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Abstract In this paper we propose to tackle human
actions indexing by introducing a new local motion de-

scriptor based on a model of the optical flow. We pro-
pose to apply a coding step to vector field before the
modeling. We use two modeling, a spatial model and a

temporal model. The spatial model is computed by pro-

jection of optical flow onto bivariate orthogonal poly-

nomials. Then, the time evolution of spatial coefficients

is modeled with a one dimension polynomial basis. To

perform the action classification, we extend recent still
image signatures using local descriptors to our proposal
and combine them with linear SVM classifiers. The ex-

periments are carried out on the well known UCF11

dataset and on the more challenging Hollywood2 ac-

tion classification dataset and show promising results.

Keywords Action classification · Visual descriptors ·
Motion

1 Introduction

Human action recognition has become an important re-
search area in computer vision since it concerns sev-

eral key applications like video indexing, video surveil-
lance or human computer interaction. The typical setup
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for this task involves the extraction of highly discrimi-

nant features localized in both space and time. A wide

variety of such descriptors have been introduced re-

cently [38,39,23,32], and have become essential tools

of the action classification framework. These descrip-

tors are then aggregated into a single vector using the

extension to video of the well known “Bag of Words”
image signature approaches [35]. To further improve the

results, most action classification systems use the com-
bination of several complementary descriptors.

This paper is a revised and extended version of ear-

lier work presented in [19]. The proposed descriptor is
localized spatially and temporally in a space-time tube,
in order to capture characteristic atoms of motion. The
Serie of Polynomial Approximation of Flow (SoPAF)

space-time motion descriptor is based on polynomial

decomposition of the optical flow [19].

We propose to extend this descriptor by coding the

vector field with the half-wave rectification proposed

by Efros et al. [9]. Moreover, we study two different

functions basis (polynomial and sine) for modeling the

temporal evolution of spatial polynomial coefficients.

The paper is organized as follows. In section 2 we

present the most popular space-time feature descrip-

tors in the literature. Then, in section 3 we present the

SoPAF descriptor and our extension. Finally, in sec-

tion 4 we carry out experiments on two well known

action classification datasets.

2 Related work

The recognition of human action and activity is an im-

portant area in several fields such as computer vision,

machine learning and signal processing. A popular way

of comparing videos is to extract a set of descriptors
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from video, to find a transformation that maps the set

of descriptors into a single vector, and then to measure

the similarity between the obtained vectors.

We first present several works related to descriptors

extraction, and then we present the most popular sig-

nature approaches.

2.1 Video descriptors

In the early work on action recognition, silhouette based

descriptors, also called motion appearance models, were

used. These descriptors are computed from the evolu-
tion of a silhouette obtained by background subtraction
methods or by taking the difference of frames (DOF).

From a sequence of binary images, Bobick and Davis [8]

propose descriptors called Motion Energy Image (MEI)

representative of the energy of movement and Motion
History Image (MHI) providing information about the

chronology of motion. These two descriptors are mod-

eled by seven Hu moments. Kellokumpu et al. use his-

tograms of Local Binary Patterns (LBP) to model the

MHI and MEI images [18]. In [17], they propose an ex-

tension of the LBP directly applied on the image pixels

with successful results. Wang and Suter [41] use two

other descriptors, namely the Average Motion Energy

(AME) and the Mean Motion Shape (MMS). The AME
is a descriptor close to the MHI representing the average

image of silhouettes. The MMS is defined from bound-

ary points of the silhouette in complex coordinates with

the origin placed at the centroid of the 2D shape. As

time is an important information in video, Gorelick et

al. study the silhouettes as space-time volumes [4,12].

Space-time volumes are modeled with Poisson equa-

tions. From these, they extract seven spatio-temporal

characteristic components.

The main drawback of all these methods is the com-

putation of silhouettes. Indeed, this computation is not

very robust, making these methods only relevant in con-

trolled environments such as the Weizmann dataset [4]

or the KTH dataset [32]. Moreover, they tend to fail on

more realistic data-sets such as UCF11 [24] or Holly-

wood2 [23].

Assuming that action recognition is closely linked to

the notion of movement, many authors have proposed

descriptors based on the modeling of optical flow. The

optical flow encodes the displacement of pixels from
two consecutive frames. The result can be represented
by vector fields with two components U and V. Here,

U denotes the horizontal component of motion and V

the vertical component. Early works with respect to this
approach were proposed by Polana and Nelson [30]. The
vector field is first decomposed according to a spatial

grid. Then, in each cell of the grid, the magnitude of

motion is accumulated. This method can only process

periodic actions such as running or walking.

Efros et al. propose a descriptor computed on a

figure-centric spatio-temporal volume for each person

in a video [9]. The vector field representing the mo-

tion between two consecutive frames of the volume is

computed with the Lucas and Kanade optical flow algo-

rithm [26]. The two components U and V of the vector

field are decomposed with a half-wave rectification tech-

nique. The resulting four components are blurred using

a Gaussian filter and normalized. They are directly used

as a descriptor. The obtained descriptors are compared
using the normalized correlation measure. This descrip-
tor is used and/or extended by several authors in [10,

7].

Tran et al. have proposed the motion context de-
scriptor [36]. It is also a figure-centric descriptor based

on the silhouette extraction. They use the vector field

and the binary silhouette as three components. The

components of the field are blurred with a median fil-

ter. Then, the three components are subdivided with a

grid of 2× 2 cells. Each cell is decomposed in 18 radial

bins, each covering 20 degrees. Inside the radial bins,

the sum of each component is computed. This provides,

for each component, 4 histograms composed with 18

bins. The concatenation of these histograms provides a

216-dimensional vector which is the movement pattern

of a given field. From this pattern, the Motion Context

is created. It is composed of the 216-dimensional vector

of the current frame plus the first 10 vectors of the PCA

models of the 5 previous frames, the first 50 vectors of

the PCA models of 5 current frames and finally the first

10 vectors PCA models of 5 next frames.

Ali and Shah first compute many kinematic features

on the field, and then compute kinematic modes with a

spatio-temporal principal component analysis to create

a figure-centric descriptor [1].

Figure-centric descriptors are dependent on the per-

son detector associated with them. Moreover, they don’t

take into account the context in the video that can

add relevant information to action recognition. Con-

sequently, these methods tend to fail on more realis-

tic data-sets such as UCF11 [24] or Hollywood2 [23]

datasets.

An other approach is proposed in [33,34] that allows

to compute the similarity between motions of videos

segments without computing motion fields. This method
do not have to use video background subtraction. How-
ever, this method requires a set of training video cen-
tered on the action to recognize.

Finally, the descriptors that have emerged in re-
cent years are the extention to video of still image de-

scriptors [38]. The most commonly used are SIFT [25],
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SURF [3] and Histogram of oriented gradient (HOG) [6].

SIFT and SURF are both interest points detector and

local image descriptor. In this paper, we only consider

the descriptors. SIFT and HOG descriptors rely on a

histogram of orientation of gradient. Locally, the ori-

entation of the gradient is quantized in o orientations
(typically 8). For a given spatial window, a HOG (or

a SIFT) descriptor is computed by decomposing the
window with a grid of N ×N cells. Each cell contains

the histogram of orientations of the gradient. The de-

scriptor is obtained by the concatenation of the N ×N

histograms. HOF is the same as HOG but is applied

to optical flow instead of gradient. The MBH models

the spatial derivatives of each component of the optical

flow vector field with a HOG.

Recently, Wang et al. propose to model these usual

descriptors along dense trajectories [38]. The time evo-

lution of trajectories, HOG, HOF and MBH is modelled

using a space time grid following pixels trajectories. The

use of dense trajectories for descriptor extraction in-

creases the performances of popular descriptors (HOG,

HOF and MBH).

2.2 Signatures

Once a set of descriptors is obtained from the video,
a popular way of comparing images (or videos) is to
map the set of descriptors into a single vector and then

to measure the similarity between the obtained vectors

(for example in [31], [39] and [38]). The most common

method for such embeddings is inspired by the text re-

trieval community and is called the “Bag of Words”

(BoW) approach [35]. It consists in computing a dictio-

nary of descriptor prototypes (usually by clustering a

large number of descriptors) and then computing the

histogram of occurrences of these prototypes (called

“Visual Words”) within the set.

In still images classification, these approaches have

been formalized in [40] by a decomposition of the map-

ping into two steps. The first step, namely the “coding

step”, consists in mapping each descriptor into a code-

word using the aforementioned dictionary. The second

step is to aggregate the codewords into a single vector

and is called the “pooling step”. Structural constraints

such as sparsity [42] or locality [40] can be added to

the coding process to ensure most of the information is
retained during the pooling step. Common pooling pro-
cesses include averaging the codewords or retaining the

entry-wise maximum among the codewords (max pool-

ing). Extensions of the BoW model have been recently

proposed to include more precise statistical informa-

tion. In [2], the authors propose to model the distribu-

tion of distances of descriptors to the clusters centers. In

the coding/pooling framework, each descriptor is coded

by 1 in the bin corresponding to its distance to the clus-
ter’s center to which it belongs, and 0 otherwise. The
pooling is simply the averaging over all codewords.

In [15], the authors proposed a coding process where

the deviation between the mean of the descriptors of the
set and the center of the cluster to which they belong to
is computed. The whole mapping process can be seen

as the deviation between a universal model (i.e. the

dictionary) and a local realization (i.e. the set of de-

scriptors). Using this model deviation approach, higher

order statistics have been proposed, like “super-vectors”

in [43], “Fisher Vectors” in [16] or “VLAT” in [29,28].
Fisher Vectors are known to achieve state of the art

performances in image classification challenges [5].

To compare the performances of descriptors, in this

paper, we consider a compressed version of VLAT which

is known to achieve near state of the art performances in

still images classification with very large sets of descrip-

tors [27]. In our case, the dense sampling both in spa-

tial and temporal directions leads to highly populated

sets, which is consistent with the statistics computed
in VLAT signatures. Given a clustering of the descrip-
tors space with C clusters computed on some training

set, the first and second order moments µc and τc are

computed for each cluster c:

µc =
1

|c|

∑

i

∑

r

νrci (1)

τc =
1

|c|

∑

i

∑

r

(νrci − µc)(νrci − µc)
T (2)

with |c| being the number of descriptors νrci of video
i in cluster c, for all videos in the training set. The

eigen decomposition of the covariance matrix τc for each

cluster c is then performed:

τc = VcDcV
⊤
c (3)

Using this decomposition, descriptors are projected on

the subspace generated by the eigenvectors Vc.

The compressed VLAT signature τi,c of video i is
computed for each cluster c with the following equation:

τi,c =
∑

r

(Vc(νrci − µc))(Vc(νrci − µc))
⊤ −Dc (4)

τi,c are then flattened into vectors vi,c. The complete
VLAT signature xi of video i is obtained by concate-

nation of vi,c for all clusters c:

vi = (vi,1 . . . vi,C) (5)

It is advisable to perform a normalization step for best
performance.

∀j, v′
i[j] = sign(vi[j])|vi[j]|

α, (6)

xi =
v′
i

‖v′
i‖

(7)
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Fig. 1: Localisation in space and space-time domains.

(a) Localisation in space domain; (b) Localization ex-

ample in space-time domain with τ = 3.

With α = 0.5 typically. The size of the compacted

VLAT signature depends on the number dc of eigenvec-
tors retained in each cluster, and is equal to

∑

c

dc(dc+1)
2

(thanks to the matrices τi,c being symmetric, only half

of the coefficients are kept).

3 Series of Polynomial Approximation of Flow

(SoPAF)

We propose to extend the SoPAF descriptor [19]. SoPAF

descriptor models the vector field of motion between
two frames using projection on an orthogonal basis of
polynomials. This polynomial model is used in [21] to
recognize movements in a video. The modeling is ap-

plied to the entire field and each frame is processed

separately. In another context, this polynomial model

is locally used to detect singularities such as vortex or

saddle point in fluid motion [20]. Since motion can suc-
cesfully be modeled by polynomials, we propose to use
such models on a local neighborhood in order to obtain

densely extracted local motion descriptors. We use two

successive polynomial models. At first, the spatial vec-

tor field is modeled with two dimensional polynomial

basis. Then, time evolution of spatial coefficients are

modeled with a one dimensional basis. We propsose to
extend the descriptor using the half-wave rectification
technique proposed by Efros et al. [9]. Moreover, we

propose to evaluate sine functions basis in addition to
of polynomial functions.

3.1 Spatial modeling using a polynomial basis

Let us consider the descriptorM(i, j, t) located in frame

at coordinates (i, j) and in video stream at time t. De-

scriptors are computed using space and time neigh-

borhood around location (i, j, t), denoted as window

W (i, j, t). An example of W (i, j, t) is shown in Fig.1a.

We propose to model the vector field of motion inside

the window W (i, j, t) by a finite expansion of orthogo-

nal polynomials. Let us define the family of polynomial

functions with two real variables as follows:

PK,L(x1, x2) =

K
∑

k=0

L
∑

l=0

ak,l x
k
1 xl

2 (8)

where k ∈ {0..K}, l ∈ {0..L}, K ∈ N
+ and L ∈ N

+

are respectively the maximum degree of the variables

(x1, x2) and {ak,l} are the polynomial coefficients. The

global degree of the polynomial is D = K + L.

Let B = {Pk,l}k∈{0..K},l∈{0..L} be an orthogonal ba-

sis of polynomials. A basis of degree D is composed by
n polynomials with n = (D + 1)(D + 2)/2 as follows:

B = {P0,0, P0,1, · · · , P0,L, P1,0, · · ·

· · · , P1,L−1, · · · , PK−1,0, PK−1,1, PK,0} (9)

We can create an orthogonal basis using the follow-

ing three terms recurrence:























P−1,l(x) = 0

Pk,−1(x) = 0

P0,0(x) = 1

Pk+1,l(x) = (x1 − λk+1,l)Pk,l(x)− µk+1,1Pk−1,l(x)
Pk,l+1(x) = (x2 − λk,l+1)Pk,l(x)− µk,l+1Pk,l−1(x)

(10)

where x = (x1, x2) and the coefficients λk,l and µk,l

are given by

λk+1,l =
〈x1Pk,l(x)|Pk,l(x)〉

‖Pk,l(x)‖2 λk,l+1 =
〈x2Pk,l(x)|Pk,l(x)〉

‖Pk,l(x)‖2

µk+1,l =
〈Pk,l(x)|Pk,l(x)〉
‖Pk−1,l(x)‖2 µk,l+1 =

〈Pk,l(x)|Pk,l(x)〉
‖Pk,l−1(x)‖2

(11)

and 〈· | ·〉 is the usual inner product for polynomial
functions:

〈P1 | P2〉 =

∫∫

Ω

P1(x)P2(x)w(x)dx (12)

with w the weighting function that determines the

polynomial family and Ω the spatial domain covered
by the window W (i, j, t). We use Legendre polynomials

(w(x) = 1, ∀x).

Using this basis, the approximation of the horizontal
motion component U is:

Ũ =

D
∑

k=0

D−k
∑

l=0

ũk,l

Pk,l(x)

‖Pk,l(x)‖
(13)

The polynomial coefficients ũk,l are given by the

projection of component U onto normalized B elements:
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ũk,l =
〈U | Pk,l(x)〉

‖Pk,l(x)‖
(14)

Similarly, vertical motion polynomial coefficients ṽk,l
are given by computing the projection of vertical com-

ponent V onto B elements. Using the polynomial basis

B of degrre D, the vector field asociated to window

W (i, j, t) is modelled by (D+ 1)× (D+ 2) coefficients.

3.2 Time modeling using a polynomial basis

Since an action is performed along more than two frames,
we propose to model motion information in longer space-
time volumes.

Let us consider the descriptor located in frame at

coordinates (i, j) and in video stream at time t0. We

consider the same spatial domain as previously defined
(see Fig.1a). Moreover, we now consider the space-time

tube defined by all the window W (i, j, t0) to W (i, j, t0+
τ), with τ being the length of our descriptors temporal

domain (see Fig.1b). For each frame at time t between

t0 and t0 + τ , we propose to model the vector field of

motion inside the windows W (i, j, t) of the tube by the

coefficients ũk,l and ṽk,l , as defined in the previous

section.

Then all coefficients ũk,l(i, j, t) (respectively ṽk,l(i, j, t))
for t = t0 to t = t0 + τ are grouped in a vector defined

as

uk,l(i, j, t0) = [ũk,l(i, j, t0), . . . , ũk,l(i, j, t0 + τ)] (15)

We model the time evolution of the coefficients ũk,l(i, j, t)
(resp. ṽk,l(i, j, t)) by projecting uk,l(i, j, t0) (resp. vk,l)

onto a one dimension orthogonal function basis. In [19],
we use Legendre polynomial basis of degree d defined

by































P−1(t) = 0

P0(t) = 1

Tn(t) = (t− 〈tPn−1(t)|Pn−1(t)〉)Pn−1(t)− Pn−2(t)

Pn(t) =
Tn(t)

|Tn|

(16)

In this work, we also use Sine basis for time evolution

modeling. Using such basis (polynomial or sine) with

degree d, the approximation of uk,l(i, j, t) is:

ũk,l(i, j, t) =

d
∑

n=0

ũk,l,n(i, j, t)
Pn(t)

‖Pn(t)‖
(17)

The model has d+ 1 coefficients ũk,l(i, j, t) given by

ũk,l,n(i, j, t) =
〈uk,l(i, j, t) | Pn(t)〉

‖Pn(t)‖
(18)

The time evolution of a given coefficient ũk,l(i, j)

(respectively ṽk,l(i, j)) is given by the vectorml,k(i, j, t0)

(respectively nl,k(i, j, t0)) as defined in equation (19)

ml,k(i, j, t0) = [ũk,l,0(i, j, t0), ũk,l,1(i, j, t0),

. . . , ũk,l,d(i, j, t0)]
(19)

The feature descriptor ν(i, j, t0) for the whole space-

time volume beginning at time t0 and centered at posi-

tion (i,j) is given by

ν(i, j, t0) = [m0,0,m0,1, · · · ,m0,L,m1,0, · · · ,m1,L−1, · · ·

· · · ,mK−1,0,mK−1,1,mK,0,n0,0,n0,1, · · ·

· · · ,n0,L,n1,0, · · · ,n1,L−1, · · ·

nK−1,0,nK−1,1,nK,0]

(20)

Here, mk,l(i, j, t0) and nk,l(i, j, t0) are written as mk,l

and nk,l for clarity reasons. The size of the descriptor
ν(i, j, t0) is (D + 1)× (D + 2)× d.

We name Series of Polynomial approximation of Flow

the descriptor as it is defined in [19]. If Sine basis is used

to model the motion vector field evolution, we name the

descriptor SoPAF+Sine. Note, for the spatial modeling

of the vector field, only polynomial basis are used.

3.3 Series of local Polynomial Approximation of

Rectified Flow

We propose an extension of the SoPAF descriptor by us-

ing the half-wave rectification coding proposed by Efros
et al. in [9] and used in several works. The half-wave rec-

tification coding produces a four dimension code from

the horizontal component U and the horizontal compo-

nent V of the vector field. The code is defined as:

U+(x) =

{

U(x) if U(x) > 0

0 else
(21)

U−(x) =

{

U(x) if U(x) < 0
0 else

(22)

V+(x) =

{

V(x) if V(x) > 0
0 else

(23)

V−(x) =

{

V(x) if V(x) < 0

0 else
(24)

This coding is applied to motion vector field before the

modeling steps of SoPAF descriptor. This preprocessing

doubles the dimensions of the obtained descriptor. We
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(a) Video at time t (b) Video at time t+1
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Fig. 2: Half-wave rectification

show in Fig 2 an example of of half-wave rectification

coding. In case we use the half-wave rectification coding

step, we name the descriptor Serie of Polynomial Ap-

proximation of Rectified Flow (SoPARF). If Sine basis

is used to model the motion vector field evolution, we
name the descriptor SoPARF+Sine.

3.4 Trajectories

As proposed in [38], we use trajectories to follow the

spatial position of the window along time axis.

In our case the windowW (i1, j1, t0+1) at time t0+1

is selected as the best matching block with respect to

the window W (i0, j0, t0) from time t0. This matching

is performed using a three step search block matching

method from [22]. The temporal evolution of spatial

coefficients is thus modeled on tubes instead of volumes.

4 Experiments

We carry out experiments on two well known human
action recognition datasets. The first one is the UCF11
dataset [24], and the second one is the Hollywood2 Hu-

man Actions dataset [23].

In this section, we first introduce the two datasets.

Second, we evaluate parameters of our descriptor on the

UCF11 dataset. Third, we compare our descriptor to

literature results on UCF11 and Hollywood2 datasets.

For the parametrization, we use the best results ob-

tained on UCF11 evaluation.

We use a Horn and Schunk optical flow algorithm [13]

for motion extraction with 25 iterations and the regu-

larization parameter λ is set to 0.1. We extract the mo-

tion fields at 5 scales for UCF11 and 7 for Hollywood2,

the scale factor is set to 0.8.

For experiments, we use VLAT indexing method to

obtain signatures from descriptors. We train a linear

SVM for classification.

4.1 Datasets

4.1.1 UCF11 dataset

The UCF11 [24] dataset is an action recognition data

set with 11 action categories, consisting of realistic videos

taken from youtube (Fig. 3). The data set is very chal-

lenging due to large variations in camera motion, object

appearance and pose, object scale, viewpoint, cluttered

background and illumination conditions. The videos are

grouped into 25 groups, where each group consists of

more than 4 action clips. The video clips in the same

group may share some common features, such as the

same person, similar background or similar viewpoint.

The experimental setup is a leave one group out cross

validation.

4.1.2 Hollywood dataset

The Hollywood2 [23] dataset consists of a collection of

video clips and extracts from 69 films in 12 classes of

human actions (Fig.4). It accounts for approximately

20 hours of video and contains about 150 video sam-

ples per actions. It contains a variety of spatial scales,
zoom camera, deleted scenes and compression artifact
which allows a more realistic assessment of human ac-

tions classification methods. We use the official train

and test splits for the evaluation.
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(a) Series of Polynomial Approximation of Flow
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(b) Series of Polynomial Approximation of Flow
with sine functions approximation along time axis
(SoPAF+Sine)
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(c) Series of Polynomial Approximation of Rectified
Flow
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(d) Series of Polynomial Approximation of Rectified
Flow with sine functions approximation along time
axis (SoPARF+Sine)

Fig. 5: Evaluation of space and time degree for our descriptor on UCF11 dataset; The horizontal axis represents
the degree of the temporal functions basis and the vertical axis represents the average accuracy

4.2 Evaluation of our descriptor

In this section, we evaluate our descriptor. The spatial

size of space-time volumes are set to 32× 32 pixels and
the length is set to 15. These parameters are defined

according to results of the evaluation of parameters of

HOG, HOF and MBH in [38]. The spatial step for dense

extraction is set to 10 pixels and the time step is set to 5

frames. In Fig.5, we show the results of our evaluation.

In Fig.5(a), we show the results for the SoPAF with

spatial degree varied from 2 to 4, and time degree var-

ied from 0 to 5. The best results are obtained for spatial

degree 4 and time degree 1. In Fig.5(b), we show the

results for SoPAF+Sine with spatial degree varied from

2 to 4, and time degree varied from 0 to 5. The best re-

sults is obtained for spatial degree 3 and time degree 1.

In Fig.5(c), we show the results for the SoPARF with

spatial degree varied from 2 to 4, and time degree var-

ied from 0 to 5. The best results is obtained for spatial

degree 4 and time degree 2. This result is clearly better

than results of SoPAF and SoPAF+Sine. In Fig.5(d),
we show the results for the SoPARF+Sine with spatial
degree varied from 2 to 4, and time degree varied from
0 to 5. The best results is obtained for spatial degree

4 and time degree 1. This result is slightly lower than

SoPARF but clearly better than those of SoPAF and

SoPAF+Sine. We compare now our descriptors with

HOF, since it models the same information as ours. In
order to compare our descriptor with HOF, we evaluate
HOF for space grid from 2 × 2 to 4 × 4 cells and time

grid from 1 to 4 cells. We show the results of this eval-

uation in Fig.6. Note we obtain at best 80.4%, which is

better than Wang et al. in [38], albeit with a different
configuration of the HOF descriptor. Our best setup is

obtained for a grid of 3 × 3 cells and a time grid of
2 cells. With SoPARF and SoPARF+Sine descriptors,
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Fig. 6: Evaluation of HOF descriptor on UCF11 dataset ; The horizontal axis represent the number of cells along
the time axis and the vertical axis represent the average accuracy

basketball shoot-
ing

golf swinging swinging

cycling horse riding walking

diving juggling tennis swinging

jumping spiking

Fig. 3: Example of videos from UCF11

we obtain significantly better results (83.9% and 83.6%
resp.) than HOF (80.4%).

4.3 Comparison of descriptors computational time

We compare the computation of our four best setups

to the computation time of the best HOF descriptor in

the previous evaluation. The computation of descrip-

tors is performed with an Intel(R) Xeon(R) E5-2620

0 @ 2.00GHz processor. We compute all the descrip-

tors of the video called ”v biking 01 01” of the UCF11

dataset.

In order to be fair in comparison, we use the same

space-time dimensions of descriptors. We use a dimen-

AnswerPhone FightPerson HugPerson SitDown

DriveCar GetOutCar Kiss SitUp

Eat HandShake Run StandUp

Fig. 4: Example of videos from Hollywood2 dataset

sion of 30×30 pixels spatially and 14 pixels temporally.

The spatial step between descriptors is set to 10 and the

temporal step is set to 5.

The results of computational time by frame (in sec-

onds) are reported in Table 1. As one can see, descrip-

tors that don’t use rectification coding are comparable

to HOF in computational time. When we use the rectifi-

cation coding, the computational time clearly increase.

However, the best descriptors in our evaluation is the

SoPARF and its computational time is still acceptable
for real datasets.

4.4 Experimental results

In this section we compare our descriptors to the liter-

ature on the two datasets. For each dataset, we show

the results with our SoPARF and SoPARF+Sine de-

scriptors alone and with a HOG and MBH descriptors
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Table 1: Computational time of the best descriptors

from the evaluation presented in section 4.2

descriptor parameters parameters times/frame
HOF 3× 3 cells 2 cells 0.68 s
SoPAF poly degree 4 poly degree 1 0.85 s
SoPAFs poly degree 3 sine degree 1 0.62 s
SoPARF poly degree 4 poly degree 2 1.12 s
SoPARFs poly degree 4 sine degree 1 1.26 s

combination. Let us note that our approach uses linear

classifiers, and thus leads to better efficiency both for

training classifiers and classifying video shots, on the

contrary to methods [38] and [11].

On Table 2, we show the results obtained on UCF11
dataset, and compare them to recent results from the

literature. We obtain good results only using the pro-

posed SoPARF or SoPARF+Sine descriptors. The SoPARF

improves the results of Wang et al. HOF descriptor

by 11% and our implementation of HOF by 3%. The

SoPARF provides the same results than the MBH of
Wang et al. and improve by 4% the SoPAF. When using
SoPARF, HOG andMBH combination or SoPARF+Sine,
HOG and MBH combination we obtain 86.0% of aver-

age accuracy, which is above state of the art perfor-
mances while using a linear classifier and combining
less descriptors.

Table 2: Classification average accuracy on the UCF11

dataset ; ND means the number of descriptors used ;

NL stands for non-linear classifiers

Method ND NL Results
Ikizler [14] 6 75.2%
Wang [38](trajectory) 1 X 67.2%
Wang [38](HOG) 1 X 74.5%
Wang [38](HOF) 1 X 72.8%
Wang [38](MBH) 1 X 83.9%
Wang [38](all) 4 X 84.2%
HOG 1 81.1%
HOF 1 80.4%
MBH 1 83.1%
SoPAF 1 79.6%
SoPAF+Sine 1 79.7%
SoPARF 1 83.9%
SoPARF+Sine 1 83.6%
HOG+HOF+MBH 3 84.7%
SoPARF+HOG+MBH 3 86.0%
(SoPARF+Sine)+HOG+MBH 3 86.0%

On Table 3, we show the results obtained on Hol-

lywood2 dataset. With our SoPARF descriptor, we ob-

tain better results than the related HOG, HOF and

MBH descriptors of [38] and than our implementation

of HOG, HOF and MBH descriptors. Especially, we

improve by 4% the HOF of Wang et al. and by 6%

our impementation of HOF. The SoPARF improves

the SoPAF by 3%, although this comes at the price

of slightly increasing the computational time and di-

mension of the resulting descriptor. When combining

SoPARF with HOG and HOF, we obtain a mAP of

58.6% with linear classifier, slightly better than the re-

sults obtain by combining 4 descriptors in [38].

Table 3: Mean Average Precision on the Hollywood2
dataset ; ND : number of descriptors ; NL : non-linear
classifiers ; ⋆ In [37] HOG/HOF descriptors are accu-

mulated on over 100 spatio-temporal regions each one
leading to a different BoW signature

Method ND NL Results
Gilbert [11] ≃ 3 X 50.9%
Ullah [37] HOG+HOF 2 X 51.8%
Ullah [37] 2(≥ 100⋆) X 55.3%
Wang [38] traj 1 X 47.7%
Wang [38] HOG 1 X 41.5%
Wang [38] HOF 1 X 50.8%
Wang [38] MBH 1 X 54.2%
Wang [38] all 4 X 58.3%
HOG 1 49.6%
HOF 1 48.4%
MBH 1 53.1%
SoPAF 1 51.3%
SoPARF 1 54.8%
SoPARF+Sine 1 53.7%
HOG+HOF+MBH 3 56.4%
SoPARF+HOG+MBH 3 58.6%
SoPARF(+Sine)+HOG+MBH 3 58.5%

5 Conclusion

In this paper, we introduced a novel family of local

motion descriptors using polynomial approximations of

the optical flow and time evolution modeling.

For a given spatial window, after projecting the com-
ponents of the optical flow on an orthogonal bivariate

polynomial basis, we model the temporal evolution of

spatial coefficients with one dimension polynomial ba-

sis. In order to model homogenous motion patterns, our

space-time volumes follows trajectories of associated

image patches. The use of the half-wave rectification

coding improve the results of SoPAF descriptor. More-

over, we show the the possibility of using other basis

for modeling the time evolution of spatial coefficients.

We carry out experiments on the well known UCF11

and Hollywood2 datasets, using recent signatures method

from image classification techniques. We obtain improved

results over popular descriptors such as HOG, HOF and

MBH which highlight the soundness of the approach.
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Further improvement would be to use this frame-

work to model gradient field of images or optical flow
as in HOG and MBH and extending the coding step
with other approaches.
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