
HAL Id: hal-01097476
https://hal.inria.fr/hal-01097476

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Characterizing Bufferbloat and its Impact at End-hosts
Stephane Wustner, Renata Teixeira, Jaideep Chandrashekar

To cite this version:
Stephane Wustner, Renata Teixeira, Jaideep Chandrashekar. Characterizing Bufferbloat and its Im-
pact at End-hosts. 6th International Workshop on Traffic Monitoring and Analysis (TMA), Apr 2014,
London, United Kingdom. pp.51-64, �10.1007/978-3-642-54999-1_5�. �hal-01097476�

https://hal.inria.fr/hal-01097476
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Characterizing Bufferbloat and its Impact at
End-hosts

Stéphane Wustner12, Renata Teixeira3 and Jaideep Chandrashekar2

1 UPMC Sorbonne Universities, Paris, France
2 Technicolor, Paris, France

3 Inria, France

Abstract. While buffers on forwarding devices are required to handle
bursty Internet traffic, overly large or badly sized buffers can interact
with TCP in undesirable ways. This phenomenon is well understood
and is often called “bufferbloat”. Although a number of previous studies
have shown that buffering (particularly, in home) can delay packets by as
much as a few seconds in the worst case, there is less empirical evidence
of tangible impacts on end-users. In this paper, we develop a modified
algorithm that can detect bufferbloat at individual end-hosts based on
passive observations of traffic. We then apply this algorithm on packet
traces collected at 55 end-hosts, and across different network environ-
ments. Our results show that 45 out of the 55 users we study experience
bufferbloat at least once, 40% of these users experience bufferbloat more
than once per hour. In 90% of cases, buffering more than doubles RTTs,
but RTTs during bufferbloat are rarely over one second. We also show
that web and interactive applications, which are particularly sensitive to
delay, are the applications most often affected by bufferbloat.

1 Introduction

Internet routers and other forwarding devices (e.g., home gateways, middble-
boxes) are engineered with buffers that can help deal with sudden bursts in
traffic. When properly sized, these buffers can avoid packet losses which could
lead to network instability. However, on the other hand, large buffers can inter-
act with TCP’s feedback control mechanism in unexpected ways. Such buffers
have the effect of delaying TCP feedback, making the end-points wait longer to
understand the fate of packets that are in flight. Recent papers report that exces-
sive buffering at the edge (mostly in home routers and access points) can cause
additional delay on the order of seconds [1], as a direct result of what is termed
BufferBloat [2, 3]. When buffering is excessive, and the delays large, applications
seem “laggier” and end-users perceive the network as being slower and less re-
sponsive. Such effects are most felt with short interactive (or semi-interactive)
applications such as web-browsing, VoIP, and online gaming.

Most previous work in this area has focused on two distinct aspects: (i)
measuring the extent of excessive buffering in the network, or (ii) designing
mechanisms to mitigate it. Corresponding to the first category, previous work



quantifies worst case buffering carrying out delay measurements after attempting
to saturate network buffer [1] [4] [5], or leveraging bittorent traffic [6]. This body
of work conclusively establishes that bufferbloat can occur on the Internet for
a particular set of conditions. However, they do not address the question of
whether this directly affects the normal user (and their traffic) and to what
extent. The one exception to this is the work by Allman [7], which analyzed real
user traffic seen deep in the network and reported that bufferbloat rarely delays
packets by more than a second (which contrasts some of the previous work).
A possible explanation is that the dataset consists primarily of fiber users with
1GB bi-directional links, and the lack of buffering is simply due to the very high
access link speeds.

In this paper, we examine a different vantage point to characterize the size
and impact of excessive buffering, and this is on the end-host itself. By placing
ourselves on the end-host, we are better able to measure and understand the act
ual performance of an application as experienced by the end-user. It is extremely
challenging to close the loop and actually state whether a bad performance
episode indeed has an impact on the user – such observations are very subjec-
tive and depend on application, mood, expectations, etc. In our work, we simply
measure how some application characteristics are degraded by excessive buffer-
ing, which serves as a proxy for the actual experience of the end-user. Another
advantage of being able to characterize this at the end-host is that mechanisms
might be easier to deploy at the end-hosts and the mitigation mechanisms, such
as those discussed in [8, 9] could be customized for particular applications. A
key challenge that needs to be addressed is a methodology to detect excessive
buffering, which intimately depends on a large set of parameters – access link
speeds, buffer sizes, traffic rates, etc. This has been narrowly addressed in pre-
vious work [3], which was squarely focused on the network core. However, these
methods are not directly applicable at the end-host.

A key contribution of this paper is a modified algorithm that can detect
extended periods of buffering passively and on end-hosts.

Subsequently, we apply this new detection methodology on a corpus of data
(described in §2) collected from 55 hosts, covering 2300 cumulative days of traffic.
The users and environments in our dataset cover a wide variety of network
settings – ranging from enterprise LAN networks to home DSL networks. Our
characterization (§4) complements Allman’s study [7], which only examined very
well connected end-hosts. In particular, we focus onto individual bufferbloat
episodes and quantify the actual impact on applications that are affected by the
buffering in the particular episode.

2 Dataset

We study bufferbloat using data passively collected directly on users’ machines
with the Hostview [10] monitoring tool. HostView was developed to study user
perception of network performance. It collects network and system performance
as well as user feedback on the quality of network experience. In this paper, we



Fig. 1. Distribution of the duration covered by capture across users

only study the network performance of active application connections. HostView
extracts network performance from packet-header traces collected with libpcap.
It labels traces with information about the network environment : (i) the hash of
the MAC address of the default gateway, (ii) the interface name, (iii) the type of
the interface. HostView uploads traces from the user machine to a server every
four hours. We merge all consecutive traces collected in a single environment
collected less than one hour apart into a session. We then process packets in
each session with tcptrace [11] to obtain round-trip time (RTT) estimates over
each TCP connection in the session. Note that because the data is collected at
the end-host we can only estimate RTTs for upload traffic and at the beginning
and end of every connection (since the RTT estimations relies on ACKs). This
is not a problem for our study because bufferbloat has mainly been observed
in upload traffic [1] [4] [5]. HostView also maps connections to the application
executable name that originated them using GT [12]. This allows us to identify
the application running within particular intervals.

Users, mostly computer scientists, ran HostView between November 2010 and
April 2012. We study data from 55 users who contributed at least four hours
of cumulative trace over ethernet. We only study traces collected when users
are connected over Ethernet to avoid any interaction with other buffering effects
happening in wireless. The traces we study were collected on 87 unique network
environments in 14 different countries. The sizes of traces and the duration varied
per user as we can see in Figure 1. We study traces that lasted between 4 hours
and 15 months, depending on the user. For 80% of users the traces lasted for at



least one day. Trace sizes also vary considerably across users; the median trace
is 2.6GB.

3 Bufferbloat detection

Given RTT samples computed from packet traces collected on the end-host, we
must detect periods when packets are experiencing bufferbloat. We develop a
methodology that works in two steps. First, we identify instances of sustained
buffering, which we call buffering episodes, using a heuristic inspired by coDel [3].
Then, we apply this heuristic to the HostView data to identify episodes of ex-
cessive buffering and quantify their magnitude. From these, we select the largest
episodes and analyze them in detail. This section first presents a brief overview
of the heuristic coDel uses to detect buffering, then it presents how we extend
this heuristic to work only with the data that we have available at end-hosts.
Finally, we present our analysis of buffering on HostView data and the definition
of bufferbloat we will consider for the rest of the paper.

3.1 CoDel heuristic

CoDel is an active queue management algorithm designed for gateways. The al-
gorithm detects when queue is building up so that it can start dropping packets
early, to avoid bufferbloat. As a basis to our detector we choose the same, well-
tested, heuristics as in coDel. CoDel measures the sojourn time at the buffer.
It declares a buffering episode when the sojourn time is above a target for at
least an interval (in the original work, these are set as 5ms and 100ms, respec-
tively [3]). These two heuristics are complementary: a sojourn time greater than
a certain target would not necessarily imply there is a buffering episode, while
a sojourn time sustained above that target and over a large interval implies the
phenomenon was not transient.

3.2 Detecting of buffering episodes at end-hosts

The coDel heuristic doesn’t apply directly at end-hosts: (i) we need to estimate
the sojourn time from RTT samples, which can suffer from measurement noise
mostly due to traffic conditions; (ii) in addition, we only observe traffic from one
of the end-hosts behind the buffer (if the applications running on the end-host
are not sending traffic continuously, which is often the case in practice, then
we may not have enough samples to determine whether the additional delay in
the buffer was indeed sustained for at least the given interval). We propose the
following modification to the coDel heuristic to address these issues.

Additional delay as an estimate of sojourn time We use the additional
delay of an RTT sample computed as the RTT sample minus the baseline latency
to the same destination as an estimator for sojourn time across all buffers along



the path (we assume that, only one hop is experiencing a buffering episode at a
time). To estimate the baseline latency to a destination we select the minimum
RTT we observe for that destination during a session. Our algorithm later verifies
whether a baseline latency estimate was computed during a buffering episode.
If so, then we cannot be confident in our estimate of additional delay. If the
additional delay is above the target, then we can still consider this sample.
Otherwise, we discard the sample.

Setting target and interval We set the target to 5ms and the interval to
100ms as in coDel [3]. Although we are measuring additional delay at end-hosts
and not the sojourn time in the buffer of the router, we choose to be conservative
and use the same parameters as coDel. We will later filter out these episodes to
select just the largest episodes (which we would have also detected using a higher
target, or a longer interval).

Dealing with measurement noise CoDel defines the end of an episode when
the sojourn time falls back under the target. Measurement noise may cause
some RTT samples to be below the target even though the end-host is still
experiencing the same buffering episode. This may happen when we overestimate
the baseline latency for some destinations. To avoid breaking up one long episode
into multiple shorter episodes, we aggregate shorter episodes that are within
a threshold time of each other into a larger episode. This threshold time is
defined as the smoothed average additional delay of all samples in the first
episode plus the baseline latency of the last sample of this episode. We use the
smoothed average because tcptrace sometimes reports unrealistic high RTTs
that we attribute to measurement noise.

Dealing with sparsity of samples In some cases, the end-host we monitor
may not be sending enough traffic, either because the application is not trying to
send traffic or because buffering is so bad that sending rate becomes really low.
If the problem is the latter, then we should see at least one sample per RTT.
To account for these cases, we define that two RTT samples can potentially
belong to the same episode if they are separated by less than a threshold. We
set this threshold to the baseline latency of the last sample of this episode plus
the smoothed average of the additional delay of this episode.

Gateway versus end-host view We then compare the output of our end-host
heuristic with that of coDel running at the gateway with a controlled experiment
using a simple topology: client—gateway—server. We vary uplink bandwidth
from 10Kbps to 6Mbps and downlink bandwidth from 56Kbps to 100Mbps in
both links; buffer size from 10 to 400 Kbits at the gateway; and latency from
5ms to 100ms and jitter from 1ms to 20ms at the server. Results vary depending
on specific network conditions, but in general we see that: (i) the duration of
episodes detected at the end-host is shorter than the duration of the same episode



Fig. 2. Distribution of additional delay per buffering episode (computed as the area
under the curve of additional delays of samples during this episode). We define all
episodes that incur at least 200ms of additional delay as bufferbloat.

measured at the gateway (this is mainly due to the sparsity of samples), (ii) the
additional delay seen at the end-host is most of the time larger than the sojourn
time at the gateway (due to the effect of the jitter on tcptrace’s RTT calculation),
(iii) the fraction of time where we detect a buffering episode at the end-host and
coDel also detects an episode is 60%. Note that these two vantage points are
measuring different things and that there is no notion of ground truth here.
This comparison is only useful to illustrate how the two metrics differ.

3.3 Identifying bufferbloat

We apply the heuristic described in the previous section to the HostView data to
identify the beginning and end of buffering episodes. Not all buffering episodes
are significant, in fact most buffering is just part of normal TCP/network behav-
ior. We now want to select a subset of the buffering episodes that are significant
enough to potentially impact users. Figure 2 presents the cumulative distribu-
tion of the additional delay per episode (the x-axis is in log scale). We compute
the additional delay for an episode using the area under the curve defined by
the additional delay corresponding to the successive RTT samples within this
episode. For this computation we only take into consideration samples for which
the baseline latency was computed outside of an episode. The additional delay of
buffering episodes in our data varies from 5ms (which is the value of the target)
to over 22 seconds. This distribution has a sharp knee at 200ms. 90% of buffering



episodes cause less than 200ms of additional delay. An additional delay of 200ms
is significant when compared to typical RTTs and it should impact many in-
teractive applications. Therefore, we choose to define bufferbloat as all buffering
episodes that incur at least 200ms of additional delay. In the rest of this paper,
we only study bufferbloated episodes.

Our approach allows us to infer the beginning and the end of each bufferbloat
episode. This contrasts with Allman’s study [7], which simply studies distribu-
tions of absolute RTTs and discusses how often RTTs larger than one second
happen in the traces. Allman’s approach is appealing because it avoids having
to parametrize bufferbloat, which is challenging in practice. Nevertheless, we
choose to detect bufferbloat episodes so that we can study their duration, their
magnitude, and their impact on applications. We pick a conservative threshold
empirically to focus only on the largest episodes.

4 Bufferbloat characterization

This section analyzes bufferbloat episodes observed in the traffic of the 55 HostView
users. We first study the occurrence of bufferbloat episodes and their duration.
Then, we study by how much bufferbloat inflates RTTs and the duration of TCP
connections. Finally, we analyze bufferbloat impact per application.

4.1 Bufferbloat occurrence

We detect at least one bufferbloat episode for 45 out of the 55 users we stud-
ied. This result shows that bufferbloat affects users traffic in practice. Figure 3
presents the histogram of the number of bufferbloat episodes per hour for each
of the 45 users who experienced at least one episode. We bin users according to
the number of episodes per hour. For example, the first bin groups all users that
had between zero and one episode per hour. Although the majority of users ex-
perienced less than one episode per hour, seven users experienced more than ten
episodes per hour. One user, who connected from a residential ISP in Lebanon,
experienced as many as 19.7 episodes per hour. We cannot generalize based on
measurements from a single user. This example suggests, however, that having
a larger deployment in developing regions, where residential access speeds are
often lower, could discover a much higher occurrence of bufferbloat.

4.2 Duration of bufferbloat episodes

We study the duration of bufferbloat episodes. Intuitively, inflated RTTs over
longer periods of time are more likely to affect users. Both the duration and
the magnitude of bufferbloat episodes depend on the network environment users
connect from: the size of the buffer, the connection speed (i.e., the buffer drain-
ing rate), and the usage patterns (i.e., the traffic demand at the buffer). Figure 4
presents the distribution of duration of bufferbloat episodes per environment. We



Fig. 3. Histogram of the number of episodes per hour across users. The ticks in the
x-axis mark the end of the range in a bin. The first bin groups users from 0 to 1
bufferbloat episode per hour, whereas the last groups users between 19 and 20 episodes
per hour.

observe bufferbloat in a total of 86 network environments, but we only present re-
sults for the 49 environments where we observed at least 100 bufferbloat episodes.
We order environments by the median duration of episodes. In all the environ-
ments, the median episode duration is above 200ms. However, the median dura-
tion rarely exceeds 2s. We identify the ISP for the six environments with largest
median episode duration and find that most of them are residential providers
(two of them are a campus network, which may in fact be students who are
in on-campus housing). This result confirms Allman’s findings that residential
users often experience higher buffering delays than non-residential [7].

This figure shows that the duration of episodes vary considerably across
environments and within an environment. Variation of episode duration across
environments comes mainly from the differences in buffer size and connection
speed, whereas variation in a single environment comes from the different traffic
demands over time.

4.3 Impact of bufferbloat episodes

We now study the impact of bufferbloat episodes: how are connections affected?
how are latencies and connection duration inflated? As in §3.3, we use the area
under the curve of the additional delay of RTT samples in an episode as the
additional delay of the episode. We already saw in the results presented in Fig-
ure 2 that the absolute value of additional delay for bufferbloat episodes vary



Fig. 4. Box-plot of the duration of bufferbloat episodes across network environments
with more than 100 episodes (ordered by the median duration of bufferbloat episodes).
The point in the middle represents the median episode duration for an environment;
the bottom line represents the 5th-% and the upper line the 95th-%.

from 200ms (which is how we define bufferbloat) to over 10s. However, 200ms
of additional delay on a baseline RTT of 20ms is far more significant than on a
baseline of 200ms. We define the normalized additional delay of an RTT sample
as the additional delay of an episode divided by the baseline latency for each
RTT sample in that episode.

Figure 5 presents the cumulative distribution of the median normalized ad-
ditional delay of RTT samples in an episode. We see that for 90% of bufferbloat
episodes the normalized additional delay is above one, which means the added
delay due to buffering is more than the baseline RTT for the destinations of
packets in the episode. In 70% of cases the additional delay is more than twice
the baseline RTT. This result shows that when bufferbloat happens, it is a sig-
nificant factor on end-to-end RTTs.

We also study by how much bufferbloat affects TCP connections, or how
much longer TCP connections take to finish during bufferbloat episodes. Clearly,
we cannot compare the same TCP connection during an episode and outside an
episode. Instead, we study the median value of the duration of TCP connections
in each environment and compare with the median duration during bufferbloat.
Figure 6 presents the scatter plot of the median duration of TCP connections
overall and during bufferbloat episodes per environment.

We see that the vast majority of points (90%) are above the x=y line. So
on most environments bufferbloat increases the duration of TCP connections.



Fig. 5. Cumulative distribution of the median of the normalized additional delay during
bufferbloat episodes. A normalized additional delay equal one means that the additional
delay due to buffering is the same as the baseline RTT.

In some environments, the median duration of TCP connections went from less
than 100ms to over a few minutes. The impact of the longer duration will depend
on the application, which we study next.

4.4 Bufferbloat per application

This section characterizes bufferbloat per application. Bloated delays are more
severe for interactive applications than bulk, for instance. We want to under-
stand which applications most often appear during bufferbloat episodes and
by how much their RTTs increase during bufferbloat episodes. We divide the
RTT samples in each episode according to the application executable name.
Together the 55 users we monitor use hundreds of different applications. For
simplicity of presentation, we manually group these applications into six classes:
streaming, which includes applications such as real-player, VLC; interactive, e.g.,
Skype, SSH; bulk, with applications like Dropbox, P2P clients, FTP; web, with
all browsers; mail, with Thunderbird, mail; other, which includes applications
we couldn’t fit in one of the previous categories. The HostView dataset has the
application executable name for 84% of TCP connections. We exclude the 16%
of connections for which we don’t have an application name from the rest of the
analysis in this section.

Table 1 presents the rank of application classes based on the percentage of
the bufferbloat episodes with traffic from each application class. We see that the



Fig. 6. Scatter plot of the median TCP connection duration per environment. Each
point represents an environment. The x-axis is the median connection duration in
the environment overall and the y-axis is the median connection duration only for
connections that were affected by some bufferbloat episodes. The diagonal represents
x=y.

vast majority of episodes affected interactive and web applications. Both these
applications are sensitive to additional delays of few hundreds of milliseconds.
Although bulk applications are often pointed out as the cause of bufferbloat,
not all bufferbloat episodes co-occurred with bulk applications. Note that we
are only measuring one end-host behind the buffer, so it is possible that another
end-host is doing a bulk transfer that is causing bufferbloat but we don’t observe
it in our data. Although we don’t know which application is causing bufferbloat,
we can say that all applications sending traffic during the episode will suffer from
the additional delay.

Table 1. Percentage of bufferbloat episodes per application class.

application class % bufferbloat episodes

interactive 83.34%
web 80.40%
bulk 57.55%
other 41.97%
mail 38.99%
streaming 1.09%



Fig. 7. Scatter plot of the median TCP connection duration for interactive and web
applications per environment.

We analyze the increase in TCP connections duration for interactive and web
applications during bufferbloat episodes. Figure 7 replots the same metrics as in
Figure 6 only for interactive and web traffic.

The duration of TCP connection for both web and interactive applications
increase considerably during bufferbloat (the vast majority of points are above
the x=y line). For example, our analysis of the data in this figure shows that
in 75% of environments TCP connections of web last less than 12 seconds, but
during bufferbloat only in a little over 36% of environments connections last
less than 12 seconds. For interactive applications, in approximately 2% of envi-
ronments TCP connections have a median duration above three minutes. This
percentage increases to 40% during bufferbloat episodes.

Figure 8 presents the duration of bufferbloat episodes in seconds per appli-
cation class. The distribution of episode duration is similar across application
classes. The only small deviation is for bulk and streaming applications. The
results for streaming may deviate simply because we don’t have many streaming
samples. Bufferbloat episodes that contain traffic of bulk applications that tend
to last a bit longer when compared to other applications. This result is intuitive
as bulk transfers tend to sustain a high transfer rate for longer periods of time.

5 Summary

This paper performed the first characterization of bufferbloat from data col-
lected at end-hosts, where we can better gauge its impact on actual application



Fig. 8. Cumulative distribution of duration of bufferbloat episodes that affect each of
the application classes.

performance as experienced by end-users. First, we designed an algorithm to
detect buffering episodes from RTT samples passively collected at end-hosts.
Our algorithm is robust to measurement noise and sparsity of RTT samples.
It detects the beginning and end of each episode, which allow us to perform a
more detailed characterization of buffering episodes. We define empirically that
all buffering episodes that last for more than 200ms are bufferbloat episodes.
Then, we apply this algorithm to data collected over Ethernet from 55 users
in 87 network environments to study bufferbloat in the wild. Our results show
that most users do experience bufferbloat episodes that introduce from 200ms to
over 22s of additional delay for a sustained period of time. The magnitude and
duration of bufferbloat episodes depends heavily on the network environment.
Furthermore, we find that during bufferbloat episodes RTTs are at least doubled
and sometimes over one thousand times more than baseline latency for the same
destinations. This additional delay impacts the duration of TCP connections.
Our analysis per application shows that web and interactive applications, which
are particularly sensitive to delays, are the most often affected by bufferbloat.

Acknowledgment

We thank Diana Joumblatt, Diego da Hora, and Oana Goga, for their contribu-
tions. We also thank shepherd, Philippe Owevarski. This work was partly done
at the LINCS (Paris) and was supported by the European Commission’s Seventh
Framework Program (FP7/2007-2013) no. 258378 (FIGARO).



References

1. C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: illuminating
the edge network,” in Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, ser. IMC ’10. New York, NY, USA: ACM, 2010, pp.
246–259. [Online]. Available: http://doi.acm.org/10.1145/1879141.1879173

2. J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the internet,”
Commun. ACM, vol. 55, no. 1, pp. 57–65, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2063176.2063196

3. K. Nichols and V. Jacobson, “Controlling queue delay,” Queue,
vol. 10, no. 5, pp. 20:20–20:34, May 2012. [Online]. Available:
http://doi.acm.org/10.1145/2208917.2209336

4. S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and
A. Pescapè, “Broadband internet performance: A view from the gateway,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 134–145, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2043164.2018452

5. L. DiCioccio, R. Teixeira, M. May, and C. Kreibich, “Probe and pray:
using upnp for home network measurements,” in Proceedings of the 13th
international conference on Passive and Active Measurement, ser. PAM’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 96–105. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28537-0 10

6. C. Chirichella and D. Rossi, “To the moon and back: are internet bufferbloat delays
really that large?” in TMA, 2013.

7. M. Allman, “Comments on bufferbloat,” SIGCOMM Comput. Commun.
Rev., vol. 43, no. 1, pp. 30–37, Jan. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2427036.2427041

8. M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis, “Trickle: rate
limiting youtube video streaming,” in Proceedings of the 2012 USENIX
conference on Annual Technical Conference, ser. USENIX ATC’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 17–17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342821.2342838

9. H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in 3g/4g
networks,” in Proceedings of the 2012 ACM conference on Internet measurement
conference, ser. IMC ’12. New York, NY, USA: ACM, 2012, pp. 329–342.
[Online]. Available: http://doi.acm.org/10.1145/2398776.2398810

10. D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taft, “Hostview: annotating
end-host performance measurements with user feedback,” SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 3, pp. 43–48, Jan. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1925019.1925028

11. S. Ostermann, “tcptrace,” http://www.tcptrace.org/.
12. F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and k. c. claffy,

“Gt: picking up the truth from the ground for internet traffic,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 5, pp. 12–18, Oct. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1629607.1629610


