq(x)). Hence as above, there is one rational side.

Interpreting F1 as Fq(y)[x]/(γ1(y) − x), which is the rational function field in y, one might
even say that this algorithm has two rational sides.

Maps. We have ψ1 : y 7→ γ2(x), ψ2 : x 7→ γ1(y) and η1 : x 7→ γ1(γ2(x)) = γ1(η2(y)), η2 : y 7→
γ2(x).

Factor base. Define

FB = {ℓ(x), ℓ(y) | ℓ ∈ Fq[x] monic, irreducible, deg ℓ ≤ B}.

Relations. By sieving (as above), find φ(x, y) = a(x)y−b(x) ∈ Fq[x, y] such that φ(x, γ2(x)) and
φ(γ1(y), y) are both B-smooth. Such φ give relations since φ(x, γ2(x)) = φ(x, y) = φ(γ1(y), y).

Descent. This is the same as for the function field sieve.

Complexity. This is also the same as for the function field sieve.

3.3 The L(1/4) algorithm

A series of papers [9, 18, 10, 4, 11, 12] with very similar ideas, often building on each other, drasti-
cally improved the efficiency of discrete logarithm computations in certain classes of finite fields.
While Göloğlu, Granger, McGuire, and Zumbrägel [9] were the first to point out that relation
collection can be achieved in polynomial time, Joux [18] gave the first algorithm of complexity
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L(1/4 + o(1)), which was subsequently improved to L(1/4) in [10]. Finally, Granger, Kleinjung,
and Zumbrägel took some steps in the direction of a provable complexity result by suggesting an
alternative descent method in [12]. Most of these papers also present record breaking computa-
tions. The differences between these algorithms lie mostly in the individual logarithm (descent)
phase, while they share very similar strategies for relation collection. Therefore, we present the
basic ideas of all of them together in this section. We point out though that [9, 10, 11, 12] limit
themselves to fields of characteristic two.

Applicability. The algorithms apply to fields Fqmn , where q ≈ n and m is small and fixed
([18, 4] consider only m = 2). Hence a given field must be embedded into a finite field of this
shape as a first step. Writing K = Fqm and L = Fqmn , the relation collection phase can also be
described via the diagram in Figure 1.

Function fields. Let f1(x, y) = y − xq and f2(x, y) = h1(x)y − h0(x) (respectively f2(x, y) =
h1(y)x − h0(y)) for polynomials h0, h1 ∈ Fq[x] of small, constant degree. Experiments suggest
that suitable h0, h1 of degree at most 2 always exist, see [18].

Writing Fqmn = Fqm [x]/k(x), [18, 4] require that k | h1(x)xq − h0(x), while [11, 12] require
that k | h1(xq)x− h0(x

q), where the latter allows a slightly larger class of fields to be embedded
into Fqmn than the former.

We have O1
∼= Fqm [x] and O2

∼= Fqm [x, 1/h1(x)] (respectively O2
∼= Fqm [y, 1/h1(y)]), and the

function fields are Fi = Quot(Oi), which are both degree one extensions of Fqm(x) (respectively
F2 is a degree one extension of Fqm(y)), i.e. they are the rational function field themselves.

Maps. Let ψ1 : y 7→ xq and ψ2 : y 7→ h0(x)/h1(x) (respectively x 7→ h0(y)/h1(y)), and let η1
and η2 be reduction modulo k.

Factor base. Set B = 1, the factor base consists of all monic linear polynomials over Fqm . Notice
that [18] includes also quadratic polynomials for technical reasons concerning the descent, we
disregard this here.

Relations. The approach of [18, 4] can be interpreted as follows. Start with a polynomial
of the shape φ = (aqy + bq)(cx + d) − (ax + b)(cqy + dq) for (a, b, c, d) ∈ F

4
qm \ Fq

4. Then
on the left (meaning ψ1(φ) ∈ O1), this splits completely: set y 7→ xq and use the identity
F (x)qG(x)−F (x)G(x)q = G(x)

∏

α∈Fq
(F (x)−αG(x)) for F,G ∈ Fqm [x]. On the right (meaning

ψ2(φ) ∈ O2), this becomes a polynomial of small, constant degree and therefore has high splitting
probability (for this purpose, h1 is included in FB by definition). We get a relation as soon as
the right-hand-side is smooth.

The other papers start with a polynomial φ = xy + ay + bx + c ∈ Fqm [x, y] and map it to
both sides. On the left, the resulting polynomial is of the form ψ1(φ) = xq+1 + axq + bx + c,
and it can be shown (using a transformation resulting in a polynomial of shape xq+1 +Dx+D
and results of Bluher [2] and Helleseth–Kholosha [15] on the splitting probability of polynomials
of this shape, see [9]) that such polynomials split with probability q−3, which is much higher
than the splitting probability given by Theorem 1 for random polynomials of the same degree.
A parametrization of such polynomials which split completely is also given. On the right, again,
the polynomial ψ2(φ) splits with large constant probability.

Descent. We skip this, since it is different in all the papers mentioned above.

Complexity. Since n ≈ q and m is small and fixed, we have that qm is polynomial in the input
size qmn. Then the relation generation takes only polynomial time, since the splitting probability
is constant. The linear algebra is of size qm × qm.
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3.4 Comparison

A schematic comparison of the relation collection phase for all algorithms discussed in this section
is given in Figure 2.

4 Algebraic curves

The algorithm of Enge, Gaudry, and Thomé [7, 8] is the most efficient currently known algorithm
to compute discrete logarithms in Jacobians of algebraic curves. It has complexity L(1/3), but it
is important that this improvement over the L(1/2) algorithm presented in Section 2 is not due
to the search of relations in two different function fields, but rather to the bounds on the degrees
of the curve equation, which are due to the fact that the algorithm applies only to Cab-curves.

Applicability. The algorithm applies to so-called Cab-curves defined over Fq by an equation

Cab : ya + xb + f(x, y) = 0,

such that the affine part of the curve is smooth, and where gcd(a, b) = 1 and ai + bj ≤ ab for
all monomials xiyj of f . Such curves have genus g = (a − 1)(b − 1)/2. The DLP is defined in
its Jacobian JacCab

(Fq), which has size about qg. The elements of the Jacobian are degree zero
divisor classes, which we denote by [D] for a divisor D.

Function field. There is only one function field involved in the relation search, namely the
function field Fq(Cab) = Fq(x)[y]/(y

a + xb + f(x, y)) of the curve. It is a degree a extension of
Fq(x).

Factor base. The factor base consists of all prime divisors on the curve of degree at most B,
where B = logq Lqg (1/3) is chosen such that the factor base has size Lqg (1/3).

Relations. One searches for polynomial functions φ ∈ Fq(Cab) such that div(φ) is B-smooth.
If div(φ) =

∑

νiPi with Pi ∈ FB , then
∑

νi[Pi] = 0 gives a relation in JacCab
. Smoothness of a

divisor can be tested by checking if NFq(Cab)|Fq(x)(φ) ∈ Fq(x), and actually ∈ Fq[x] since φ is a

polynomial function, is B-smooth. Notice that NFq(Cab)|Fq(x)(φ) = Resy(φ(x, y), y
a+xb+f(x, y))

and can therefore easily be computed as a resultant.

Descent. The algorithm recursively descends a place of degree g1/3+τ , τ ∈ [0, 2/3], to a sum
of places of degree g1/3+τ/2 by sieving elements of a lattice. Notice that there is no initial
smoothing.

Complexity. Choosing a ≈ gα, b ≈ g1−α for α ∈ [1/3, 2/3], and degy φ ≈ gα−1/3, degx φ ≈
g2/3−α, one can estimate

degx
(

NFq(Cab)|Fq(x)(φ)
)

≤ g2/3,

hence the norm (and therefore div(φ)) is B-smooth with probability Lqg (1/3)
−1. Hence one

can collect |FB | = Lqg (1/3) relations in time Lqg (1/3), and the linear system can be solved in
the same time. The descent phase has the same complexity, and therefore we get an overall
complexity of Lqg (1/3), where q and g grow to infinity.

5 Ideas for a faster relation generation phase for curves

The first goal in an attempt to transport the ideas of the L(1/4) algorithm to algebraic curves
may be to devise a strategy to produce relations in a more efficient way. One may take Joux’s
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Figure 2: Comparison relation search of FFS and its successors

Function field sieve [1], Section 3.1

Fq[x, y]

Fq[x, y]/f1(x, y) Fq[x, y]/(y − h(x))

Fqn = Fq[x]/k(x)

y 7→ α1(x) y 7→ h(x)

modk(x)modk(x)

where k(x) | f1(x, h(x))

FB = {〈ℓ(x), αi(x)− r(x)〉 | ℓ irreducible,
deg ℓ ≤ B, fi(x, r(x)) ≡ 0 mod ℓ(x)}

with B = logq Lqn(1/3)

φ = a(x)y − b(x) ∈ Fq[x, y]

Criterion for relation:

f1(x, a(x)/b(x))b(x)
d, a(x)− b(x)h(x) are B-smooth

Joux–Lercier variant of FFS [19], Section 3.2

Fq[x, y]

Fq[x, y]/(γ1(y)− x) Fq[x, y]/(y − γ2(x))

Fqn = Fq[x]/k(x)

y 7→ γ2(x) x 7→ γ1(y)

y 7→ γ2(x)x 7→ γ1(γ2(x))

where k(x) | γ1(γ2(x))− x

FB = {ℓ(x), ℓ(y) | ℓ ∈ Fq[x] monic, irreducible,

deg ℓ ≤ B}
with B = logq Lqn(1/3)

φ = a(x)y − b(x) ∈ Fq[x, y]

Criterion for relation:

φ(x, γ2(x)), φ(γ1(y), y) are B-smooth

French relation search [18, 4], Section 3.3

Fq2 [x, y]

Fq2 [x, y]/(y − xq) Fq2 [x, y]/(h1(x)y − h0(x))

Fq2n = Fq2 [x]/k(x)

y 7→ xq y 7→ h0(x)/h1(x)

modk(x)modk(x)

where k(x) | h1(x)xq − h0(x)

FB = {ℓ(x) | ℓ ∈ Fq2 [x] monic, linear}
i.e. B = 1

φ = (aqy + bq)(cx+ d)− (ax+ b)(cqy + dq) ∈ Fq2 [x, y]

Criterion for relation:

(aqc− acq)xh0(x) + (aqd− bcq)h0(x)+

+(bqc− adq)xh1(x) + (bqd− bdq)h1(x)

splits into linear factors

Irish–Swiss relation search [11, 12], Section 3.3

Fqm [x, y]

Fqm [x, y]/(y − xq) Fqm [x, y]/(h1(y)x− h0(y))

Fqmn = Fqm [x]/k(x)

y 7→ xq x 7→ h0(y)/h1(y)

modk(x)modk(x)

where k(x) | h1(xq)x− h0(x
q)

FB = {ℓ(x), ℓ(y) | ℓ ∈ Fqm [x] monic, linear}
i.e. B = 1

φ = xy + ay + bx+ c ∈ Fqm [x, y]

Criterion for relation:

xq+1 + axq + bx+ c and

yh0(y) + ayh1(y) + bh0(y) + ch1(y)

split into linear factors



point of view and try to amplify relations (e.g. via homographies), or that of the Irish–Swiss
team of finding families of functions that have higher-than-usual splitting probability. In both
cases, the shape of the function field plays a crucial role, and the new algorithms profit precisely
from this freedom to choose convenient function fields.

In the case of algebraic curves, the function field is given by the curve in question, and there
is unfortunately no freedom to choose it. Therefore, we ask ourselves instead whether there exist
curves (with corresponding function fields) for which we are easily able to produce relations. The
curves should, of course, have no known weaknesses with respect to the DLP. In particular, they
should not be supersingular, or more generally, not have a Jacobian of smooth order, they should
not have small embedding degree, and they should obviously not have genus 0. In fact, in order
to mimic the finite field algorithms, we would need a curve defined over Fq of genus about q, so
that the Jacobian has order about qq.

A more precise formulation of the question we wish to answer is the following. We write
poly(q) = qΘ(1).

Question 1. Let C be a projective curve defined over Fq of degree poly(q). Under which con-
ditions is the number of polynomial functions of degree O(1) defining divisors which split into
factors of degree O(1) unexpectedly large, say of the form poly(q)?

Unfortunately our impression is that there may not exist curves which satisfy all of these
criteria. A precise formulation of this impression is given in Section 7, but before we get to it,
we explain the reasoning and experiments that led to this conclusion.

A first observation is that the function fields chosen in the L(1/4) algorithms for finite fields
are not interesting in our context, since the corresponding curves y−xq and h1(x)y+h0(x) both
have genus zero.

We tried two approaches, corresponding to the point of view of Joux (and the “French team”)
and that of the “Irish–Swiss team”, respectively.

The first approach would be to find a curve, together with one smooth function, which gives
a relation, and to then amplify this into many relations using homographies. This works well
for the specific curve y − xq, since it is of particularly simple shape, as shown in Example 1.
For curves with more complicated equations, this becomes more difficult, as the application of
the homography is no longer compatible with taking the resultant. Example 2 shows a curve
where this approach does not work, i.e. where we find exactly two polynomial functions that
have smooth principal divisors but no more.

The second approach would be to find a curve, together with a (parametrized) family of
smooth functions, such that the (parametrized) resultant has high splitting probability. Again,
this works well for the curve y − xq, since we have Resy(φ(x, y), y − xq) = νφ(x, xq) for some
constant ν, and therefore the norm of φ depends on φ in a very simple way. For this reason,
simple φ’s produce simple N(φ)’s, and it is easy to produce polynomials for which results on
higher splitting probability are known, see Example 1. The difficulty about generalizing this
approach is that there exist few known families of polynomials with high splitting probability,
and it is difficult to produce these few very simple polynomials with more interesting curves.

Example 1. Let C : y − xq = 0 and φ(x, y) = y − x ∈ Fq(C). Then

NFq(C)|Fq(x)(φ) = Resy(y − x, y − xq) = ν(xq − x) = ν
∏

α∈Fq

(x− α)

for some constant ν. Since N(φ) splits completely into linear factors, div(φ) is smooth and
therefore gives a relation.
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In order to amplify this one relation into many, Joux proposes to apply a homography x 7→
ax+b
cx+d , where a, b, c, d ∈ Fq2 . After multiplication by (cx+ d)q+1, this gives

(ax+ b)q(cx+ d)− (ax+ b)(cx+ d)q = (cx+ d)
∏

α∈Fq

((a− αc)x+ (b− αd)),

and one has found many polynomials that split into linear factors. How many? As many as

there are matrices

(

a b
c d

)

∈ PGL2(Fq2)/PGL2(Fq), which has cardinality q3 + q.

Interpreting this in terms of relations on the curve C, we “apply” the homography to φ(x, y) =
y − x as follows. Setting

φhom(x, y) = (aqy + bq)(cx+ d)− (ax+ b)(cqy + dq),

we get

Resy(φ
hom(x, y), y − xq) = ν(cx+ d)

∏

α∈Fq

((a− αc)x+ (b− αd))

for a constant ν, which gives about q3 different relations in JacC .
Alternatively, we may define φ(x, y) = xy + ay + bx+ c for a, b, c, d ∈ Fqm , which gives

Resy(φ(x, y), y − xq) = xq+1 + axq + bx+ c.

If c 6= ab and b 6= aq, then the transformation x 7→ ab+c
b+aq x+ a maps the result to xq+1 −Dx+D

which, for D ∈ Fqm , splits into linear factors for about qm−3 values of D according to [2,
Lemma 4.4]. In other words, φ has splitting probability q−3, which is much higher than that of
a random polynomial of degree q + 1, which is on the order of q−q according to Theorem 1.

The connection between the two approaches, and an interesting observation, is that poly-
nomials (ax + b)q(cx + d) − (ax + b)(cx + d)q are of the form Axq+1 + Bxq + Cx + D, and
such polynomials have splitting probability q−3 according to [2], which is higher than expected.
It is possible that this phenomenon holds more generally. For example, (ax2 + bx + c)q(dx2 +
ex+ f)− (ax2 + bx+ c)(dx2 + ex+ f)q splits completely into factors of degree 2 and has terms
x2q+2, x2q+1, x2q, xq+2, xq+1, xq, x2, x, 1, so one might expect that polynomials Ax2q+2+Bx2q+1+
Cx2q+Dxq+2+Exq+1+Fxq+Gx2+Hx+I split into quadratic factors with higher probability
than expected. Counting arguments as well as experiments for m = 2 and small fields suggest
that this may be the case with probability q−7, but such counting experiments are only possible
for very small fields and therefore only give a vague idea, and we are not aware of any results
similar to those of [2, 15] for such polynomials. If such a thing were true, we could search for
pairs of C, φ such that the resultant has such a shape. Notice that it is obviously possible to
extend this idea, using e.g. polynomials of larger degrees and possibly products of polynomials
of different degrees.

6 Experiments

We discuss the approaches that we tried using some exemplary curves. In this entire section,
we give resultants only up to multiplication by a constant, since this simplifies notation and is
sufficient for determining the splitting properties.
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Example 2. Consider C : y2 − xq+1 + 2x − 1 = 0, which is a hyperelliptic, non-supersingular
curve of genus g = (q − 1)/2, and φ(x, y) = y − x+ 1. Then

Resy(φ, y
2 − xq+1 + 2x− 1) = x(xq − x)

and therefore splits into linear factors. However, exhaustive search shows that the only functions
of the form ψ = axy + by + cx + d with a, b, c, d ∈ Fq2 such that Resy(ψ, y

2 − xq+1 + 2x − 1)
splits into linear factors and produces a non-trivial relation are ψ = y + x − 1, y − x + 1, for
q = 7, 11, 19, 23 (notice that these are all primes ≡ 3 mod 4). For these values of ψ, we have

Resy(ψ, y
2 − xq+1 + 2x− 1) = x(xq − x).

Therefore, for this curve and the values of q mentioned above, there is no way of applying a
homography appropriately to φ or of finding ψ with higher splitting probability.

Example 3. Let C : y2−xq−1+1 = 0, which is a hyperelliptic, non-supersingular curve of genus
g = (q−3)/2. In fact, it is a CM-curve and has 2q−2 automorphisms. We look for a polynomial
function φ ∈ Fq(C) such that Resy(φ, y

2 − xq−1 + 1) = xq − x or a small multiple thereof. Since
the curve equation is quadratic in y, the function must be of shape φ(x, y) = φ1(x)y + φ0(x).
Furthermore, the degrees of φ0 and φ1 should be very small. If we allow degree at most one,
then by solving

Resy(φ1(x)y + φ0(x), y
2 − xq−1 + 1) = (xq − x)(x+ a)

for some a, we get a = 0, φ0 = x, φ1 = 0 and therefore φ(x, y) = xy. This is not interesting, as φ
is not irreducible.

If we allow φ0, φ1 of degree up to two, then with the same reasoning, we get φ(x, y) =
(x2 + ax)y for any choice of a. Again, this is not interesting as it is not irreducible.

Example 4. Let C : y2 − xq−2 + x + 1 = 0, which is a hyperelliptic, non-supersingular curve
of genus g = (q − 3)/2. As in Example 3, we try to find a function φ = φ1(x)y + φ0(x) such
that Res(φ, y2 − xq−2 + x+ 1) is a multiple of xq − x by some linear factors. Trying to solve the
equation, we find that neither linear nor quadratic φ0, φ1 produce a resultant which is divisible
by xq − x. The same is true for C : y2 − xq−1 − 1 and many other curves.

Example 5. Let C : y2 + y = xn be a Koblitz–Buhler curve (see [5]), which is a hyperelliptic
curve. Its equation can be transformed into y2 = xn + 3/4 via the transformation y 7→ y − 1/2
in odd characteristic. For this curve, which functions split over Fq[x] depends on q. For some
values of q (e.g. q = 7), we can show that there are no φ0, φ1 of degree 2 such that Resy(φ1(x)y+
φ0(x), y

2 + y = xn) = xq − x by solving the corresponding polynomial system with coefficients
of the φi as indeterminates.

Example 6. Consider the Hermitian curve C : xq+1 + yq+1 − 1 = 0. These curves have genus
g = q(q−1)/2 and are known for the fact that they have many Fq2 -rational points, more precisely,
exactly q3 + 1. In other words, the function field Fq2(C) is maximal (in the sense that the upper
Hasse–Weil bound on the number of places of degree one is attained). For this reason, such curves
are of interest e.g. in coding theory. It is also known that Hermitian curves are supersingular,
and therefore not interesting in the context of cryptography. For more on Hermitian curves, see
e.g. [21, Chapter VI, VII].

Now let φ = xy + ay + bx2 + cx + d with a, b, c, d ∈ Fq2 . Experiments suggest that this
function has higher-than-expected splitting probability. More precisely, for fields small enough
so that we can enumerate all functions of this shape over Fq2 , more than q6 out of q8 possible
such functions φ split into factors of degree at most two. This is much more than expected
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for a random function of the same degree (here, the splitting probability behaves like q−q for
q → ∞). However, experiments also show that special things are happening here: If the resultant
is 2-smooth, then it is always automatically already 1-smooth (i.e. we did not find functions that
produced a resultant which was 2-smooth but not 1-smooth).

Example 7. Let C : yq+1 + xq+1y − 1 = 0, which is a non-hyperelliptic, non-supersingular
curve of genus g = q(q + 1)/2. Experiments for q = 5, 7, 11, 13, 17, 19, 23 show that there is no
irreducible function φ = xy + ay + bx+ c ∈ Fq2 [x, y] such that Resy(φ, y

q+1 + xq+1y − 1) splits
completely into linear factors.

7 A possible obstruction

A possible conclusion from the experiments described in Section 6 is that curves for which
principal divisors with higher-than-expected splitting probability exist are very special, and in
fact, so special that the DLP is already known to be easy for these curves. A more precise
formulation and possible answer to Question 1 is the following.

Conjecture 1. Let (Cq)q be a family of projective curves defined over Fq of genus poly(q), given
by an equation of degree poly(q). Assume that there exist poly(q) monic, irreducible polynomial
functions φ ∈ Fq2(Cq) of degree O(1) such that div(φ) is O(1)-smooth. Then JacCq

is isogenous
to a product of elliptic curves, for large enough q.

The main example supporting this conjecture are Hermitian curves, which are supersingular
and therefore, in particular, have a Jacobian isogenous to a product of supersingular elliptic
curves.

It is a priori not clear how to prove such a statement, since one would have to relate splitting
probabilities of rational functions to the structure of the Jacobian of a curve. However, there are
some results related to the special case of Question 1 where we set both constants equal to one:

Question 2. Let C be a projective curve defined over Fq of degree poly(q). Under which con-
ditions is the number of lines defining divisors which split completely unexpectedly large, say of
the form poly(q)?

Heuristically, for a curve of degree d, we expect about q2/d! such divisors to split completely.
Moreover, for reflexive curves of fixed degree d ≥ 3, it has been proven by Diem that this count
holds asymptotically:

Theorem 3 ([6, Theorem 3]). Let d ≥ 3 be fixed, and let C be a projective curve of genus at least
one given by a plane model of degree d. If d > 4, then assume that the plane model is reflexive.
Then the number of divisors on C that are given by lines in P

2 and split completely into distinct
points is in 1

d!q
2 +O(q3/2).

For example, Hermitian curves are non-reflexive, and as explained in Example 6, they have
many points. This corresponds to the fact that there are many divisors given by lines, and
therefore also many that split.

Since we are interested in curves where there are rational functions with higher-than-expected
splitting probability, this rules out reflexive curves as possible candidates. This leaves non-
reflexive curves, which are relatively well-studied in the literature, see e.g. [13, 14].

A projective variety V is called reflexive if the conormal variety of V and its dual variety V ′ are
equal up to the canonical identification of projective space with its double dual. Varieties defined
over characteristic zero base fields are always reflexive, and even over positive characteristic fields,
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most varieties are reflexive. The main examples for non-reflexive varieties are strange curves,
which have the property that all tangents pass through a common point.

In fact, non-reflexive curves are so special that they have been classified according to their
degree by Ballico and Hefez [14]. Among other things, they show that for non-reflexive plane
curves C of degree d with “moderate singularities” defined over fields of characteristic p > 2, we
always have p | d− 1. Moreover, for such curves, they give the following result.

Theorem 4 ([14, Proposition 1]). Any non-reflexive plane curve of degree d = q+1 ≥ 4, for q a
power of the characteristic of the field of definition, and of genus greater than zero is projectively
equivalent to the curve

xq+1 + yq+1 + zq+1 = 0. (1)

These are the Hermitian curves, which are known to be supersingular. As discussed earlier,
such curves are not interesting in our context. Summarizing, because of Diem’s theorem, the
only curves which are candidates in response to Question 2 are non-reflexive curves, but such
curves are not interesting in our context. This is in accordance with our experiments, in which
we found only curves of shape (1).

The question that remains is whether a more general statement, perhaps along the lines of
our conjecture, can be proven in response to the more general Question 1. One possible approach
to this would be to use Cebotarev’s density theorem, which is the main argument in the proof
of Diem’s theorem.

8 Conclusion

Our investigation of possible ways of adapting the relation collection phase of the new L(1/4)
and quasi-polynomial algorithms to algebraic curves suggests that this is a difficult problem. In
particular, our experiments indicate that curves which permit rational functions whose principal
divisors have higher-than-expected splitting probability are very special and therefore not inter-
esting in our context, since the DLP in these curves is already known to be weak. We conjecture
that this is always true and show that a special case of this conjecture can be proven using known
results of Diem and Ballico–Hefez. If the more general statement could be proven, this would
rule out a more general approach that allows polynomial functions of constant degree and the
corresponding divisors to split into factors of constant degree. Clearly, this would still not mean
that there is no L(1/4) DLP algorithm for Jacobians of curves, it would mean simply that one
needs to investigate more sophisticated ideas than the rather obvious analogy we have considered
here.
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impact of higher splitting probabilities. In R. Canetti and J. A. Garay, editors, Advances in
Cryptology: Proceedings of CRYPTO ’13, volume 8043 of LNCS, pages 109–128. Springer,
2013.
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