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THERMAL ANALYSIS OF A HERMETIC RECIPROCATING COMPRESSOR 

A. Cavallini, L. Doretti, G.A. Longo, L. Rossetto 
lstituto di Fisica Tecnica dell'Universita di Padova 

Via Venezia 1, I-35131 Padova- ITALY 

B.Bella,A.Zannerio 
Electrolux Compressors 

Piazzetta del Partello 2, I-33170 Pordenone- ITALY 

ABSTRACT 

The development of more efficient hermetic compressors for refrigeration involves a sound analysis of the heat 
exchanges inside the machine to evaluate the interaction among compressor structure, flow characteristics, refrigerant 
properties and operative conditions. 

This work presents a computational procedure for the steady-state thermal analysis of a hermetic reciprocating 
compressor. The machine is subdivided into six parts (shell, compressor body, suction muffler, suction chamber, discharge 
chamber, discharge line). The energy balance based on the first law is established for each component and for the overall 
system to obtain the temperature distribution inside the machine and the heat flow rates exchanged. 

The results of the simulation are compared against the experimental measurements carried out on commercial units 
operating with R600a and R134a. 

INTRODUCTION 

Several computational models for the thermal analysis of refrigeration compressors are to be found in the open 
literature: they range from simple simulations on the effects of heat transfer on compressor performances to more complex 
procedures concerning the overall system. Among the first type of analyses, the one by Brocket al. 1980 [I] is particularly 
interesting, considering the heat exchanges from the compression process to the external medium and to the suction gas 
(internal heat transmission). This analysis is carried out by applying both simple overall thermodynamic relations (isentropic 
and polytropic equations) and also by a simulation model complemented with heat transfer equation for the cylinder, the 
suction and discharge lines. This model is limited only to open-type compressors and, therefore, it does not include the heat 
exchanges relative to electric motor, compressor shell and lubricant oil, which are very important in hermetic units. The most 
recent and interesting numerical codes for the overall compressor are those by Meyer et al. 1990 [2] and by Todescat et al. 
1992 [3] and 1994 [4]. The model developed by Meyer et al. for a small reciprocating hermetic compressor is based on a 
steady-state energy balance for the different components and for the overall system, where the heat transfer coefficients are 
derived from available correlations or from experimental measurements. The mass flow rate and the compression process is 
analysed by assuming experimental values for the volumetric efficiency and the compression efficiency respectively. This 
program gives the temperatures and the heat flow rates relative to each component and the refrigerant gas outlet conditions, 
but it requires the value of the electric power input, which is usually something one would like to determine. The model by 
Todescat et al. is also based on a steady-state energy balance of the different compressor component<; and it also includes a 
sound analysis of the heat and work transfer during the compression cycle. A companion simulation program is used to 
evaluate mass flow rates, enthalpies and pressures inside the machine. This approach allows a computation of the temperature 
distribution inside the compressor, the refrigerant outlet conditions and also the power input. The results obtained agree well 
with the experimental measurements on a small hermetic compressor. 

Present work reports a new model for the thermal analysis of a hermetic reciprocating compressor which is compared 
against the experimental data measured both on a R600a and a R134a commercial units in a wide range of operative 
conditions. 
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THEORETICAL ANALYSIS AND SIMULATION MODEL 

Governing Equations 

An exhaustive analysis of a compressor requires a dynamic simulation of the refrigerant flow, particularly during the 
compression cycle, to evaluate the instantaneous heat and work transfer and pressure and mass flow fluctuations. This 
approach is very complicated and gives results strictly correlated to the specific geometry of the machine simulated. The 
intent of this work is, rather, to develop a simple model easily adaptable to different hermetic units. The basic assumption of 
the model is to consider the refrigerant flow through the compressor as a one-dimensional steady-state current. In this way, 
for each component and for the overall system, it is possible to establish a steady-state thennal balance to compute 
temperatures and the heat and work flow rates. The main irreversibilities inside the compressor (electric energy conversion 
losses, friction losses, internal heat exchanges) are taken directly into consideration, with the exception of pressure losses and 
flow rate leakages. 

The compressor is subdivided into six parts: shell, body (cylinder, head and electric motor), suction muffler, suction 
chamber, discharge chamber, discharge line (see figure 1). The following governing equations are considered for each 
component of the compressor: 

- Suction muffler. The suction muffler receives convective heat flow rate (Qmc) from the recirculated gas in the shell 
and radiative heat flow rate (Qmr) from the compressor body and rejects them to the suction refrigerant flow. Its energy 
balance, therefore, gives: 

(1) 

where 111r is the refrigerant mass flow rate, his the specific refrigerant enthalpy, subscripts 1 and 2 are relative to muffler inlet 
and outlet respectively. The refrigerant gas flow rate at inlet of the muffler is a mixture of a fraction "x" of fresh refrigerant 
entering the hermetic unit and a fraction (1- x) of gas recirculated in the shell. The value of the parameter "x" is derived from 
experimental observations. The convective heat transfer coefficient between recirculated gas and suction muffler is calculated 
by the Petukhov equation [5]. 

- Suction chamber. In the suction chamber the refrigerant flow receives convective heat flow rate (Q5c) from the 
cylinder head: 

(2) 

where subscript 3 is for cylinder inlet. The heat transfer coefficient in the suction chamber is computed by a Dittus-Boelter 
[6] type equation corrected to account for the effect of pulsating flow upstream of the inlet valve. 

- Compression cycle. In a small compressor during the compression cycle there is a relevant heat exchange between gas 
and cylinder; this process cannot, therefore, be considered adiabatic and can be simulated by a polytropic equation with an 
exponent n between k (adiabatic operation) and 1 (isotherm operation). The following equations are derived from this 
assumption to compute the operative conditions at outlet of the cylinder 4, the total electric power input Win and the heat flow 
rate given to the cylinder Qcil: 

T - T (P IP )(n-t)ln 4- 3 d s 

Win= IDr [n/(n-1)] R T3 [(P ~s)<n-I)/n -1] I (11e 11m) 

Qcil = mr {[nl(n-1)] - [kl(k-1)]} R T 3 [(P diP 5)(n-l)/n -1] 

(3) 

(4) 

(5) 

where Ts are absolute temperatures, P d and P s are discharge and suction pressures, R is the gas constant and k the average 
isentropic index. The electrical and mechanical efficiencies 'lle and 11m• which account for electric energy conversion losses 
and friction losses, and the value of the polytropic exponent n are derived from experimental measurements. 
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- Discharge chamber. The compressed gas flowing at high temperature through the discharge chamber heats the 
compressor body (Qdc). The energy balance is: 

(6) 

where subscript 5 relates to the discharge chamber outlet The heat transfer coefficient in the discharge chamber is computed by a Dittus-Boelter (6] type equation corrected to account for the effect of the pulsating flow downstream of the discharge valve. 

- Discharge line. The compressed gas flowing towards the outlet of the hermetic compressor exchanges heat flow rate (Qd1) with the recirculated gas inside the shell through the wall of the discharge tube. The energy balance for this heat transfer is: 

(7) 

where subscript 6 relates to the hermetic compressor outlet section. The heat transfer coefficients inside and outside the discharge tube are calculated by a Dittus-Balter [6] type equation and by the Zhukauskas [7] equation respectively. 

- Compressor shell. The shell receives convective heat flow rates from the recirculated gas (Q
5
g) and from the lubricant oil (Q

05), and radiative heat flow rate (Q
5r) from the compressor body. It rejects this heat power to the surroundings both by natural convection (~c) and radiation (Qar)- This rejected heat flow rate has to be equal to the difference between the electric power input and the rate of enthalpy increase of the refrigerant across the hermetic unit. The relative energy balance is 

(8) 

where o is the subscript referring to the hermetic unit inlet. The convective heat transfer coefficient between the shell and the environment air is calculated according to the traditional correlations for natural convection [8], while the convective heat transfer coefficient between the shell and the recirculated gas is computed by the Petukhov equation [5]. 

- Lubricant oil. The lubricant oil receives convective heat flow rate from the compressor body (Q
0c) and rejects it to the shell (~5). Its governing equation is: 

(9) 

The heat transfer coefficients between oil and shell and oil and electric motor are determined by the classical natural convection heat transfer correlations [8] while the heat flow rate between oil and cylinder and cylinder head is derived from the lubricant flow rate and lubricant enthalpy increase. 

- Recirculated gas. The recirculated gas inside the shell receives heat power from the compressor body (Qgc) and the discharge line (Qdl) and is cooled by the injection of fresh refrigerant gas and by heat transferred to the shell (Q
5
c) and to the suction muffler (Qmc)- The energy balance equation is: 

(10) 

where subscript g relates to the recirculated gas. 

-Compressor body. The compressor body (cylinder, cylinder head and electric motor) is heated by the gas during the 
compression cycle (Qci1) and in the discharge chamber (Qdc) and by the electric conversion losses (0-TJe)Win) and the 
friction losses ((1-TJm)TJeWin). It rejects this heat flow rate by radiative heat exchanges with shell (Q5r) and muffler (Qmr) and 
by convective heat exchanges with the refrigerant flow in the suction chamber (Q

5c), the recirculated gas (Qgc) and lubricant oil (~c)- The relative energy balance equation is: 

(11) 
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The radiative heat flow rates in all the above components are calculated by the suitable equations for radiation [9]. 

The refrigerant mass flow rate through the compressor is calculated by the following relation: 

(12) 

where Vis the swept volume of the compressor, co the electric motor rotation speed, v3 the refrigerant specific volume at inlet 

of the cy Iinder and llv the volumetric efficiency of the compressor. 

Computer Pro~:ram 

The simulation computer code has an iterative structure. Input values are set for the boundary conditions (surroundings 

temperature, suction refrigerant temperature and pressure, discharge pressure) and the characteristic parameters of the 

hermetic unit (geometrical data, refrigerant, electric motor speed, electrical efficiency, mechanical efficiency, volumetric 

efficiency, polytropic index "n" of compression and fraction "x" of fresh gas directly entering the suction muffler). Guessed 

values are assumed for the refrigerant temperature at inlet of the cylinder, for the recirculated gas temperature and for the 

temperature of the cylinder. Then the refrigerant mass flow rate is calculated by eq. (12) and the thermal balance is 

established for each compressor component, according to eqs. (1 -7 11). A specific subroutine has been developed for each 

component, while a linked computer program provides the properties of the operative fluid. Like so, the characteristic 

temperatures inside the compressor and along the refrigerant flow are computed together with the heat flow rates and power 

input. The guessed temperatures are compared against the calculated ones and further iterations are carried out till 

convergence is reached. The final output results include refrigerant mass flow rate, refrigerant outlet temperature, 

temperatures inside the hermetic unit, heat flow rates and electric power input. 

RESULTS AND COMPARISON WITH EXPERIMENTATION 

The experimental measurements have been carried out on a R600a reciprocating hermetic compressor with 8 cm3 swept 

volume and on a R134a reciprocating hermetic compressor with 6 cm3 swept volume. Each compressor has been inserted in a 

calorimetry rig for the measurement of the refrigerating capacity in accordance with ASHRAE Standard (temperature at 

outlet of the condenser and outlet of the evaporator 32°C, condensation temperature 55°C). During each test the following 

parameters are measured: electric power input, refrigerating capacity, evaporation and condensation pressures, gas 

temperature at inlet and at outlet of the compressor, refrigerant temperature at outlet of the condenser and at outlet of the 

evaporator. The compressor is also equipped with several copper-constantan thermocouples to measure the temperatures of 

its components and of the refrigerant in different positions. During each run the following data is collected: the temperature 

of the shell in different positions; the temperature of lubricant oil; the temperature of the recirculated gas; the temperature of 

the electric motor, of the cylinder and the head of the cylinder, the temperature of the refrigerant gas at inlet of the suction 

muffler, at inlet and at outlet of the cylinder. 

Table 1 and 2 give the comparison between the experimental data measured and the values calculated by the simulation 

program under the same operative conditions both for R600a and R134a hermetic compressors. Three different operative 

conditions are considered in accordance with ASHRAE standard: evaporation temperatures -35°C, -23.3°C and -10 °C, 

respectively. The experimental data reported is the average values of the data collected in several repeated runs. As one can 

see there is a fair agreement between the calculated values and the experimental ones except for Rl34a unit at -35°C 

evaporation temperature. This operative condition is characterized by a high pressure ratio and a low refrigerant flow rate; 

there is a strong degradation of the electric, mechanical and volumetric performances of the machine, while some effects, not 

included in the present analysis (such as gas leakages), become relevant. 

The results of the simulation include the information necessary to evaluate the potential performance improvement of 

the compressor, such as the heat flow rates regarding the different components. This data is not easy to determine by direct 

measurements, and therefore the code, as a means to generalize and extend the information of experimental tests, is a useful 

design tool. 
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Figure 1. Schematic view of the compressor 

CONCLUSIONS 

A computer program for the thermal analysis of a small hermetic reciprocating compressor is presented. The results of the simulations are in fair agreement with the experimental data measured both on a R600a and a R-134a hermetic units. The computer code is able to determine the temperature levels inside the machine, the power input and the heat flow rates exchanged. It can also be easily adapted to different operative fluids and different compressor geometries, and therefore it can be a useful tool for design and development purposes. Future development of this program will involve the coupling with an unsteady-state analysis of the compression cycle, so as to eliminate the recourse to the compression quasi-static polytropic equation. 

Table 1. Comparison between experimental and calculated parameters relative to a R600a hermetic compressor. 
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Table 2. Comparison between experimental and calculated parameters relative to a R134a hermetic compressor. 
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