
HAL Id: hal-01098974
https://hal.inria.fr/hal-01098974

Preprint submitted on 30 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Containment for Highly Expressive Datalog
Fragments

Pierre Bourhis, Markus Krötzsch, Sebastian Rudolph

To cite this version:
Pierre Bourhis, Markus Krötzsch, Sebastian Rudolph. Query Containment for Highly Expressive
Datalog Fragments. 2014. �hal-01098974�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49568636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01098974
https://hal.archives-ouvertes.fr


Query Containment for Highly Expressive Datalog Fragments

Pierre Bourhis
CNRS LIFL University of Lille 1

& INRIA Lille Nord Europe
Lille, FR

Markus Krötzsch
Fakultät Informatik

Technische Universität
Dresden, DE

Sebastian Rudolph
Fakultät Informatik

Technische Universität
Dresden, DE

ABSTRACT

The containment problem of Datalog queries is well known

to be undecidable. There are, however, several Datalog frag-

ments for which containment is known to be decidable, most

notably monadic Datalog and several “regular” query lan-

guages on graphs. Monadically Defined Queries (MQs) have

been introduced recently as a joint generalization of these

query languages.

In this paper, we study a wide range of Datalog frag-

ments with decidable query containment and determine ex-

act complexity results for this problem. We generalize MQs

to (Frontier-)Guarded Queries (GQs), and show that the con-

tainment problem is 3ExpTime-complete in either case, even

if we allow arbitrary Datalog in the sub-query. If we focus

on graph query languages, i.e., fragments of linear Datalog,

then this complexity is reduced to 2ExpSpace. We also con-

sider nested queries, which gain further expressivity by us-

ing predicates that are defined by inner queries. We show

that nesting leads to an exponentially increasing hierarchy

for the complexity of query containment, both in the linear

and in the general case. Our results settle open problems for

(nested) MQs, and they paint a comprehensive picture of the

state of the art in Datalog query containment.

1. INTRODUCTION

Query languages and their mutual relationships are a cen-

tral topic in database research and a continued focus of in-

tensive study. It has long been known that first-order logic

expressions over the database relations (represented by ex-

tensional database predicates, EDBs) lack the expressive

power needed in many scenarios. Higher-order query lan-

guages have thus been introduced, which allow for the re-

cursive definition of new predicates (so called intensional

database predicates, IDBs). Most notably, Datalog has been

widely studied as a very expressive query language with

tractable query answering (w.r.t. the size of the database).

On the other hand, Datalog has been shown to be too ex-

pressive a language for certain tasks which are of crucial im-

portance in database management. In particular, the query

containment problem that, given two queries Q1 and Q2, asks

if every answer to Q1 is an answer to Q2 in every possi-

ble database, is undecidable for full Datalog [21]. However,

checking query containment is an essential task facilitating

query optimization, information integration and exchange,

as well as database integrity checking. It comes handy for

utilizing databases with materialized views and, as part of

an offline preprocessing technique, and it may help acceler-

ating online query answering.

This motivates the question for Datalog fragments that are

still expressive enough to satisfy their purposes but exhibit

decidable query containment. Moreover, once decidability

is established, the precise complexity of deciding contain-

ment provides further insights. The pursuit of these issues

has led to a productive and well-established line of research

in database theory, which has already produced numerous

results for a variety of Datalog fragments.

Non-recursive Datalog and unions of conjunctive
queries. A non-recursive Datalog program does not have

any (direct or indirect) recursion and it is equivalent to a

union of conjunctive queries (UCQ) (and thus expressible in

first-order logic). The problem of containment of a Datalog

program (in the following referred to as Dlog) in a union of

conjunctive queries is 2ExpTime-complete [14]. Due to the

succintness of non-recursive Datalog compared to UCQs, the

problem of containment of Dlog in non-recursive Datalog

is 3ExpTime-complete [14]. Some restrictions for decreas-

ing the complexity of these problems have been considered.

Containment of linear Datalog programs (LinDlog), i.e., one

where rule bodies contain at most one IDB in a UCQ, is

ExpSpace-complete; complexity further decreases to PSpace

when the linear Datalog program is monadic (LinMDlog, see

below) [13, 14].

The techniques to prove the upper bounds in these results

are based on the reduction to the problem of containment of

tree automata for the general case, and to the containment of

word automata in the linear case.

Monadic Datalog. A monadic Datalog (MDlog) program

is a program containing only unary intensional predicates.

The problem of containment for MDlog is 2ExpTime com-

plete. The upper bound is well known since the 80’s [15],

while the lower bound has been established only recently

[6]. Finally, the containment of Dlog in a monadic MDlog
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Figure 1: Query languages and complexities; languages higher up in the graph are more expressive

is also decidable. It is a straightforward application of The-

orem 5.5 of [16].1 So far, however, tight bounds have not

been known for this result.

Guarded Datalog. Guarded Datalog (GDlog) allows the

use of intensional predicates with unrestricted arities, how-

ever for each rule, the variables of the head should appear in

a single extensional atom appearing in the body of the rule.

While this notion of (frontier-)guarded rules is known for a

while [8, 3], the first use of GDlog as a query language seems

to be only recent [4]. GDlog is a proper extension of MDlog,

since monadic rules can always be rewritten into guarded

rules [4]. It is know that query containment for GDlog is

2ExpTime-complete, a result based on the decidability of the

satisfiability of the guarded negation fixed point logic [5].

Navigational Queries. Conjunctive two-way regular path

queries (C2RPQs) generalize conjunctive queries (CQs) by

regular expressions over binary predicates [18, 9]. Variants

of this type of queries are used, e.g., by the XPath query

language for querying semi-structured XML data. Recent

versions of the SPARQL 1.1 query language for RDF also

support some of regular expressions that can be evaluated

under a similar semantics. Intuitively, C2RPQ is a conjunct

of atoms of the form xLy where L is a two-way regular ex-

pression. A pair of nodes 〈n1, n2〉 is a valuation of the pair

〈x, y〉 if and only if there exists a path between n1 and n2

matching L. The containment of queries in this language

was shown to be ExpSpace-complete [18, 10, 2, 17]. The

containment of Dlog in C2RPQ is 2ExpTime-complete [11].

Monadically Defined Queries. More recently, Monadi-

cally Defined Queries (MQs) and their nested version (MQ+s)

1We thank Michael Benedikt for this observation.

have been introduced [19] as a proper generalization of MD-

log which also captures (unions of) C2RPQs. At the same

time, they are conveniently expressible both in Dlog and

monadic second-order logic. Yet, as opposed to these two,

MQs and MQ+s have been shown to have a decidable con-

tainment problem, but no tight bounds were known so far.

In spite of these continued efforts, the complexity of query

containment is still unclear for many well-known Datalog

fragments, especially for the most expressive ones. In this

paper, we thus study a variety of known and new query lan-

guages in more detail. Figure 1 gives an overview of all Dat-

alog fragments we consider, together with their respective

query-answering complexities.

We provide a detailed complexity analysis of the mutual

containment between queries of the aforementioned (and

some new) formalisms. This analysis is fine-grained in

the sense that—in the case of query formalisms that allow

for nesting—precise complexities depending on the nesting

depth are presented. Moreover, we consider the case where

the used rules are restricted to linear Datalog.

• We introduce guarded queries (GQs) and their nested

versions (GQ+s), Datalog fragments that properly gen-

eralize MQs and MQ+s, respectively, while featuring

the same data and combined complexities for query

answering. On the other hand, already unnested GQs

subsume GDlog. We also consider the restrictions of

all these queries to the linear Datalog case and ob-

serve that this drops data complexities to NLogSpace

whereas it does not affect combined complexities.

• By means of sophisticated automata-based techniques

involving iterated transformations on alternating two-

way automata, we show a generic upper bound stat-

ing that containment of Dlog in nested guarded queries
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of depth k (GQk) can be decided in (k + 2)ExpTime.

Additionally we show that going down to GDlog on

the containment’s right-hand side allows deciding it in

2ExpTime.

• Inductively defining alternating Turing machine sim-

ulations on tapes of (k + 1)-exponential size, we pro-

vide a matching generic lower bound by showing that

containment of MDlog in MQk is (k + 2)ExpTime-hard.

Together with the upper bound, this provides precise

complexities for all cases, where the left-hand side of

the containment is any fragment between MDlog and

Dlog (cf. Fig. 1) and the right-hand side is any of MQ,

GQ, MQk, GQk, MQ+, GQ+. In particular, this solves

the respective open questions from [19]: MQ contain-

ment is 3ExpTime-complete and MQ+ containment is

NonElementary.

• We next investigate the situation in case only linear

rules are allowed in the definition of the Datalog frag-

ment used on the left hand side of the containment

problem (this distinction generally makes no differ-

ence for the right-hand side). We find that in most of

these cases, the complexities mentioned above drop to

(k + 1)ExpSpace.

In summary, our results settle open problems for (nested)

MQs, and they paint a comprehensive and detailed picture

of the state of the art in Datalog query containment.

2. PRELIMINARIES

We consider a standard language of first-order predicate

logic, based on an infinite set C of constant symbols, an in-

finite set P of predicate symbols, and an infinite set V of

first-order variables. Each predicate p ∈ P is associated

with a natural number ar(p) called the arity of p. The list

of predicates and constants forms the language’s signature

S = 〈P,C〉. We generally assume S = 〈P,C〉 to be fixed,

and only refer to it explicitly if needed.

Formulae, Rules, and Queries. A term is a variable x ∈ V

or a constant c ∈ C. We use symbols s, t to denote terms,

x, y, z, v,w to denote variables, a, b, c to denote constants.

Expressions like t, x, c denote finite lists of such entities.

We use the standard predicate logic definitions of atom and

formula, using symbols ϕ, ψ for the latter.

Datalog queries are defined over an extended signature

with additional predicate symbols, called IDB predicates; all

other predicates are called EDB predicates. A Datalog rule

is a formula of the form ∀x, y.ϕ[x, y] → ψ[x] where ϕ and

ψ are conjunctions of atoms, called the body and head of

the rule, respectively, and where ψ only contains IDB pred-

icates. We usually omit universal quantifiers when writing

rules. Sets of Datalog rules will be denoted by symbols

P,R,S. A set of Datalog rules P is

• monadic if all IDB predicates are of arity one;

• frontier-guarded if the body of every rule contains an

atom p(t) such that p is an EDB predicate and t con-

tains all variables that occur in the rule’s head;

• linear if every rule contains at most one IDB predicate

in its body.

A conjunctive query (CQ) is a formula Q[x] = ∃y.ψ[x, y]

where ψ[x, y] is a conjunction of atoms; a union of con-

junctive queries (UCQ) is a disjunction of such formulae.

A Datalog query 〈P,Q〉 consists of a set of Datalog rules P

and a conjunctive query Q over IDB or EDB predicates (Q

could be expressed as a rule in Datalog, but not in all restric-

tions of Datalog we consider). We write Dlog for the lan-

guage of Datalog queries. A monadic Datalog query is one

where P is monadic, and similarly for other restrictions. We

use the query languages MDlog (monadic), GDlog (frontier-

guarded), LinDlog (linear), and LinMDlog (linear, monadic).

Databases and Semantics. We use the standard semantics

of first-order logic (FOL). A database instance I consists of

a set ∆I called domain and a function ·I that maps constants

c to domain elements cI ∈ ∆I and predicate symbols p to

relations pI ⊆ (∆I)ar(p), where pI is the extension of p.

Given a database instance I and a formula ϕ[x] with free

variables x = 〈x1, . . . , xm〉, the extension of ϕ[x] is the subset

of (∆I)m containing all those tuples 〈δ1, . . . , δm〉 for which

I, {xi 7→ δi | 1 ≤ i ≤ m} |= ϕ[x]. We denote this by

〈δ1, . . . , δm〉 ∈ ϕ
I or by I |= ϕ(δ1, . . . , δm); a similar nota-

tion is used for all other types of query languages. Two for-

mulae ϕ[x] and ψ[x] are called equivalent if their extensions

coincide for every database instance I.

The set of answers of a UCQ Q[x] over I is its extension.

The set of answers of a Datalog query 〈P,Q〉 over I is the in-

tersection of the extensions of Q over all extended database

instances I′ that interpret IDB predicates in such a way that

all rules of P are satisfied. Datalog [1] can also be defined as

the least fixpoint on the inflationary evaluation of Q on I.

Note that we do not require database instances to have a

finite domain, since all of our results are valid in either case.

This is due to the fact that every entailment of a Datalog pro-

gram has a finite witness, and that all of our query languages

are positive, i.e., that their answers are preserved under ho-

momorphisms of database instances.

3. GUARDED QUERIES

Monadically defined queries have been introduced in [19]

as a generalization of monadic Datalog (MDlog) and con-

junctive two-way regular path queries (C2RPQs) for which

query containment is still decidable.2 The underlying idea

of this approach is that candidate query answers are checked

by evaluating a monadic Datalog program, i.e., in contrast

to the usual evaluation of Datalog queries, we start with a

“guessed” answer that is the input to a Datalog program.

2The queries were called MODEQ in [19]; we shorten this to MQ.
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To implement this, the candidate answer is represented by

special constants λ that the Datalog program can refer to.

This mechanism was called flag & check, since the special

constants act as flags to indicate the answer that should be

checked.

Example 1. A query that computes the transitive closure

over a relation p can be defined as follows.

p(λ1, y)→ U(y)

U(y) ∧ p(y, z)→ U(z)

U(λ2)→ hit

One defines the answer of the query to contain all pairs

〈δ1, δ2〉 for which the rules entail hit when interpreting λ1

as δ1 and λ2 as δ2.

The approach used monadic Datalog for its close relation-

ship to monadic second-order logic, which was the basis for

showing decidability of query containment. In this work,

however, we develop new techniques for showing the decid-

ability (and exact complexity) of this problem directly. It is

therefore suggestive to consider other types of Datalog pro-

grams to implement the “check” part. The following defini-

tion therefore introduces the general technique for arbitrary

Datalog programs, and defines interesting fragments by im-

posing further restrictions.

Definition 1. Consider a signature S . An FCP (“flag &

check program”) of arity m is a set of Datalog rules P with

k ≥ 0 IDB predicates U1, . . . , Uk, that may use the additional

constant symbols λ1, . . . , λm < S and an additional nullary

predicate symbol hit. An FCQ (“flag & check query”) P is

of the form ∃y.P(z), where P is an FCP of arity |z| and all

variables in y occur in z. The variables x that occur in z but

not in y are the free variables of P.

Let I be a database instance over S . The extension PI

of P is the set of all tuples 〈δ1, . . . , δm〉 ∈ (∆I)m such that

every database instance I′ that extends I to the signature of

P and that satisfies 〈λI
′

1
, . . . , λI

′

m 〉 = 〈δ1, . . . , δm〉 also entails

hit. The semantics of FCQs is defined in the obvious way

based on the extension of FCPs.

A GQ is an FCQ ∃y.P(z) such that P is frontier-

guarded. Similarly, we define MQ (monadic), LinMQ (linear,

monadic), and LinGQ (linear, frontier-guarded) queries.

In contrast to [19], we do not define monadic queries as

conjunctive queries of FCPs, but we merely allow existential

quantification to project some of the FCP variables. Proposi-

tion 2 below shows that this does not reduce expressiveness.

We generally consider monadic Datalog as a special case

of frontier-guarded Datalog. Monadic Datalog rules do not

have to be frontier-guarded. A direct way to obtain a suit-

able guard is to assume that there is a unary domain pred-

icate that contains all (relevant) elements of the domain of

the database instance. However, it already suffices to require

safety of Datalog rules, i.e., that the variable in the head of a

rule must also occur in the body. Then every element that is

inferred to belong to an IDB relation must also occur in some

EDB relation. We can therefore add single EDB guard atoms

to each rule in all possible ways without modifying the se-

mantics. This is a polynomial operation, since all variables

in the guards are fresh, other than the single head variable

that we want to guard. We therefore find, in particular, the

GQ captures the expressiveness of MQ. The converse is not

true, as the following example illustrates.

Example 2. The following 4-ary LinGQ generalizes Ex-

ample 1 by checking for the existence of two parallel p-

chains of arbitrary length, where each pair of elements

along the chains is connected by a relation q, like the steps

of a ladder.

q(λ1, λ2)→ Uq(λ1, λ2)

Uq(x, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ Uq(x′, y′)

Uq(λ3, λ4)→ hit

One might assume that the following MQ is equivalent:

q(λ1, λ2)→ U1(λ1)

q(λ1, λ2)→ U2(λ2)

U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U1(x′)

U1(x) ∧ U2(y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U2(y′)

U1(λ3) ∧ U2(λ4)→ hit

However, the latter query also matches struc-

tures that are not ladders. For example, the fol-

lowing database yields the answer 〈a, b, c, d〉, al-

though there is no corresponding ladder structure:

{q(a, b), p(a, c), p(b, e), q(c, e), p(a, e′), p(b, d), q(e′, d)}.

One can extend the MQ to avoid this case, but any such fix

is “local” in the sense that a sufficiently large ladder-like

structure can trick the query.

It has been shown that monadically defined queries can

be expressed both in Datalog and in monadic second-order

logic [19]. While we lose the connection to monadic second-

order logic with GQs, the expressibility in Datalog remains.

The encoding is based on the intuition that the choice of the

candidate answers for λ “contextualizes” the inferences of

the Datalog program. To express this without special con-

stants, we can store this context information in predicates of

suitably increased arity.

Example 3. The 4-ary LinGQ of Example 2 can be ex-

pressed with the following Datalog query. For brevity, let

y be the variable list 〈y1, y2, y3, y4〉, which provides the con-

text for the IDB facts we derive.

q(y1, y2)→ U+q (y1, y2, y)

Uq(x, y, y) ∧ p(x, x′) ∧ p(y, y′), q(x′, y′)→ U+q (x′, y′, y)

Uq(y3, y4, y)→ goal(y)

This result is obtained by a straightforward extension of the

translation algorithm for MQs [19], which may not produce
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the most concise representation. Also note that the first rule

in this program is not safe, since y3 and y4 occur in the head

but not in the body. According to the semantics we defined,

such variables can be bound to any element in the active

domain of the given database instance (i.e., they behave as

if bound by a unary domain predicate).

This observation justifies that we consider MQs, GQs, etc.

as Datalog fragments. It is worth noting that the translation

does not change the number of IDB predicates in the body

of rules, and thus preserves linearity. The relation to (linear)

Datalog also yields some complexity results for query an-

swering; we will discuss these at the end of the next section,

after introducing nested variants our query languages.

4. NESTED QUERIES

Every query language gives rise to a nested language,

where we allow nested queries to be used as if they were

predicates. Sometimes, this does not lead to a new query

language (like for CQ and Dlog), but often it affects com-

plexities and/or expressiveness. It has been shown that both

are increased when moving from MQs to their nested vari-

ants [19]. We will see that nesting also has strong effects on

the complexity of query containment.

Definition 2. We define k-nested FCPs inductively. A 1-

nested FCP is an FCP. A k + 1-nested FCP is an FCP that

may use k-nested FCPs of arity m instead of predicate sym-

bols of arity m in rule bodies. The semantics of nested FCPs

is immediate based on the extension of FCPs. A k-nested

FCQ P is of the form ∃y.P(z), where P is a k-nested FCP of

arity |z| and all variables in y occur in z.

A k-nested GQ query is a k-nested frontier-guarded FCQ.

For the definition of frontier-guarded, we still require EDB

predicates in guards: subqueries cannot be guards. The lan-

guage of k-nested GQ queries is denoted GQk; the language

of arbitrarily nested GQ queries is denoted GQ+. Similarly,

we define languages MQk and MQ+ (monadic), LinMQk and

LinMQ+ (linear, monadic), and LinGQk and LinGQ+ (linear,

frontier-guarded).

Note that nested queries can use the same additional sym-

bols (predicates and constants); this does not lead to any se-

mantic interactions, however, as the interpretation of the spe-

cial symbols is “private” to each query. To simplify notation,

we assume that distinct (sub)queries always contain distinct

special symbols. The relationships of the query languages

we introduced here are summarized in Figure 1, where up-

wards links denote increased expressiveness. An interesting

observation that is represented in this figure is that linear

Datalog is closed under nesting:

Theorem 1. LinDlog = LinDlog+.

Another kind of nesting that does not add expressiveness

is the nesting of FCQs in UCQs. Indeed, it turns out that

(nested) FCQs can internalize arbitrary conjunctions and dis-

junctions of FCQs (of the same nesting level). This even

holds when restricting to linear rules.

Proposition 2. Let P be a positive query, i.e., a Boolean

expression of disjunctions and conjunctions, of LinMQk

queries with k ≥ 1. Then there is a LinMQk query P′ of

size polynomial in P that is equivalent to P. Analogous re-

sults hold when replacing LinMQk by MQk, GQk, or LinMQk

queries.

Query answering for MQs has been shown to be NP-

complete (combined complexity) and P-complete (data com-

plexity). For MQ+, the combined complexity increases to

PSpace while the data complexity remains the same. These

results can be extended to frontier-guarded queries. We also

note the query complexity for frontier-guarded Datalog, for

which we are not aware of any published result.

Theorem 3. The combined complexity of evaluating GQ

queries over a database instance is NP-complete. The same

holds for GDlog queries. The combined complexity of evalu-

ating GQ+ queries is PSpace-complete. The data complexity

is P-complete for GDlog, GQ, and GQ+.

The lower bounds in the previous case are immediate from

know results for monadically defined queries. In particular,

the hardness proof for nested MQs also shows that queries of

a particular fixed nesting level can encode the validity prob-

lem for quantified boolean formulae with a certain number of

quantifier alternations; this explains why we show the com-

bined complexity of MQk to be in the Polynomial Hierarchy

in Figure 1. A modification of this hardness proof from [19]

allows us to obtain the same results for the combined com-

plexities in the linear cases; matching upper bounds follow

from Theorem 3.

Theorem 4. The combined complexity of evaluating

LinMQ queries over a database instance is NP-complete.

The same holds for LinGDlog and LinGQ. The com-

bined complexity of evaluating LinMQ+ queries is PSpace-

complete. The same holds for LinGQ+.

The data complexity is NLogSpace-complete for all of

these query languages.

5. DECIDING QUERY CONTAINMENT

WITH AUTOMATA

We first recall a general technique of reducing query con-

tainment to the containment problem for (tree) automata

[14], which we build our proofs on. An introduction to tree

automata is included in the appendix.

A common way to describe the answers of a Dlog query

P = 〈P, p〉 is to consider its expansion trees. Intuitively

speaking, the goal atom p(x) can be rewritten by applying

rules of P in a backward-chaining manner until all IDB pred-

icates have been eliminated, resulting in a CQ. The answers
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of P coincide with the (infinite) union of answers to the CQs

obtained in this fashion. The rewriting itself gives rise to a

tree structure, where each node is labeled by the instance of

the rule that was used in the rewriting, and the leaves are

instances of rules that contain only EDB predicates in their

body. The set of all expansion trees provides a regular de-

scription of P that we exploit to decide containment.

To formalize this approach, we describe the set of all ex-

pansion trees as a tree language, i.e., as a set of trees with

node labels from a finite alphabet. The number of possible

labels of nodes in expansion trees is unbounded, since rules

are instantiated using fresh variables. To obtain a finite al-

phabet of labels, one limits the number of variables and thus

the overall number of possible rule instantiations [14].

Definition 3. Given a Dlog query P = 〈P, p〉, RP is the

set of all instantiations of rules of P using only the variables

VP = {v1, . . . , vn}, where n is twice the maximal number of

variables occurring in any rule of P.

A proof tree for P is a tree with labels from RP, such that

(a) the root is labeled by a rule with p as its head predicate;

(b) if a node is labeled by a rule ρ with an IDB atom B in its

body, then it has a child node that is labeled by ρ′ with head

atom B. The label of a node e is denoted π(e).

Consider two nodes e1 and e2 in a proof tree with lowest

common ancestor e. Two occurrences of a variable v in π(e1)

and π(e2) are connected if v occurs in the head of π( f ) for

all nodes f on the shortest path between e1 and e2, with the

possible exception of e.

A proof tree encodes an expansion tree where we replace

every set of mutually connected variable occurrences by a

fresh variable. Conversely, every expansion tree is repre-

sented by a proof tree that replaces fresh body variables by

variables that do not occur in the head; this is always possi-

ble since proof trees can use twice as many variables as any

rule of P. The set of proof trees is a regular tree language

that can be described by an automaton.

Proposition 5 (Proposition 5.9 [14]). For a Dlog query

P = 〈P, p〉, there is a tree automatonAP of size exponential

in P that accepts exactly the set of all proof trees of P.

In order to use AP to decide containment of P in an-

other query P′, we construct an automaton AP⊑P′ that ac-

cepts all proof trees of P that are “matched” by P′. Indeed,

every proof tree induces a witness, i.e., a minimal matching

database instance, and one can check whether or not P′ can

produce the same query answer on this instance. If this is

the case for all proof trees of P, then containment is shown.

6. DECIDING GUARDED QUERY CON-

TAINMENT

Our first result provides the upper bound for deciding con-

tainment of GQ queries. In fact, the result extends to arbi-

trary Dlog queries on the left-hand side.

Theorem 6. Containment of Dlog queries in GQ queries

can be decided in 3ExpTime.

To prove this, we need to construct the tree automaton

AP⊑P′ for an arbitrary GQ P′. As a first step, we construct

an alternating 2-way tree automaton A+
P⊑P′

that accepts the

proof trees that we would like AP⊑P′ to accept, but with

nodes additionally being annotated with information about

the choice of λ values to guide the verification.

We first construct automata to verify the match of a sin-

gle, non-recursive rule that may refer to λ constants. The

rule does not have to be monadic or frontier-guarded. Our

construction is inspired by a similar construction for CQs by

Chaudhuri and Vardi [14], with the main difference that the

answer variables in our case are not taken from the root of

the tree but rather from one arbitrary node that is marked

accordingly.

To define this formally, we introduce trees with additional

annotations besides their node labels. Clearly, such trees can

be viewed as regular labelled trees by considering annota-

tions to be components of one label; our approach, however,

leads to a more readable presentation.

Definition 4. Consider a Datalog program P, a rule ρ =

ϕ → p(x), and n ≥ 0 special constants λ = λ1, . . . , λn. The

proof-tree variablesVP used in RP are as in Definition 3.

A proof tree for P is λ-annotated if every node has an addi-

tional λ-label that is a partial mapping {λ1, . . . , λn} → VP,

such that: every special constant λi occurs in at least one

λ-label, and whenever a constant λi occurs in two λ-labels,

it is mapped to the same variable and both variable occur-

rences are connected.

A proof tree for P is p-annotated if exactly one node has

an additional p-label of the form p(v), where v is a list of

variables fromVP.

A matching tree T for ρ and P is a λ-annotated and p-

annotated proof tree for P for which there is a mapping ν :

Var(ρ) ∪ {λ1, . . . , λn} → VP such that

(a) ν(p(x)) = p(v);

(b) for every atom α of ϕ, there is a node eα in T such

that the rule instance that eα is labeled with contains

the EDB atom ν(α) in its body;

(c) if λi occurs in α, then the λ-label maps λi to the occur-

rence of ν(λi) in eα;

(d) if α, α′ ∈ ϕ share a variable x, then the occurrences of

ν(x) in eα and eα′ are connected.

Proposition 7. There is an automaton AP,ρ that accepts

exactly the annotated matching trees for ρ and P, and which

is exponential in the size of ρ and P.

We want to use the automataAP,ρ to verify the entailment

of a single rule within a Datalog derivation. We would like

an automaton to check whether a whole derivation is possi-

ble. Unfortunately, we cannot check these derivations using
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automata of the form AP,ρ, which each need to be run on

a p-annotated tree which has the unique entailment of the

rule marked. The length of a derivation is unbounded, and

we would not be able to distinguish an unbounded amount

of p-markers. To overcome this problem, we create a modi-

fied automatonA+
P,ρ,v that simulates the behavior ofAP,ρ on

a tree with annotation p(v). For A+
P,ρ,v to know which node

the annotation p(v) refers to, it has to be started at this node.

This is a non-standard notion of run, where we do not start at

the root of the tree. Moreover, starting in the middle of the

tree makes it necessary to consider both nodes below and

above the current position, and A+
P,ρ,v therefore needs to be

an alternating 2-way tree automaton.

Proposition 8. There is an alternating 2-way tree au-

tomaton A+
P,ρ,v that is polynomial in the size of AP,ρ such

that, whenever AP,ρ accepts a matching tree T that has the

p-annotation p(v) on node e, then A+
P,ρ,v has an accepting

run that starts from the corresponding node e′ on the tree T ′

that is obtained by removing the p-annotation from T.

Using the automataA+
P,ρ,v, we can now obtain the claimed

alternating 2-way automaton A+
P⊑P′

for a GQ P′. Intuitively

speaking, A+
P⊑P′

concatenates the automata A+
P,ρ,v using al-

ternation: whenever a derivation requires a (recursive) IDB

atom, a suitable process A+
P,ρ,v is initiated, starting from

a node in the middle of the tree. The construction relies

on guardedness, which ensures that we can always find a

suitable start node (corresponding to the node that was p-

annotated earlier), by finding a suitable guard EDB atom in

the tree.

Proposition 9. For a Dlog query P and a GQ query P′

with special constants λ, there is an alternating 2-way

automaton A+
P⊑P′

of exponential size that accepts the λ-

annotated proof trees of P that encode expansion trees with

λ assignments for which P′ has a match.

We are now ready to prove Theorem 6. The automaton

A+
P⊑P′

allows us to check the answers of P′ on a proof tree

that is λ-annotated to assign values for answer constants.

We can transform this alternating 2-way automaton into a

tree automaton A′
P⊑P′

that is exponentially larger, i.e., dou-

bly exponential in the size of the input. To remove the need

for λ-labels, we modify the automaton A′
P⊑P′

so that it can

only perform a transition from its start state if it finds that the

constants in λ are assigned to the answer variables of P in the

root. Finally, we obtain AP⊑P′ by projecting to the alphabet

RP without λ-annotations; this is again possible in polyno-

mial effort. The containment problem P ⊑ P′ is equivalent

by deciding the containment of AP in AP⊑P′ , which is pos-

sible in exponential time w.r.t. to the size of the automata.

Since AP is exponential and AP⊑P′ is double exponential,

we obtain the claimed triple exponential bound.

Our proof of Theorem 6 can be used to obtain another in-

teresting result for the case of frontier-guarded Datalog. If P

is a GDlog query, which does not use any special constants

λ, then the λ-annotations are not relevant and A+
P⊑P′

can

be constructed as an alternating 2-way automaton on proof

trees. For this, we merely need to modify the construction in

Proposition 9 to start in start states of automata for rules that

entail the goal predicate of P′ with the expected binding of

variables to answer variables of P. We can then omit the pro-

jection step, which required us to convert A+
P⊑P′

into a tree

automaton earlier. Instead, we can construct from A+
P⊑P′

a

complement tree automaton ĀP⊑P′ that is only exponentially

larger thanA+
P⊑P′

, i.e., doubly exponential overall [15][The-

orem A.1]. Containment can then be checked by checking

the non-emptiness ofAP∩ĀP⊑P′ , which is possible in poly-

nomial time, leading to a 2ExpTime algorithm overall.

Theorem 10. Containment of Dlog queries in GDlog

queries can be decided in 2ExpTime.

This generalizes an earlier result of Cosmadakis et al. for

monadic Datalog [15] using an alternative, direct proof.

Finally, we can lift our results to the case of nested

queries. Using Proposition 2, we can make the simplifying

assumption that rules with some nested query in their body

contain only one nested query and a guard atom as the only

other atom. Thus all rules with nested queries have the form

g(s) ∧ Q(t) → p(u), where g is an EDB predicate, Q is a

nested query, and the variables u occur in s.

In Proposition 8, we constructed alternating 2-way au-

tomata A+
P,ρ,v that can check the entailment of a particular

atom p(v) starting from a node within the tree. Analogously,

we now construct automataA+
P,Q,θ that check that the nested

query Q matches partially, where θ is a substitution that in-

terprets query variables in terms of proof-tree variables on

the current node of the tree. Only the variables that occur

in g(s) and Q(t) are mapped by θ; the remaining variables

can be interpreted arbitrarily, possibly in distant parts of the

proof tree.

To constructA+
P,Q,θ, we use the alternating 2-way automa-

ton A+
P⊑Q

, constructed in Proposition 9 (assuming, for a

start, that Q is not nested). This automaton is extended to

an alternating 2-way automatonA+
P,Q that accepts trees with

a unique annotation of the form 〈Q, θ〉, for which we check

that it is consistent with the λ-annotation (i.e., for each query

variable x mapped by θ, the corresponding constant λ is as-

signed to θ(x) at the node that is annotated with 〈Q, θ〉). We

then obtain a (top-down) tree automatonAP,Q by transform-

ingA+
P,Q into a tree automaton (exponential), and projecting

away the λ-annotations (polynomial). The automaton AP,Q

is analogous to the tree automatonAP,ρ of Proposition 7. Us-

ing the same transformation as in Proposition 8, we obtain

an alternating 2-way automatonA+
P,Q,θ for each θ.

The automatonA+
P⊑P′

for a nested query P′ is constructed

as in Proposition 9, but using the automata A+
P,Q,θ instead

of automata A+
P,ρ,v to check the entailment of a subquery Q.

The size of A+
P⊑P′

is increased by one exponential since the

size ofA+
P,Q,θ is exponentially increased when projecting out

7



λ-labels for Q. Applying this construction inductively, we

obtain the following result.

Theorem 11. Containment of Dlog queries in GQk

queries can be decided in (k + 2)ExpTime.

7. SIMULATING ALTERNATING TURING

MACHINES

To show the hardness of query containment problems,

we generally provide direct encodings of Alternating Tur-

ing Machines (ATMs) with a fixed space bound [12]. To

simplify this encoding, we assume without loss of general-

ity that every universal ATM configuration leads to exactly

two successor configurations. The following definition de-

fines ATM encodings formally. Rather than requiring con-

crete structures to encode ATMs, we abstract the encoding

by means of queries that find suitable structures in a database

instance; this allows us to apply the same definition for in-

creasingly complex encodings. The following definition is

illustrated in Figure 2.

Definition 5. Consider an ATM M = 〈Q,Σ,∆, qs, qe〉

and queries FirstConf[x, y], NextConfδ[x, y] for all δ ∈

∆, LastConf[x], Stateq[x] for all q ∈ Q, Head[x, y],

ConfCell[x, y], FirstCell[x, y], NextCell[x, y], LastCell[x], and

Symbol[x, y]. To refer to tape symbols, we consider con-

stants cσ for all σ ∈ Σ, and to refer to positions of the head,

we use constants h (here), l (left), and r (right).

With respect to these queries, an element c ∈ dom(I) in

a database instance I encodes anM quasi-configuration of

size s if I contains a structure

Stateq(c), FirstCell(c, d1),
ConfCell(c, d1),Symbol(d1, cσ1

),Head(d1, p1),NextCell(d1, d2),
ConfCell(c, d2),Symbol(d2, cσ2

),Head(d2, p2), . . . ,NextCell(ds−1, ds),
ConfCell(c, ds),Symbol(ds, cσs ),Head(ds, ps), LastCell(ds),

where q ∈ Q, σi ∈ Σ, and pi ∈ {h, l, r}. We say that c encodes

an M configuration of size s if, in addition, the sequence

(pi)
s
i=1

has the form l, . . . , l, h, r, . . . , r with zero or more oc-

currences of r and l, respectively.

An element c in I encodes a (quasi-)configuration tree of

M in space s if

• I |= FirstConf(c, d1) for some d1,

• d1 is the root of a tree with edges defined by NextConfδ,

• every node in this tree encodes an M (quasi-)

configuration of size s,

• if there is a transition I |= NextConfδ1
(e, e1), where

δ1 = 〈q, σ, q
′, σ′, d〉 and q is a universal state, then

there is also a transition I |= NextConfδ2
(e, e2) with

δ1 , δ2,

• if e is a leaf node, then I |= LastConf(e).

If the tree is an accepting run, then c encodes an accepting

run (ofM in space s).

A same-cell query is a query SameCell[x, y] such that,

if c1, c2 ∈ dom(I) encode two quasi-configurations, and

d1, d2 ∈ dom(I) represent the same tape cell in the encod-

ings c1 and c2, respectively, then 〈d1, d2〉 ∈ SameCellI.

Two queries P1[x] and P2[x] containment-encode accept-

ing runs of M in space s if, for every database instance I

and element c ∈ PI
1
\PI

2
, c encodes an accepting run ofM in

space s, and every accepting run ofM in space s is encoded

by some c ∈ PI
1
\ PI

2
for some I.

Note that elements c may encode more than one configu-

ration (or configuration tree). This is not a problem in our

arguments.

The conditions that ensure that a quasi-configuration tree

is an accepting run can be expressed by a query, based on

the queries given in Definition 5. More specifically, one

can construct a query that accepts all elements that encode a

quasi-configuration sequence that is not a run. Together with

a query that accepts only encodings of quasi-configurations

tree, this allows us to containment-encode accepting runs of

an ATM. Only linear queries, possibly nested, will be needed

to perform the required checks, even in the case of ATMs.

To simplify the statements, we use LinMQ0 as a synonym for

UCQ.

Lemma 12. Consider an ATMM, and queries as in Def-

inition 5, including SameCell[x, y], that are MQk queries for

some k ≥ 0. There is a MQk query P[x], polynomial in the

size ofM and the given queries, such that the following hold.

• For every accepting run ofM in space s, there is some

database instance I with some element c that encodes

the run, such that c < PI.

• If an element c of I encodes a tree of quasi-

configurations of M in space s, and if c < PI, then

c encodes an accepting run ofM in space s.

Moreover, if all input queries are in LinMQk, then so is P.

The previous result allows us to focus on the encoding

of quasi-configuration trees and the definition of queries as

required in Definition 5. Indeed, the main challenge below

will be to enforce a sufficiently large tape for which we can

still find a correct same-cell query.

8. HARDNESS OF MONADIC QUERY

CONTAINMENT

We can now prove our first major hardness result:

Theorem 13. Deciding containment of MDlog queries in

MQk queries is hard for (k + 2)ExpTime.

Note that the statement includes the 3ExpTime-hardness

for containment of MQs as a special case. To prove this re-

sult, we first construct an ExpSpace ATM that we then use to

construct tapes of double exponential size.
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Figure 2: Illustration of the ATM encoding of Definition 5: shaded configurations (top) are used within the configuration

tree (bottom); ConfCell queries are omitted for clarity

Lemma 14. For any ATM M, there is an MDlog query

P1[x], a LinMQ P2[x], queries as in Definition 5 that are

LinMQs, and a same-cell query that is a UCQ, such that P1[x]

and P2[x] containment-encode accepting runs ofM in expo-

nential space.

Figure 3 illustrates the encoding that we use to prove

Lemma 14. While it resembles the structure of Figure 2, the

labels are now EDB predicates rather than (abstract) queries.

The encoding of tapes attaches to each cell an ℓ-bit address

(where bits are represented by constants 0 and 1). We can

use these bits to count from 0 to 2ℓ to construct tapes of this

length. The query on the left-hand side can only enforce

that there are cells with bit addresses, not that they actually

count; even the exact length of the tape is unspecified. The

query on the right-hand side of the containment then checks

that consecutive cells (in all tapes that occur in the configu-

ration tree) represent successor addresses, and that the first

and last address is as expected.

Another difference from Figure 2 is that we now treat con-

figurations as linear structures, with a beginning and an end.

In our representation of the configuration tree, we next con-

figuration therefore connects to the last cell of the previous

configuration’s tape, rather than its start. We do this to en-

sure that the encoding works well even when restricting to

linear queries. Indeed, the only non-linear rules in P1 are

used to enforce multiple successor configurations for uni-

versal states of an ATM. For normal TMs, even P1 is in Lin-

MDlog. The rules of the P1 are as follows:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)

stateq(x) ∧ firstCell(x, y) ∧ Ubit1 (y)→ Uconf(x) for q ∈ Q

biti−1(x, 0) ∧ Ubiti (x)→ Ubiti−1
(x) for i ∈ {2, . . . , ℓ}

biti−1(x, 1) ∧ Ubiti (x)→ Ubiti−1
(x) for i ∈ {2, . . . , ℓ}

symbol(x, cσ) ∧ Usymbol(x)→ Ubitℓ (x) for σ ∈ Σ

head(x, p) ∧ Uhead(x)→ Usymbol(x) for p ∈ {h, r, l}

nextCell(x, y) ∧ Ubit1 (y)→ Uhead(x)

nextConfδ(x, y) ∧ Uconf(y)→ Uhead(x) for δ = 〈q, σ, q′, σ′, d〉

with q ∈ Q∃

nextConfδ1
(x, y1) ∧ Uconf(y1) ∧ for δ1 = 〈q, σ, q

′, σ′, d〉,

nextConfδ2
(x, y2) ∧ Uconf(y2)→ Uhead(x) q ∈ Q∀, and δ1 , δ2

lastConf(x)→ Uhead(x)

Note that we do not enforce any structure to define the query

ConfCell; this query is implemented by a LinMQ that navi-

gates over an arbitrary number of cells within one configu-

ration. This is the main reason why we need LinMQs rather

than UCQs here.

We now use the exponential space ATM of Lemma 14

to encode the tape of 2ExpSpace ATM. The following result

shows, that one can always obtain an exponentially larger

tape by nesting linear queries on the right-hand side.

Lemma 15. Assume that there is some space bound s such

that, for every DTMM, there is a MDlog query P1[x] and an

MQk+1 query P2[x] with k ≥ 0, such that P1[x] and P2[x]

containment-encode accepting runs of M in s, where the

queries required by Definition 5 are MQk+1 queries. More-

over, assume that there is a suitable same-cell query that is

in MQk.

Then, for every ATM M′, there is a MDlog query P′
1
[x],

an MQk+1 P′
2
[x], and MQk+1 queries as in Definition 5, such

that P′
1
[x] and P′

2
[x] containment-encode an accepting run

ofM′ in space s′ ≥ 2s. Moreover, the size of the queries for

this encoding is polynomial in the size of the queries for the

original encoding.

We show this result by using a deterministic space-s Tur-

ing machine M to count from 0 to 2s, which takes a fixed

number s′ > 2s of steps. We then use the encodings of ac-

cepting runs of M as encodings for tapes of the ATM M′,

where every configuration ofM becomes a cell ofM′. All

tapes simulated in this way are of equal length s′. Some

queries required by Definition 5 are easy to obtain: for exam-

ple, the new query NextCell′[x, y] is the query NextConf[x, y]

of the encoding of M. The most difficult to express is the

new same-cell query, for which we use the following MQk+1:

FirstCell(λ1, x)→ U1(x)

U1(x) ∧ NextCell(x, x′)→ U1(x′)

Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧

Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U2(y)

for all q ∈ Q

U1(x) ∧ U2(y) ∧ SameCell(x, y) ∧

NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U2(y′)

U2(y) ∧ LastCell(y)→ hit
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Figure 3: Illustration of the ATM encoding of Lemma 14: shaded configurations (top) are used within the configuration

tree (bottom)

where FirstCell, Symbol, SameCell, and LastCell are the

queries from the encoding of M. The first two rules sim-

ply mark the tape starting at λ1 with U1. The next two rules

then compare the two (potentially very long) tapes from con-

figurations of M to check if they contain exactly the same

symbols at each position, and the last rule finishes. Since

the tapes are not connected in any known way, we have to be

careful to ensure never to loose the connection to either of

the tapes, to avoid comparing random cells from other parts

of the database. Indeed, the last two rules do not mention

λ1 or λ2 at all. We need two IDB predicates to achieve this,

which carefully mark the two tapes cell by cell.

Another important thing to note is that the query SameCell

is only used exactly once in exactly one rule. Indeed, if we

were using it twice, then the length of our queries would

grow exponentially when applying the construction induc-

tively. This is the reason why we encode symbols and head

positions with constants, rather than using unary predicates

like for states. In the latter case, we need many rules, one

for each predicate, as can be seen in the third rule above.

One could try to avoid the use of constants by more complex

encodings that encode information using paths of different

lengths as done by Björklund et al. [7]. However, some addi-

tional device is needed to ensure that database instances are

sufficiently closely connected in this case, which may again

require constants, IDBs of higher arity, or a greater nesting

level of LinMQ queries to navigate larger distances.

With the previous results, Theorem 13 can be proved

by an easy induction: for the base case k = 1 we apply

Lemma 15 to the result of Lemma 14; for the induction step

we use Lemma 15 again.

9. LINEAR DATALOG

Not only query answering, but also containment check-

ing is often slightly simpler in fragments of linear Datalog.

Intuitively, this is so because derivations can be represented

as words rather than as trees. Thus, the automata theoretic

techniques that we have used in Section 6 can be applied

with automata on words where some operations are easier.

In particular, containment of (nondeterministic) automata on

words can be checked in polynomial space rather than in

exponential time. This allows us to establish the following

theorems, which reduce the 2ExpTime upper bound of The-

orem 10 to ExpSpace and the (k + 2)ExpTime upper bound of

Theorem 11 to (k + 1)ExpSpace.

Theorem 16. Containment of LinDlog queries in GDlog

queries can be decided in ExpSpace.

Theorem 17. Containment of LinDlog queries in GQk

queries can be decided in (k + 1)ExpSpace.

Establishing matching lower bounds for the complexity

turns out to be more difficult. In general, we loose the

power of alternation, which explains the reduction in com-

plexity. The general approach of encoding (non-alternating)

Turing machines is the same as in Section 7, where Defini-

tion 5 is slightly simplified since we do not need to consider

universal states, so that configuration trees turn into con-

figuration sequences. Moreover, Lemma 12 applies to this

case as well, since it only requires linear queries. Likewise,

our general inductive step in Lemma 15 uses deterministic

(non-alternating) TMs to construct exponentially long tapes.

Moreover, it turns out that the construction of an initial ex-

ponential space TM in Lemma 14 leads to linear queries if

the TM has no universal states.

Yet it is challenging to lift the exact encodings of

Lemma 14 and Lemma 15. The same-cell query that we

constructed in Lemma 15 for our inductive argument is non-

linear. As explained in Section 8, the use of two IDBs to

mark both sequences of tape cells is essential there to ensure

correctness. The main problem is that we must not loose

connection to either of the sequences during our checks. As

an alternative to using IDBs on both sequences, one could

use the ConfCell query to ensure that the compared cells be-

long to the right configurations. This leads to the following

same-cell query:

10



Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧

Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U(y)

for all q ∈ Q

U(y) ∧ ConfCell(λ1, x) ∧ SameCell(x, y) ∧

NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U(y′)

U(y) ∧ LastCell(y)→ hit

While this works in principle, it has the problem that the

ConfCell query of Lemma 14 is a LinMQ, not a UCQ. There-

fore, if we construct a same-cell query for the 2ExpSpace

case, we obtain LinMQ2 queries, which yields the following

result:

Theorem 18. Deciding containment of LinMDlog queries

in LinMQk queries is hard for kExpSpace.

In order to do better, one can try to express ConfCell as

a UCQ. In general, this is not possible on the database in-

stances that the left-hand query in Lemma 14 recognizes,

since cells may have an exponential distance to their con-

figuration while UCQs can only recognize local structures.

To make ConfCell local, we can modify the left-hand query

to ensure that every cell is linked directly to its configuration

with a binary predicate inConf. Using binary IDB predicates,

we can do this with the following set of frontier-guarded

rules:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)

stateq(x) ∧ nextCell(x, y) ∧

inConf(y, x) ∧ Ubit1 (y, x)→ Uconf(x) for q ∈ Q

biti−1(x, 0) ∧ Ubiti (y, z) ∧ inConf(x, z)→ Ubiti−1
(x, z) for i ∈ {2, . . . , ℓ}

biti−1(x, 1) ∧ Ubiti (y, z) ∧ inConf(x, z)→ Ubiti−1
(x, z) for i ∈ {2, . . . , ℓ}

symbol(x, cσ) ∧ Usymbol(x, z) ∧ inConf(x, z)→ Ubitℓ (x, z) for σ ∈ Σ

head(x, h) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

head(x, l) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

head(x, r) ∧ Uhead(x, z) ∧ inConf(x, z)→ Usymbol(x, z)

nextCell(x, y) ∧ Ubit1 (y, z) ∧ inConf(x, z)→ Uhead(x, z)

nextConfδ(x, y) ∧ Uconf(y) ∧ inConf(x, z)→ Uhead(x, z) for δ ∈ ∆

lastConf(x) ∧ inConf(x, z)→ Uhead(x, z)

Structures matched by this query provide direct links from

each element to their configuration element, and we can thus

formulate ConfCell as a UCQ and obtain the following.

Theorem 19. Deciding containment of LinGDlog queries

in LinMQk queries is hard for (k + 1)ExpSpace.

It is not clear if this result can be extended to contain-

ments of LinMQ in LinMQk; the above approach does not

suggest any suitable modification. In particular, the prop-

agation of inConf in the style of a transitive closure does

not work, since elements may participate in many inConf

relations. On the other hand, the special constants λ in

LinMQs cannot be used to refer to the current configura-

tion, since there can be an unbounded number of configu-

rations but only a bounded number of special constants. It

is possible, however, to formulate a LinMQ Config[x] that

generates the required structure for a single configuration,

since one can then represents the configuration by λ. We

can generate arbitrary sequences of such structures by using

Config[x] as a nested query to that matches a regular expres-

sion firstConf (Config NextConf)∗ Config lastConf, where we

use NextConf to express the disjunction of all nextConfδ re-

lations. This proves the following statement.

Theorem 20. Deciding containment of LinMQ2 queries in

LinMQk queries is hard for (k + 1)ExpSpace.

Finally, we can also continue to use the same approach for

encoding SameCell as in Section 8, without using ConfCell,

while still restricting to linear Datalog (and thus to non-

alternating TMs) on the left-hand side. This leads us to the

following result.

Theorem 21. Deciding containment of LinMDlog queries

in MQk queries is hard for (k + 1)ExpSpace.

We have thus established tight complexity bounds for the

containment of nested GQs, while there remains a gap (of

one exponential or one nesting level) for MQs.

10. CONCLUSIONS

We have studied the most expressive fragments of Dat-

alog for which query containment is still known to be de-

cidable today, and we have provided exact complexities for

most of their query answering and query containment prob-

lems. While containment for nested queries tends to be non-

elementary for unbounded nesting depth, we have shown

tight exponential complexity hierarchies for the main cases

that we studied. As part of our results, we have also set-

tled a number of open problems for known query languages:

the complexity of query containment for MQ and MQ+, the

complexity of query containment of Dlog in GDlog, and the

expressivity of nested LinDlog.

Moreover, we have built on the recent “flag & check”

approach of monadically defined queries to derive various

natural extensions, which lead to new query languages with

interesting complexity results. In most cases, we observed

that the extension from monadic to frontier-guarded Data-

log does not affect any of the complexities, whereas it might

have an impact on expressivity. In contrast, the restriction

to linear Datalog has the expected effects, both for query an-

swering and for query containment.

The only case for which our results for containment com-

plexity are not tight is when we restrict rules to be both linear

and monadic: while small variations in the involved query

languages lead to the expected tight bounds, this particular

combination eludes our analysis. This case could be stud-

ied as part of a future program for analyzing the behavior of

(nested) conjunctive regular path queries, which are also a

special form of monadic, linear Datalog.

Another interesting open question is the role of constants.

Our hardness proofs, especially in the nested case, rely on
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UCQ,

LinMDlog, MDlog, LinMQk, MQk, LinMQ+,MQ+,

LinGDlog, GDlog LinGQk GQk LinGQ+,GQ+ Dlog

LinMQ PSpace-h [13] kExpSpace-h [Th.18] (k + 1)ExpSpace-c Nonelementary Undecidable

ExpSpace [Th.16] (k + 1)ExpSpace [Th.17] [Th.21]\[Th.17] [Th.18] [1]

LinGDlog, ExpSpace-c (k + 1)ExpSpace-c (k + 1)ExpSpace-c Nonelementary Undecidable

LinMQn (n ≥ 2),

LinMQ+, LinGQ+, [Th.20]\[Th.16] [Th.19,20]\[Th.17] [Th.19,20]\[Th.17] [Th.19,20] [1]

LinGQn, LinDlog

MDlog, GDlog, 2ExpTime-c (k + 2)ExpTime-c (k + 2)ExpTime-c Nonelementary Undecidable

MQn, GQn, [6, 14]\ [Th.13]\[Th.11] [Th.13]\[Th.11] [Th.13] [21]

MQ+, GQ+, Dlog [15], [Th.10]

Table 1: Summary of the known complexities of query containment for several Datalog fragments; sources for each

claim are shown in square brackets, using \ to separate sources for lower and upper complexity bounds, respectively

the use of constants to perform certain checks more effi-

ciently. Without this, it is not clear how an exponential blow-

up of our encoding (or the use of additional nesting levels)

could be avoided. Of course, constants can be simulated

if we have either predicates of higher arity or special con-

stants as in “flag & check” queries. However, for the case of

(linear) monadic Datalog without constants, we conjecture

that containment complexities are reduced by one exponen-

tial each when omitting constants.

An additional direction of future research is to study prob-

lems where we ask for the existence of a containing query of

a certain type rather than merely check containment of two

given queries. The most prominent instance of this scenario

is the boundedness problem, which asks whether a given

Datalog program can be expressed by some (yet unknown)

UCQ. It has been shown that this problem can be studied

using tree-automata-based techniques as for query contain-

ment [15], though other approaches have been applied as

well [4]. Besides boundedness, one can also ask more gen-

eral questions of rewritability, e.g., whether some Datalog

program can be expressed in monadic Datalog or in a regu-

lar path query.
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APPENDIX

A. TREE AUTOMATA

We use standard definitions for two-way alternating tree

automata as introduced in [15]. A regular (one-way, non-

alternating) tree automaton is obtained by restricting this

definition.

Tree automata run over ranked, labelled trees of some

maximal arity (out-degree) f . A ranked tree can be seen

a function t mapping sequences of positive natural numbers

(encoding nodes in the tree) to symbols from a fixed finite

alphabet (the labels of each node). Each letter of the alpha-

bet is ranked, i.e., associated with an arity that defines how

many child nodes a node labeled with this symbol should

have. The domain of t, denoted Nodes(t), satisfies the fol-

lowing closure property: if i · j ∈ Nodes(t), then i ∈ Nodes(t)

and i · k ∈ Nodes(t) for all 1 ≤ k ≤ j. Given a ranked tree

t, we write i ∈ Nodes(t) to denote an arbitrary node of t and

t(i) to denote the label of i in t. We denote by Trees(Σ) the

set of trees over the alphabet Σ.

A two-way alternating tree automaton A is a tuple

〈Σ,Q,Qs, δ,Qe〉 where

• Σ is a tree alphabet;

• Q is a set of states;

• Qs ⊆ Q is the set of initial states;

• Qe ⊆ Q is the set of accepting states;

• δ is a transition function from Q×Σ: let q ∈ Q be a state

and σ ∈ Σ be a letter of arity ℓ; then δ(q, σ) is a positive

boolean combination of elements in {−1, 0, 1, · · · , ℓ} ×

Q.

The numbers used in transitions encode directions, where

−1 is up and 0 is stay. For example δ(q, σ) = (〈1, s1〉 ∧

∧1, s2) ∨ (〈−1, t3〉 ∧ 〈2, t4〉) is an example of transition for a

state q and a node labeled σ: a node labeled by σ can be in

the state q iff its first child can be in the states s1 and s2, or

its parent and its second child can be in the states s3 and s4,

respectively.

Let t be a tree over Σ. A run τ ofA over t is a tree labeled

by elements of Q × {−1, 0, 1, · · · , f } × Nodes(t) ∪ {−1}. τ

satisfies the following properties:

• τ is finite.

• The root of τ is labelled by (q0, i, n), where q0 is in Qs.

• If a node v is labelled by (q, i, n) and n is not a node of

t, then v is a leaf of τ.

• If a node v is labelled by (q, i, n′), n is a node of τ la-

belled by σ of arity l and v′ is labelled by (q1, j, n′) then

– if j = −1, then there exists u ≤ k such that n = n′.u

– if j = 0, then n = n′

– if j ≤ k, then n′ = n. j.

• if a node v is labelled by (q, i, n), n ∈ t la-

belled by σ and the children of v are labelled by

(q1, j1, n1) · · · (qk, jk, nk) then δ(q, σ) is satisfied when

interpreting the sybmols {〈 j1, q1〉, · · · , 〈 jk, qk〉} as true

and all other symbols as false.

τ is valid iff, for each leaf of τ labelled by (q, i, n), q is in

Qe. A accepts a tree t if there exists a valid run of t overA.

We denote by Trees(A). The set of trees accepted byA.

A regular (one-way, non-alternating) tree automaton is a

2-way alternating tree automaton where all transitions for

a symbol σ of rank ℓ are boolean formulae of the form

(〈1, q11〉 ∧ . . . ∧ 〈ℓ, qℓ1〉) ∨ . . . ∨ (〈1, q1n〉 ∧ . . . ∧ 〈ℓ, qℓn〉) for

some n ≥ 0. In particular, directions 0 and −1 do not occur.

In this case, we can represent transitions as sets of lists of

states {〈q11, . . . , qℓ1〉, . . . , 〈q1n, . . . , qℓn〉}.

Finally, we recall two useful theorems from [15].

Theorem 22 (Theorem A.1 of [15]). Let A be a two-

way alternating automaton. Then there exists a tree automa-

ton A whose size is exponential in the size of A such that

Trees(A) = Trees(Σ) \ Trees(A).

Theorem 23 (Theorem A.2 of [15]). Let A be a two-

way alternating automaton. Then there exists a tree automa-

ton A whose size is exponential in the size of A such that

Trees(A) = Trees(A).

B. PROOFS

Proofs for Section 4

Theorem 1. LinDlog = LinDlog+.

Proof. We will prove that any LinDlog+ query can be

rewritten into a LinDlog query of polynomial size. We make

simplifying assumptions on the structure of the nested query

which can be easily obtained by polynomial transformations

and make the presentation easier: we assume that every rule

body of any query occurring at any nesting depth contains

at most one subquery atom (using, e.g., Proposition 2). Sec-

ond, we assume that all variables and IDB predicates that are

not in the same scope are appropriately renamed apart.

In order to proof our claim, we will first show that any

LinDlog2 can be rewritten into an equivalent LinDlog query.

Applying the rewriting iteratively inside-out (and observing

that even manyfold application can be done in polynomial

total time) then allows to conclude that there is a polyno-

mial rewriting of any LinDlog+ query of arbitrary depth into

a LinDlog query.

Consider a LinDlog2 query P = 〈P, p〉 and assume w.l.o.g.

that every rule body of the rules contains at most one

LinDlog1 subquery. Now, going through all rules of P we

produce the rules P′ of the unnested but equivalent version.

Consider a rule ρ ∈ P having the shape

Q(x1, . . . , xn) ∧ p(y1, . . . yℓ) ∧ B1 ∧ . . . ∧ Bk → H

where p is the body IDB predicate and where Q = 〈Q, q〉 is

a LinDlog1 query. For any k-ary IDB predicate r inside Q we

increase its arity by ℓ and let P′ contain all rules of Q′ which

is obtained from the rules ρ′ of Q by
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• replacing any (head or body) IDB atom r(z1, . . . , zk) of

ρ′ by r(z1, . . . , zk, y1, . . . yℓ) and

• in case ρ′ does not contain any IDB body atom, add

p(y1, . . . yℓ) to the body.

Further we let P′ contain the rule

q(x1, . . . , xn, y1, . . . yℓ) ∧ ∧B1 ∧ . . . ∧ Bk → H.

In case of a rule ρ ∈ P having the shape

Q(x1, . . . , xn) ∧ B1 ∧ . . . ∧ Bk → H

we add Q to P′ without change and let P′ contain the rule

q(x1, . . . , xn) ∧ B1 ∧ . . . ∧ Bk → H.

In case a rule ρ ∈ P does not contain a subquery atom we

simply add ρ to P′.

It can now easily verified that 〈P, p〉 and 〈P′, p〉 are equiv-

alent: first it is straightforward, that 〈P, p〉 is equivalent

to 〈P♭, p〉 where P♭ is obtained from P by replacing every

Q(x1, . . . , xn) by q(x1, . . . , xn) (that is, the according goal

predicate) and then adding all rules from Q with no changes

made to them. Second one can show that there is a direct

correspondence between proof trees of 〈P♭, p〉 and linearized

proof trees of 〈P′, p〉 which yields the desired result.

Proposition 2. Let P be a positive query, i.e., a Boolean

expression of disjunctions and conjunctions, of LinMQk

queries with k ≥ 1. Then there is a LinMQk query P′ of

size polynomial in P that is equivalent to P. Analogous re-

sults hold when replacing LinMQk by MQk, GQk, or LinMQk

queries.

Proof. We show the claim by induction, by expressing the

innermost disjunctions and conjunctions of P with equiv-

alent LinMQk queries of linear size. We consider positive

queries without existential quantifiers (i.e., where all vari-

ables are answer variables), but the inner LinMQk may use

existential quantifiers.

Let P[x] = P1[x1]∨. . .∨Pn[xn] be a disjunction of LinMQk

queries. Each query Pi is of the form ∃zi.P
′
i
[x′

i
], where x′

i
is

the list of free variables of P′
i

(corresponding to constants λ),

and zi contains exactly those variables of x′
i
that do not occur

in xi. We assume without loss of generality that zi is disjoint

from z j if i , j, and that each P′
i

uses a unique set of IDBs

that does not occur in other queries. We consider queries P̄i

obtained by replacing the special constant that represents a

variable x j ∈ x by the special constant λ j (assumed to not

occur in P yet). Thus, the queries P̄i share special constants

exactly where queries P1 share variables. We can now define

the LinMQk P′ as ∃z1 . . . zn.P̄1 ∪ . . . ∪ P̄n, where we assume

that the correspondence of special constants to free variables

is such that the existential quantifiers refer to the same vari-

ables as before.

Let P[x] = P1[x1] ∧ . . . ∧ Pn[xn] be a conjunction of

LinMQk queries. Let Pi = ∃zi.P
′
i
[x′

i
] as before, and let Ui

for i ∈ {1, . . . , n − 1} be fresh IDB predicates. The queries

P̄i are defined as before by renaming special constants to re-

flect shared variables. For each i ∈ {1, . . . , n}, the set of rules

P̂i is obtained from P̄i as follows: if i < n, then every rule

ϕ → hit ∈ P̄i is replaced by the rule ϕ → Ui(λ1), where λ1

is a fixed special constant in the queries; if i > 1, then every

rule ϕ → ψ ∈ P̄i where ϕ does not contain an IDB predi-

cate is replaced by the rule ϕ ∧ Ui−1(λ1)→ ψ, where λ1 is as

before. The LinMQk P′ is defined as ∃z1 . . . zn.P̂1 ∪ . . .∪ P̂n.

These constructions lead to equivalent LinMQk queries of

linear size, so the claim follows by inductions. The cases

for MQk, GQk, and LinMQk follow from the same construc-

tions (note that, without the requirement of linearity, a sim-

pler construction is possible in the case of conjunctions).

Theorem 3. The combined complexity of evaluating GQ

queries over a database instance is NP-complete. The same

holds for GDlog queries. The combined complexity of evalu-

ating GQ+ queries is PSpace-complete. The data complexity

is P-complete for GDlog, GQ, and GQ+.

Proof. The lower bounds are immediate from the match-

ing complexities for MQ and MQ+ queries, respectively [19].

First, we prove that checking if a tuple is an answer of a

GQ over a database instance I is in NP for combined com-

plexity. Let I be an instance, let P be a GQ with frontier

guarded rules P, and let δ be be a candidate answer for P as

in Definition 1.

Since each rule in P is frontier-guarded, each intentional

fact that is derived when checking the answer follows from

the application of one particular rule, instantiated to match

one particular (guard) EDB fact in the body. Therefore, the

number of IDB facts that can be derived is polynomially

bounded in the size of I and P.

Thus, for every derivation of P, only a polynomial number

of rule applications are necessary, since it is enough to derive

each IDB fact once. It is clear that one can guess such a

derivation, where we guess, for each derivable IDB fact, one

specific rule instance by which it is derived. The correctness

of this guess can be checked in polynomial time, showing

that the problem can be solved in NP.

We now show that checking an answer of a GQ+ over an

instance I is in PSpace. Let I be an instance, let P be a GQk

with frontier guarded rules P (that may contain subqueries),

and let δ be be a candidate answer for P as in Definition 1.

We demonstrate by induction on k that checking if δ is a

solution for P w.r.t. I is in NPSpace. For the induction base,

the claim follows from the above result for GQs.

For the induction step, using the same argument as before,

we can see that the number of IDB facts that can be derived

by P is still polynomial. Therefore, we can again guess a

polynomial derivation as before, though the rule instances

now may refer to subqueries of smaller nesting depth. By the

induction hypothesis, whenever we need to verify the appli-

cability of such a rule, we can use an NPSpace algorithm for

the nested query. The overall number of such checks is poly-

nomial, yielding the overall NPSpace algorithm. The result

follows since NPSpace =PSpace [20].
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The fact that query evaluation is in P for data complexity

is immediate from the fact our queries can be expressed in

Datalog, which is known to have this data complexity. A

direct proof is also obtained by observing that the number

of possible derivation sequences that the above algorithms

need to consider is in itself polynomial in I if P is fixed,

so that the algorithms themselves are already in P for data

complexity.

Theorem 4. The combined complexity of evaluating

LinMQ queries over a database instance is NP-complete.

The same holds for LinGDlog and LinGQ. The com-

bined complexity of evaluating LinMQ+ queries is PSpace-

complete. The same holds for LinGQ+.

The data complexity is NLogSpace-complete for all of

these query languages.

Proof. The claimed NP-completeness is immediate.

Hardness follows from the hardness of CQ query answering.

Membership follows from the membership of GQ.

The claimed membership in PSpace follows from the

PSpace-membership of LinDlog; note that this uses Theo-

rem 1. Hardness for LinGQ+ follows from the hardness for

LinMQ+, which we show by modifying the PSpace-hardness

proof for monadically defined queries from [19].

We show the result by providing a reduction from the va-

lidity problem of quantified Boolean formulae (QBFs). We

recap that for any QBF, it is possible to construct in polyno-

mial time an equivalent QBF that has the specific shape

Q1x1Q2x2 . . .Qnxn

∨

L∈L

∧

ℓ∈L

ℓ,

with Q1, . . .Qn ∈ {∃,∀} and L being a set of sets of literals

over the propositional variables x1, . . . , xn. In words, we as-

sume our QBF to be in prenex form with the propositional

part of the formula in disjunctive normal form. For every

literal set L = {xk1
, . . . , xki

, ¬xki+1
, . . . ,¬xk j

}, we now de-

fine the n-ary FCP pL = {t(λk1
) ∧ . . . ∧ t(λki

) ∧ f (λki+1
) ∧

. . . ∧ f (λk j
) → hit}. Moreover, we define the n-ary FCP

pL = {pL(λ1, . . . , λn) → hit | L ∈ L}. Letting pL = pn we

now define FCPs pn−1 . . . p0 in descending order. If Qi = ∃,

then the i−1-ary FCP pi−1 is defined as the singleton rule set

{pi(λ1, . . . , λi−1, y)→ hit}. In case Qi = ∀, we let pi−1 contain

the rules

f (x)→ U?(x)

U!(x) ∧ f (x) ∧ t(y)→ U?(y)

U!(x) ∧ t(x)→ hit

U?(x) ∧ pi(λ1, . . . , λi−1, x)→ U!(x)

Note that p0 is a Boolean LinMQ+ query the size of which

is polynomial in the size of the input QBF.

Now, let D be the database containing the two individu-

als 0 and 1 as well as the facts f (0) and t(1). We now show

that the considered QBF is true exactly if D |= p0(). To

this end, we first note that by construction the extension of

pL contains exactly those n-tuples 〈δ1, . . . , δn〉 for which the

corresponding truth value assignment val, sending xi to true

iff δi = 1, makes the formula
∧
ℓ∈L ℓ true. In the same way,

the extension of pL represents the set of truth value assign-

ments satisfying
∨

L∈L

∧
ℓ∈L ℓ. Then, by descending induc-

tion, we can show that the extensions of pi encode the as-

signments to free propositional variables of the subformula

Qi+1xi+1 . . .Qnxn

∨
L∈L

∧
ℓ∈L ℓ that make this formula true.

Consequently, p0 has a nonempty extension if the entire con-

sidered QBF is true.

Finally, the NLogSpace-completeness for data complexity

is again immediate, where the upper bound is obtained from

LinDlog, and the lower bound follows from the well-known

hardness of reachability queries, which can be expressed in

LinMDlog.

Proofs for Section 6

Proposition 7. There is an automaton AP,ρ that accepts

exactly the annotated matching trees for ρ and P, and which

is exponential in the size of ρ and P.

Proof. We first construct an automaton A′
P,ρ that accepts

matching trees where each node is additionally annotated by

a partial mapping of the form Var(ρ) → VP (called Var(ρ)-

label), such that: every special variable x ∈ Var(ρ) occurs in

at least one Var(ρ)-label, and whenever a variable x ∈ Var(ρ)

occurs in two, it is mapped to the same variable and both

variable occurrences are connected. Note that this is essen-

tially the same condition that we imposed for λ-annotations.

The intersection of tree automata can be computed in

polynomial time. We can therefore construct automata to

check part of the conditions for (annotated) matching trees to

simplify the definitions. We first construct an automatonAx

for checking the condition on Var(ρ)-labels for one variable

x ∈ Var(ρ). We define Ax = 〈Σ,Qx,Q
s
x, δx,Q

e
x〉, where the

alphabet Σ consists of quadruples of proof-tree labels (from

RP), λ-labels, p-labels, and Var(ρ)-labels. The state set Qx

is {a, b, accept} ∪ {qv | v ∈ VP}, signifying that the current

node is above the first node annotated with a mapping for x,

below or besides any nodes that were annotated with a map-

ping for x, or at a node where x is mapped to a variable v.

That start-state set is Qs
x = {a} ∪ {qv | v ∈ VP}; the end-state

set if Qe
x = {accept}.

Consider a rule ρ′ ∈ RP of the form r1(v1) ∧ . . . ∧ rn(vn) ∧

h1(w1) ∧ . . . ∧ hm(wm) → h(v), where ri are EDB predicates

and h(i) are IDB predicates. For the case that m > 0, there

is a transition 〈q1, . . . , qm〉 ∈ δ(q, 〈ρ
′, _, _, ν〉) exactly if the

following conditions are satisfied:

• if q = a and ν(x) is undefined, then qi = a for one

1 ≤ i ≤ m and q j = b for all 1 ≤ j ≤ m with i , j;

• if q = qv and ν(x) = v, then qi = qv for all 1 ≤ i ≤ m

such that v occurs in wi and qi = b for all other i;
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• if q = b and ν(x) is undefined, then qi = b for all 1 ≤

i ≤ m.

For the case m = 0, there is a transition 〈accept〉 ∈

δ(q, 〈ρ′, _, _, ν〉) exactly if:

• if q = qv and ν(x) = v;

• if q = b and ν(x) is undefined.

It is easy to check that the automaton Ax satisfies the re-

quired condition. Now an automaton for checking the con-

dition on Var(ρ)-labels can be constructed as the intersec-

tionA′
Var(ρ)

=
⋂

x∈Var(ρ)Ax. The automatonA′
λ

for checking

the condition on λ-labels is constructed in a similar fashion.

Likewise, an automaton A′p for checking the condition on

p-labels is easy to define.

It remains to construct an automaton for checking the

conditions (a)–(d) of Definition 4. To do this, we inter-

pret the Var(ρ)-labels and λ-labels as partial specifications of

the required mapping ν. Condition (a) further requires that

ν(x) = v, i.e., that the Var(ρ)-label at the unique node an-

notated with p(v) contains this mapping. It is easy to verify

this with an automatonA′
(a)

. Together,A′
(a)

,A′
λ
, andA′

Var(ρ)

provide a consistent variable mapping that respects the p-

label (a) and the connectedness of variable occurrences, i.e.,

(c) and (d). To check the remaining condition (b), we use an

automatonA′
(b)

.

The automaton for (b) will use auxiliary markers to record

which atoms have been matched in the current node and how

exactly this was done. We record such a match as a partial

function from atoms q(z) ∈ ϕ to instances q(w) of such atoms

using variables w ⊆ VP. The set of all such partial functions

is denoted Matchϕ,P. Note that this set is exponential (not

double exponential).

We now define A′
(b)
= 〈Σ,Q,Qs, δ,Qe〉 where Σ is as for

Ax above. The set of states Q is {accept} ∪ (2ϕ ×Matchϕ,P),

where elements from 2ϕ encode the subset of ϕ that should

be witnessed at or below the current node, and the ele-

ments from Matchϕ,P encode atoms that must be matched

at the current node with their respective instantiations. The

start-state set Qs is {〈ϕ, µ〉 | µ ∈ Matchϕ,P}; the end-

state set Qe is {accept}. The transition function δ is de-

fined as follows. Consider a rule ρ′ ∈ RP of the form

r1(v1) ∧ . . . ∧ rn(vn) ∧ h1(w1) ∧ . . . ∧ hm(wm)→ h(v), where

ri are EDB predicates and h(i) are IDB predicates. For the

case m > 0, there is a transition 〈〈β1, µ1〉, . . . , 〈βm, µn〉〉 ∈

δ(〈β, µ〉, 〈ρ′, νλ, _, νVar(ρ)〉) exactly if the set β ⊆ ϕ can be par-

titioned into sets β′, β1, . . . , βm such that (νλ ∪ νVar(ρ))(β
′) =

µ(β′) and µ(β′) ⊆ {r1(v1), . . . , rn(vn)}. The element µi of

successor states can be chosen freely; the validity of the

choice will be checked later. For the case m = 0, there is

a transition 〈accept〉 ∈ δ(〈β, µ〉, 〈ρ′, νλ, _, νVar(ρ)〉) exactly if

(νλ ∪ νVar(ρ))(β) = µ(β) and µ(β) ⊆ {r1(v1), . . . , rn(vn)}. In

fact, the information from Matchϕ,P is not strictly necessary

to define the transition, since the relevant elements µ are al-

ways determined by other choices in the transition. How-

ever, having this information explicit will be important in

later proofs.

The automaton A′
P,ρ is obtained as the intersection

A′
Var(ρ)

∩ A′
λ
∩ A′p ∩ A

′
(a)
∩ A′

(b)
. It is easy to verify that

it accepts exactly the Var(ρ)-annotated matching trees. Note

that A′
P,ρ is exponential in size, already due to the exponen-

tially large alphabet Σ. Now the required automaton AP,ρ

is obtained by “forgetting” the Var(ρ)-label in transitions of

A′
P,ρ. This projection operation for tree automata is possi-

ble with a polynomial increase in size: every state of AP,ρ

is a pair of a state of A′
P,ρ and a Var(ρ)-label; transitions of

AP,ρ are defined as for A′
P,ρ, but keeping Var(ρ)-label infor-

mation in states and introducing transitions for all possible

Var(ρ)-labels in child nodes.

Proposition 8. There is an alternating 2-way tree au-

tomaton A+
P,ρ,v that is polynomial in the size of AP,ρ such

that, whenever AP,ρ accepts a matching tree T that has the

p-annotation p(v) on node e, then A+
P,ρ,v has an accepting

run that starts from the corresponding node e′ on the tree T ′

that is obtained by removing the p-annotation from T.

Proof. Using alternating 2-way automata, we can traverse

a tree starting from any node, visiting each node once. To

control the direction of the traversal, we create multiple

copies of each state q: states qdown are processed like normal

states in AP,ρ, states qup use an inverted transition of AP,ρ

to move up the tree into a state qσ,i; these auxiliary states

are used to check that the label of the upper node is actually

σ and to start new downwards processes for all child nodes

other than the one (i) that we came from.

To ensure that the constructed automaton A+
P,ρ,v simu-

lates the behavior of AP,ρ in case the annotation p(v) is

found, we eliminate all transitions that mention other p-

annotations. Moreover, we assume without loss of gener-

ality that the states of AP,ρ that allow a transition mention-

ing p(v) cannot be left through any other transition; this

can always be ensured by duplicating states and using them

exclusively for one kind of transition. Let Qp be the set

of states of AP,ρ that admit (only) transitions mentioning

p(v). Let A′
P,ρ = 〈Σ

′,Q,Qs, δ
′,Qe〉 denote the automaton

over the alphabet Σ′ of λ-annotated proof trees (without p-

annotations), with the same (start/end) states as AP,ρ, and

where δ′ is defined based on the transition function δ ofAP,ρ

as follows: δ′(〈ρ′,M〉) is the union of all sets of the form

δ(〈ρ′, λ-label, p-label〉) where p-label is either p(v) or empty.

By this construction, there is a correspondence between the

accepting runs of AP,ρ over trees where one node e is anno-

tated with p(v) and accepting runs of A′
P,ρ (on trees without

p-annotations) for which the node e is visited in some state

of Qp.

Let s be the maximal out-degree of proof trees for P, i.e.,

the maximal number of IDB atoms in bodies of P. The state

set Q+ of A+
P,ρ,v is given by the disjoint union {qup | q ∈

Q} ∪ {qσ,i | q ∈ Q, σ ∈ Σ, 1 ≤ i ≤ s} ∪ {qdown | q ∈ Q} ∪

{start, accept}. The start-state set is Q+s = {start} and the

end-state set is Q+e = {accept} ∪ {qdown | q ∈ Qe}.
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Transitions ofA+
P,ρ,v are defined as follows:

• For all σ ∈ Σ, let δ+(start, σ) be the disjunction of all

formulae 〈0, qup〉 ∧ 〈0, qdown〉 where q ∈ Qp.

• For states qdown and σ ∈ Σ, let δ+(qdown, σ) be the dis-

junction of all formulae 〈1, q1
down
〉 ∧ . . .∧ 〈m, qm

down
〉 for

whichA′
P,ρ has a transition 〈q1, . . . , qm〉 ∈ δ′(q, σ).

• For states qup and σ ∈ Σ, let δ+(qup, σ) be the disjunc-

tion of all formulae 〈−1, q′σ′,i〉 for whichA′
P,ρ has a tran-

sition 〈q1, . . . , qi−1, q, qi+1, . . . , qm〉 ∈ δ′(q′, σ′) and the

current node is the ith child of its parent (we can as-

sume that this information is encoded in the labels σ,

even for basic proof trees, which increases the alpha-

bet only linearly; we omit this in our definitions since it

would clutter all other parts of our proof without need).

• For states qσ,i,q′ , let δ+(qσ,i,q′ , σ) be the disjunction of

all formulae 〈0, qup〉 ∧ 〈1, q
1
down
〉 ∧ . . . ∧ 〈i − 1, qi−1

down
〉 ∧

〈i + 1, qi+1
down
〉 ∧ . . . ∧ 〈m, qm

down
〉 for which A′

P,ρ has a

transition 〈q1, . . . , qi−1, q′, qi+1, qm〉 ∈ δ′(q, σ).

• For all starting states q ∈ Qs of A′
P,ρ and σ ∈ Σ, let

δ(qup, σ) = 〈0, accept〉.

It is not hard to verify that A+
P,ρ,v has the required proper-

ties.

Proposition 9. For a Dlog query P and a GQ query P′

with special constants λ, there is an alternating 2-way

automaton A+
P⊑P′

of exponential size that accepts the λ-

annotated proof trees of P that encode expansion trees with

λ assignments for which P′ has a match.

Proof. Let P′ be the set {ρ1, . . . , ρℓ}. For every IDB pred-

icate p, let P′p denote the set of rules in P′ with head predi-

cate p (possibly hit). Without loss of generality, we assume

that distinct rules use distinct sets of variables. For every

frontier-guarded rule ρ′, let guard(ρ′) be a fixed EDB atom

that acts as a guard in this rule, i.e., an atom that refers to all

variables in the head of ρ′.

Consider a rule ρ′ ∈ P′ with IDB atoms q1(t1), . . . , qm(tm)

in its body. We construct new rules from ρ′ by replacing

each atom qi(t i) with a guard atom guard(ρ′
i
), suitably uni-

fied. Formally, assume that there are rules ρ′
i
∈ P′qi

with head

qi(si) and a substitution θ that is a most general unifier for the

problems t iθ = siθ, for all i ∈ {1, . . . ,m}, and that maps ev-

ery variable in ρ′
i

that does not occur in the head to a globally

fresh variable. Then the guard expansion of ρ′ for (ρ′
i
)m
i=1

and

θ is the rule that is obtained from ρ′θ by replacing each body

atom qi(t i)θ by guard(ρ′
i
)θ. By construction, two distinct

atoms guard(ρ′
i
)θ and guard(ρ′

j
)θ do not share variables, un-

less at positions that correspond to head variables in rules

ρ′
i

and ρ′
j
. The atoms guard(ρ′

i
)θ in a guard expansion are

called replacement guards. We consider two guard expan-

sions to be equivalent if they only differ in the choice of the

most general unifier. Let Guard(ρ′) be the set of all guard ex-

pansions of ρ′ ∈ P′, i.e., a set containing one representative

of each class of equivalent guard expansions. Guard(ρ′) is

exponential since there are up to |P′|m non-equivalent guard

expansions for a rule with m IDB atoms.

The automaton A+
P⊑P′

is constructed as follows. For ev-

ery guard expansion ρg ∈
⋃
ρ′∈P′ Guard(ρ′) and every list v

of proof-tree variables of the arity of the head of ρg, con-

sider the alternating 2-way tree automaton A+
P,ρg,v

of Propo-

sition 8. We assume w.l.o.g. that the state sets of these au-

tomata are mutually disjoint. Let A+
P⊑P′
= 〈Σ,Q,Qs, δ,Qe〉.

As before, Σ consists of pairs of a rule instance from RP and

a partial mapping of λ to VP. The state set Q is the disjoint

union of all state sets of the automata of form A+
P,ρg,v

. The

start-state set Qs is the disjoint union of all start-state sets of

automata A+
P,ρg,v

for which ρg is a guard expansion of a rule

with head hit (and v is the empty list). The end-state set Qe

is the disjoint union of all end-state sets of automataA+
P,ρg,v

.

The transition function δ is defined as follows. By the

construction in Proposition 7, each state q in the automaton

AP,ρ encodes a partial mapping match(q) from body atoms

of ρ to instantiated atoms that use variables fromVP, which

are matched at the current tree node. This information is pre-

served through alphabet projections, intersections, and even

through the construction in Proposition 8. We can therefore

assume that each state q ofA+
P⊑P′

is associated with a partial

mapping match(q).

For every state q ∈ QP,ρg,v and every σ ∈ Σ, we de-

fine δ(q, σ) = δP,ρg,v(q, σ) ∧ ψ, where ψ defined as fol-

lows. For every replacement guard atom α of ρg for which

match(q)(α) is defined, we consider the formula ψα =

〈0, q1〉 ∨ . . . ∨ 〈0, qℓ〉, where

• α = guard(ρ′)θ for some rule ρ′ and substitution θ;

• match(q)(α) = αθ′ for some substitution θ′;

• q1, . . . qℓ are the start states of the automaton AP,ρ′,zθθ′

where p(z) is the head of ρ′.

Now ψ is the conjunction of all formulae ψα thus de-

fined.

Proofs for Section 7

Lemma 12. Consider an ATMM, and queries as in Def-

inition 5, including SameCell[x, y], that are MQk queries for

some k ≥ 0. There is a MQk query P[x], polynomial in the

size ofM and the given queries, such that the following hold.

• For every accepting run ofM in space s, there is some

database instance I with some element c that encodes

the run, such that c < PI.

• If an element c of I encodes a tree of quasi-

configurations of M in space s, and if c < PI, then

c encodes an accepting run ofM in space s.

Moreover, if all input queries are in LinMQk, then so is P.

Proof. We construct P from all (polynomially many) pos-

itive queries obtained by instantiating the query patterns in

Figure 4. Since P needs to be a unary query with variable

x, we extend every positive query that does not contain x
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(1) Unique head marker and correct left/right head markers:

Head(y, p1) ∧ NextCell(y, z) ∧ Head(z, p2) where 〈p1, p2〉 ∈ {〈h, h〉, 〈h, l〉, 〈r, h〉, 〈r, l〉}

Head(y, h) ∧ Head(y, p) where p ∈ {r, l}

(2) Unique start configuration:

FirstConf(x, y) ∧ Stateq(y) where q , qs

FirstConf(x, y) ∧ FirstCell(y, z) ∧ Head(z, p) where p ∈ {l, r}

FirstConf(x, y) ∧ ConfCell(y, z) ∧ Symbol(z, cσ) where σ , �

(3) Valid, uniquely defined transitions:

Stateq(y) ∧ Head(z, h) ∧ ConfCell(y, z) ∧ Symbol(z, cσ) ∧ NextConfδ(y, y
′) ∧ where δ = 〈q1, σ1, q2, σ2, d〉

Stateq′ (y
′) ∧ ConfCell(y′, z′) ∧ SameCell(z′, z) ∧ Symbol(z′, cσ′ ) with q1 , q or σ1 , σ or q2 , q′ or σ2 , σ

′

(4) Unique end state:

LastConf(y) ∧ Stateq(y) where q , qe

(5) Memory:

ConfCell(y1, x1) ∧ Head(x1, r) ∧ Symbol(x1, cσ) ∧ NextConfδ(y1, y2) ∧

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ Symbol(x2, cσ′ ) where σ , σ′

ConfCell(y1, x1) ∧ Head(x1, l) ∧ Symbol(x1, cσ) ∧ NextConfδ(y1, y2) ∧

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ Symbol(x2, cσ′ ) where σ , σ′

(6) Head movement:

ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, right〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ NextCell(x2, x
′
2
) ∧ Head(x′

2
, p) and p ∈ {r, l}

ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, right〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ LastCell(x2) ∧ Head(x2, p) and p ∈ {r, l}

ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, left〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ NextCell(x′
2
, x2) ∧ Head(x′

2
, p) and p ∈ {r, l}

ConfCell(y1, x1) ∧ Head(x1, h) ∧ NextConfδ(y1, y2) ∧ where δ = 〈q1, σ1, q2, σ2, left〉

ConfCell(y2, x2) ∧ SameCell(x1, x2) ∧ FirstCell(z, x2) ∧ Head(x2, p) and p ∈ {r, l}

Figure 4: Queries to construct a containment encoding as in Lemma 12

with the atom FirstConf[x, x′] (omitted for space reasons in

Figure 4). By Proposition 2 we can express the disjunctions

of all the positive queries in Figure 4 as a LinMQk P[x] of

polynomial size (for k = 0 it is a UCQ).

If an element c in a database instanceI encodes an accept-

ing run ofM in space s, and I contains no other structures,

then none of the queries in Figure 4 matches. Hence c < PI.

Conversely, assume that c encodes a tree of M quasi-

configurations in space s and c < PI. If none of the queries

in Figure 4 (1) match, the head positions of every configura-

tion must form a sequence l, . . . , l, h, r, . . . , r; hence all quasi-

configurations are actually configurations. Queries (2)–(4)

ensure that the first and last configuration are in the start and

end state, respectively, and that each transition is matched by

suitable state and tape modifications. Queries (5) ensure that

tape cells that are not at the head of the TM are not modified

between configurations. Queries (6) ensure that the move-

ment of the head is consistent with the transitions, and es-

pecially does not leave the prescribed space. Note that the

queries allow transitions that try to move the head beyond

the tape and require that the head stays in its current position

in this case. This allows the ATM to recognize the end of

the tape, which is important for the Turing machines that we

consider below. With all these restrictions observed, c must

encode a run ofM in space s.

Proofs for Section 8

Lemma 14. For any ATM M, there is an MDlog query

P1[x], a LinMQ P2[x], queries as in Definition 5 that are

LinMQs, and a same-cell query that is a UCQ, such that P1[x]

and P2[x] containment-encode accepting runs ofM in expo-

nential space.

Proof. Let M = 〈Q,Σ,∆, qs, qe〉 with Q partitioned into

existential states Q∃ and universal states Q∀. In order to

use Lemma 12, we first construct queries P′
1

and P′
2

that

containment-encode quasi-configuration trees ofM in space

2ℓ for some ℓ that is linear in the size of the queries (w.r.t. to

suitable queries as in Definition 5).

Our signature contains the binary predicates (distin-

guished from the queries of Definition 5 by using lower case
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letters) firstConf, nextConfδ for all δ ∈ ∆, firstCell, nextCell,

biti for all i ∈ {1, . . . , ℓ}, symbol, head, as well as the unary

predicates lastConf, and stateq for all q ∈ Q.

We define P′
1

to be the following MDlog query that has the

goal predicate Ugoal and uses two further constants 0 and 1:

firstConf(x, y) ∧ Uconf(y)→ Ugoal(x)

stateq(x) ∧ firstCell(x, y) ∧ Ubit1 (y)→ Uconf(x) for q ∈ Q

biti−1(x, 0) ∧ Ubiti (x)→ Ubiti−1
(x) for i ∈ {2, . . . , ℓ}

biti−1(x, 1) ∧ Ubiti (x)→ Ubiti−1
(x) for i ∈ {2, . . . , ℓ}

symbol(x, cσ) ∧ Usymbol(x)→ Ubitℓ (x) for σ ∈ Σ

head(x, h) ∧ Uhead(x)→ Usymbol(x)

head(x, l) ∧ Uhead(x)→ Usymbol(x)

head(x, r) ∧ Uhead(x)→ Usymbol(x)

nextCell(x, y) ∧ Ubit1 (y)→ Uhead(x)

nextConfδ(x, y) ∧ Uconf(y)→ Uhead(x) for δ = 〈q, σ, q′, σ′, d〉

with q ∈ Q∃

nextConfδ1
(x, y1) ∧ Uconf(y1) ∧ for δ1 = 〈q, σ, q

′, σ′, d〉,

nextConfδ2
(x, y2) ∧ Uconf(y2)→ Uhead(x) q ∈ Q∀, and δ1 , δ2

lastConf(x)→ Uhead(x)

P′
1

encodes structures that resemble configuration

trees, but with each configuration “tape” consist-

ing of an arbitrary sequence of “cells” of the form

bit1(x, v1), . . . , bitℓ(x, vℓ), symbol(x, cσ), head(x, p), where

each vi is either 0 or 1. The values for the bit sequence

encode a binary number of length ℓ. We provide a query

P′
2

which ensures that each sequence of cells encodes an

ascending sequence of binary numbers from 00 . . . 0 to

11 . . . 1. More precisely, P′
2

checks if there are any consec-

utive cells that violate this rule, i.e., the structures matched

by P′
1

but not by P′
2

are those where each configuration

contains 2ℓ cells. The following query checks whether bit i

is the rightmost bit containing a 0 and bit i in the successor

configuration also contains a 0, which is a situation that

must not occur if the bit sequences encode a binary counter:

biti(y, 0) ∧ biti+1(y, 1) ∧ . . . ∧ bitℓ(y, 1) ∧ nextCell(y, z) ∧ biti(z, 0)

In a similar way, we can ensure that every bit to the right

of the rightmost 0 is changed to 0, every bit that is left of

a 0 remains unchanged, the first number is 0 . . . 0, and the

last number is 1 . . . 1. The query P′
2

is the union of all of

these (polynomially many) conditions, each with new atom

firstConf(x,y) added and all variables other than x existen-

tially quantified; this ensures that we obtain a unary query

that matches the same elements as P′
1

if it matches at all.

We claim that the elements matching P′
1

but not P′
2

encode

quasi-configuration trees ofM in space 2ℓ. Indeed, it is easy

to specify the queries required by Definition 5. The most

complicated query is ConfCell[x, y], which can be defined

by the following LinMQ:

stateq(λ1) ∧ nextCell(λ1, y)→ U(y) for all q ∈ Q

U(y) ∧ nextCell(y, z)→ U(y)

U(λ2)→ hit

The remaining queries are now easy to specify, where we

use ConfCell[x, y], knowing that a conjunctive query over

LinMQs can be transformed into a single LinMQ using Propo-

sition 2:

FirstConf[x, y] ≔ firstConf(x, y)

NextConfδ[x, y] ≔ ∃z.ConfCell(x, z) ∧ nextConfδ(z, y)

LastConf[x] ≔ ∃z.ConfCell(x, z) ∧ lastConf(z)

Stateq[x] ≔ stateq(x)

Head[x, y] ≔ head(x, y)

FirstCell[x, y] ≔ firstCell(x, y))

NextCell[x, y] ≔ nextCell(x, y)

LastCell[x] ≔ lastConf(x) ∨ ∃z.nextConf(x, z)

Symbol[x, y] ≔ symbol(x, y)

SameCell[x, y] ≔ ∃v1, . . . , vℓ.bit1(x, v1) ∧ bit1(y, v1) ∧

. . . ∧ bitℓ(x, vℓ) ∧ bitℓ(y, vℓ)

Using these queries, we can construct a LinMQ P as in

Lemma 12 such that P1 = P′
1

and P2 = P′
2
∨ P containment-

encode accepting runs ofM.

Lemma 15. Assume that there is some space bound s such

that, for every DTMM, there is a MDlog query P1[x] and an

MQk+1 query P2[x] with k ≥ 0, such that P1[x] and P2[x]

containment-encode accepting runs of M in s, where the

queries required by Definition 5 are MQk+1 queries. More-

over, assume that there is a suitable same-cell query that is

in MQk.

Then, for every ATM M′, there is a MDlog query P′
1
[x],

an MQk+1 P′
2
[x], and MQk+1 queries as in Definition 5, such

that P′
1
[x] and P′

2
[x] containment-encode an accepting run

ofM′ in space s′ ≥ 2s. Moreover, the size of the queries for

this encoding is polynomial in the size of the queries for the

original encoding.

Proof. There is a TM M = 〈Q,Σ,∆, qs, qe〉 that counts

from 0 to 2s in binary (using space s) and then halts. M can

be small (constant size) since our formalization of (A)TMs

allows the TMs to recognize the last tape position to ensure

that the maximal available space is used. The computation

will necessarily take s′ > 2s steps to complete since mul-

tiple steps are needed to increment the counter by 1. Let

P1[x] and P2[x] be queries that containment-encode accept-

ing runs ofM in s, and let ConfCell, SameCell, etc. denote

the respective LinMQk as in Definition 5.

LetM′ = 〈Q′,Σ′,∆′, q′s, q
′
e〉 be an arbitrary ATM. We use

the signature of P1, extended by additional binary predicates

firstConf′, nextConf′δ for all δ ∈ ∆′, symbol′, head′, as well as

unary predicates lastConf′, and state′q for all q ∈ Q′. All of

these are assumed to be distinct from predicates in P1.

Let Ugoal be the goal predicate of P1, and let Utape be a new

unary IDB predicate. We construct the program P̄1 from P1

as follows. For every rule of P1 that does not contain an IDB

atom in its body we add the atom Utape(x) to the body, where

x is any variable that occurs in the rule. Intuitively speak-

ing, the IDBs Utape and Ugoal mark the start and end of tapes

ofM′, which are represented by runs ofM. Moreover, we
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modify P̄1 to “inject” additional state and head information

for M′ into configurations of M, i.e., we extend P1 to en-

sure that every element e with stateq(e) also occurs in some

symbol′(e, c′σ′ ) and in some relation head′(e, p). This can

always be achieved by adding a linear number of IDB pred-

icates and rules.

Now P′
1

is defined to be a MDlog query with goal predicate

U
′
goal

(assumed, like all IDB predicates of form U′ below, to

be distinct from any IDB predicate in P̄1), which is obtained

as the union of P̄1 with the following rules:

firstConf′(x, y) ∧ U′conf(y)→ U′goal(x)

state′q(x) ∧ Ugoal(x)→ U′conf(x) for q ∈ Q

nextCell′(x, y) ∧ Ugoal(y)→ Utape(x) for q ∈ Q

nextConf′δ(x, y) ∧ U′conf(y)→ Utape(x) for δ = 〈q, σ, q′, σ′, d〉

with q ∈ Q∃

nextConf′δ1
(x, y1) ∧ U′conf(y1) ∧ for δ1 = 〈q, σ, q

′, σ′, d〉,

nextConf′δ2
(x, y2) ∧ U′conf(y2)→ Utape(x) q ∈ Q∀, and δ1 , δ2

lastConf′(x)→ Utape(x)

P′
1

encodes trees of trees of M quasi-configurations in

space s. The structures matched by P′
1

but not by P2 en-

code trees of accepting runs of M in space s (note that

these runs are linear, since M is not alternating). Every

such run consists of the same number s′ ≥ 2s of con-

figurations; these configurations represent the tape cells of

our encoding of M′ sequences. This encoding is formal-

ized by queries as follows. The queries FirstConf′[x, y],

State′q[x], Head′[x, y], and Symbol′[x, y] are directly ex-

pressed by singleton CQs that use the eponymous pred-

icates firstConf′(x, y), etc. To access cells of M′, we

can use the analogous queries to access configurations of

M: FirstCell′[x, y] = FirstConf(x, y), NextCell′[x, y] =

NextConf(x, y), and LastCell′[x] = LastConf(x).

The remaining queries can be expressed as LinMQ queries.

To present these queries in a more readable way, we spec-

ify them in regular expression syntax rather than giving

many rules for each. It is clear that regular expressions

over unary and binary predicates can be expressed in LinMQ

(it was already shown that MQs can express regular path

queries, which is closely related [19]). We use abbrevia-

tion P1SYMBOL to express the regular expression that is a

disjunction of all predicate symbols that occur in P1 (this al-

lows us to skip over any structures generated by P1; with the

specific forms of P1 that can occur in our proofs, one could

make this more specific to use only certain binary predi-

cates, but our formulation does not depend on internals of

P1). Moreover, let STATE be the disjunction of all atoms

state′q(x) and ∃y.head′(x, y) (both unary).

NextConf′δ[x, y] ≔ STATE P1SYMBOL∗ nextConf′δ

LastConf′[x] ≔ STATE P1SYMBOL∗ lastConf′

ConfCell′[x, y] ≔ STATE P1SYMBOL∗ HEAD

The unary query LastConf′[x] uses the variable at the begin-

ning of the expression as its answer. It is easy to verify that

the elements accepted by P′
1

but not by P2 encode sequences

of quasi-configurations of M′ in space s′ with respect to

these queries. To apply Lemma 12, we need to specify an

additional SameCell′ query for this encoding.

SameCell′ is expressed by an MQk+1 query that can in gen-

eral not be expressed by a MQk query:

FirstCell(λ1, x)→ U1(x)

U1(x) ∧ NextCell(x, x′)→ U1(x′)

Stateq(λ1) ∧ FirstCell(λ1, x) ∧ Symbol(x, z) ∧ Head(x, v) ∧

Stateq(λ2) ∧ FirstCell(λ2, y) ∧ Symbol(y, z) ∧ Head(y, v)→ U2(y)

for all q ∈ Q

U1(x) ∧ U2(y) ∧ SameCell(x, y) ∧

NextCell(x, x′) ∧ Symbol(x′, z) ∧ Head(x′, v) ∧

NextCell(y, y′) ∧ Symbol(y′, z) ∧ Head(y′, v)→ U2(y′)

U2(y) ∧ LastCell(y)→ hit

where FirstCell, Symbol, SameCell, and LastCell are the

queries for which P1 and P2 containment-encode runs ofM.

Note that our constructions already ensure that the sequences

ofM-cells compared by SameCell′ are of the same length.

To complete the proof, we apply Lemma 12 to construct

an MQk+1 P̄2. The MQk+1 P′
2

is obtained by expressing the

disjunction of P2 and P̄2 as an MQk+1 using Proposition 2.

Then P′
1

and P′
2

containment encode accepting runs of M′

in space s′.

Theorem 13. Deciding containment of MDlog queries in

MQk queries is hard for (k + 2)ExpTime.

Proof. The claim is shown by induction on k. For the base

case, we show that deciding containment of MQ queries is

3ExpTime-hard. By Lemma 14, for any DTMM0, there is a

MDlog query P0
1
, a LinMQ P0

2
, LinMQs as in Definition 5, and

a same-cell query that is a UCQ with respect to which P0
1

and

P0
2

containment-encode accepting runs ofM0 in exponential

space s. By applying Lemma 15, we obtain, for an arbitrary

ATMM1, a MDlog query P1
1
, an MQ P1

2
, and MQ queries as in

Definition 5 (including a same-cell query), that containment-

encode accepting runs ofM1 in space s′ ≥ 2s.

The induction step for k > 1 is immediate from

Lemma 15.
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