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EVALUATION OF A LINEARLY DAMPED MODEL TO PREDICT 
mE CLOSING MOTION OF A SPRINGLESS FLAPPER VALVE 

Keith A. Temple. Victor W. Goldschmidt. and James D. Jones 
Herrick Laboratories 

Purdue University 
West Lafayette, Indiana 4 7907 

ABSTRACT 

A linearly damped model, based on the application of Newton's second law, was applied to predict the closing time for a 
springless flapper valve. Viscous damping forces were assumed to be a linear function of the flapper velocity. The model 
predictions, including a delay time to account for the pressure lag at the flapper valve, were in good agreement with 
experimental data for a pulse combustor flapper valve. Agreement was obtained by adjusting the dimensionless damping 
coefficient; however, data for two flappers, which differed only in mass, were found to require different values of the 
dimensionless damping coefficient. It was concluded that a universal dimensionless damping coefficient can not be 
determined; therefore, experimental investigations would be necessary to determine the coefficient for a given valve 
geometry. The potential danger of using a linearly damped model with an incorrect value of the damping coefficient is 
demonstrated by the range of closing times presented. The present study should be a useful contribution to future modeling of 
flapper valves and other springless valves. 

NOMENCLATURE 

Aeff effective force area of flapper [m2
] X dimensionless displacement (x/xm"') 

D damping coefficient [kg/s] X dimensionless velocity ( dx/d't) 
f('t) function of dimensionless time, 't 

X dimensionless acceleration (d2x;/d-r2
) m mass of flapper [kg] 

p pressure [Pa] "' dimensionless pressure parameter 
time [s] (J) angular frequency [rad/s] 

X displacement of flapper [m] Subscripts: 
X. velocity of flapper (dx/dt) [m/s] a amplitude 
X acceleration of flapper (d2x/dt2

) [m2/s] c combustion chamber, closing 
~ dimensionless pressure ratio (P miP .) eff effective 
0 dimensionless damping coefficient (D/mro) m mean 

't dimensionless time (tro) max maximum 

ljl phase angle [rad] u upstream (intake decoupler or atmospheric) 

INTRODUCTION 

An analytical investigation of a linearly damped motion model was undertaken in order to determine the suitability of the 
model for predicting the closing times of springless flapper valves. The specific application investigated was the air flapper 
valve in a Helmholtz type pulse combustor. The pulse combustor operation is characterized by a periodic combustion process 
that drives and is in phase with a fluctuating pressure. The fluctuating pressure forces the combustion products out of the 
combustor and draws reactants into the combustor. The flapper valves limit back flow during the high pressure portion of the 
cycle and allow inflow of reactants (air and fuel) during the low pressure portion of the cycle. The primary characteristic of 
the valve is that it is pressure driven both during closing and opening. Previous research related to flapper valves has been 
limited. Numerous studies of compressor valves have been conducted; however, these studies have focused primarily on reed 
valves and spring loaded valves, both of which have restoring forces which result in different behavior. Several investigators 
have formulated models to predict the motion of flapper valves, but none of these efforts has included comparison with 
experimental measurements of the actual flapper motion. The present study provides a critical evaluation of a linearly 
damped model used to predict the closing motion of springless valves. The results of this study should be applicable to other 
pressure driven valves (i.e., springless ring type compressor valves). 
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BACKGROUND 

The air flapper valve is an important component of a pulse combustor because it controls the flow of combustion air into 
the combustion chamber and restricts back flow. A typical configuration for an air flapper valve is presented in Fig. 1. The 
main component of the flapper valve is the flapper which moves freely between the front plate (valve seat) and back plate 
(valve stop). Two flappers were used in the experimental study (details to be reported elsewhere) and were modeled in the 
present work, a Teflon® coated fiberglass flapper (fiber) with a mass of 1.5 grams and a steel flapper (metal) with equivalent 
dimensions and a mass of 5.5 grams. All other dimensions of the valve construction were held constant. 

The ideal relationship between the flapper motion and the combustion chamber pressure is depicted in Fig. 2. The 
combustion chamber pressure, Pc, upstream ofthe valve, exhibits approximately sinusoidal variation and has been represented 
as such. Downstream of the valve the intake decoupler pressure (low amplitude) or atmospheric pressure, P0 , acts. The 
behavior of the flapper during closing differs from the behavior during opening in that back flow exists until the valve has 
closed fully, whereas no flow occurs during opening until the flapper moves. In both cases the flapper motion is driven by the 
pressure forces; there are no restoring forces· as in spring loaded and reed valves. 

The basic experimentally determined behavior of the flapper during closing is presented in Figure 3. The flapper 
experiences a delay in closing of approximately 10% of a cycle from the rise in the combustion chamber pressure above zero 
gage pressure. The flapper then moves for approximately 10% of a cycle until it reaches the front plate (valve seat). The 
following motion is a combination of small scale bouncing and bending of the flapper as well as combined bending with the 
front plate. Closing times were consistently measured from the combustion chamber zero pressure crossing. 

There have been few experimental studies of flapper valve behavior. Xu et al. (1990) conducted an acoustic 
investigation of a flapper valve assembly and determined that the flapper valve was acoustically equivalent to a hard 
termination. Keel and Shin (1991) conducted a crude measurement of the flapper displacement; however, their results did not 
indicate the actual time for the closing or opening processes. Other detailed experimental studies of flapper motion could not 
be located in the literature. 

There have been a number of analytical investigations of flapper valve behavior. Two models have been used to predict 
the closing motion for the flapper: an undamped model and a linearly damped modeL The undamped model is based on the 
application of Newton's second law to describe the motion of the flapper and neglects all forces that would damp the flapper 
motion. Griffiths and Weber (1969) used this approach. The second approach, a linearly damped model, includes a damping 
force which is defined as the product of the velocity and a damping coefficient. The linearly damped model approach, 
including a numerical solution, has been used by Dhar (1980), Lee (1983), Van Essen (1995), Morel (1991), and Zinn et al. 
(1989). The primary difficulty in applying this model is in establishing a value for the damping coefficient. None of the 
flapper motion modeling efforts located in the literature included validation through experimental measurement of the actual 
flapper motion. 

There have been numerous studies of valve behavior in compressors; however, they have focused primarily on valves 
with restoring forces (reed valves and spring loaded valves). MacLaren (1972) presents a summary of models for compressor 
valve motion. The linearly damped approach has also been suggested by Soedel (1992) for modeling of compressor valves. 
These valves will have behavior which differs significantly from that of springless valves; therefore, the results of the studies 
can not be applied directly to the present work. 

MODEL DEVELOPMENT 

The linearly damped model has the same basic form as the work of Dhar (1980), Lee (1983), and Van Essen (1995); 
however, a new dimensionless form of the governing equation and an analytical solution for the flapper displacement will be 
presented. The model is based on the application of Newton's second law to describe the motion of the flapper, with a force 
term to account for the damping of the flapper motion due to viscous forces. These forces are assumed to vary linearly with 
the velocity of the flapper. Applying Newton's second law to the flapper yields 

mX = PnetAeff - Dx (1) 
where the coefficient D is a proportionality constant referred to as the damping coefficient. If the net pressure acting on the 
flapper, Pnet> is considered to be zero at timet equal to zero, then the corresponding initial conditions for the flapper motion 
are 
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x(O) = 0 and x(O) = 0 @ t = 0 (2) 

Assuming the pressure upstream of the valve, Pu, is approximately atmospheric pressure and the combustion chamber pressure 
has a sinusoidal variation, the net pressure acting on the flapper can be expressed as 

Pnet =Pc-Pu =Pm +Pasin(rot+41) (3) 

where Pm, P,, and ro are parameters describing the operating conditions and are considered to be inputs (constant) when 
conducting an analysis. The phase angle 41 is not an independent parameter and is determined such that the pressure given by 
Eq. (3) is zero at t=O and the pressure gradient is positive for the valve closing process. Therefore, 41 can be expressed as 

<(l=sin- 1 [-Pj~pJ (4) 

Inserting the expression for the net pressure into Eq. (1), the governing equation becomes 

mX. = [P m + Pa sin( rot+$) ]Aeff- Dx 

The assumptions for the model can be summarized as follows: 
(1) the flapper moves as a rigid body (single degree of freedom), 
(2) the damping of the flapper motion varies linearly with the flapper velocity, 
(3) the combustion chamber pressure (sinusoidal variation with time) acts downstream of the valve, and 
(4) the pressure upstream of the flapper valve is approximately atmospheric pressure. 

Dimensionless variables are defined as follows: 
x= xj 

/Xmax 
't = tro 

P.Aeff 
'V = ? 

mro-xmax 

o=%w 
p = p;/pa 

Applying the dimensionless variables, Eq. (5) becomes 
X= 'V[~ + sin('t +$)]-ox 

with the initial conditions 
X(O) = 0 and ;{(0) = 0 @ 't = 0 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
Integrating Eq. (11) and applying the appropriate initial condition, an expression for the dimensionless velocity is obtained as 

X= 'V[P't- cos( 't + 41) +cos($)]- ox (13) 

Eq. (13) is then rearranged to obtain the form 

X+ ox= v[P't- cos( 't + <P )+cos( q, )] = f( t) 

This equation has a solution with the general form of 

X= e-&cu e&cf(t)dt+Constant] 

The terms in brackets are obtained, after applying the initial conditions and much algebra, as 

f e&rf( t)dt = (:; }&r cos( q, )+ ( ~Y }&r (ot -1) -ve&r( 02
1
+ J[ocos(t + 41) + sin(t + <P )] 

and 

Constant=(~~)+ ( ~ )( 02 ~ J(osin( <P)- cos(<P)) 

(14) 

(15) 

(16) 

(17) 

The flapper motion is subject to limits imposed by the front and back plates. For the closing process, the dimensionless 
flapper displacement will vary from 0 to 1 where X= 1 corresponds to the closed position. 

The primary limitation of this model is the need to establish a value for the damping coefficient. The damping coefficient 
is not easily related (analytically) to the physical mechanisms which cause the damping of the flapper motion; therefore, the 
value of the damping coefficient is estimated for most computations. 
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From Eqs. (15)-(17), and given that 

<j> = sin-1
[ _P;/p.] = sin-1 (-~) (18) 

the relevant dimensionless parameters which determine the flapper closing time based on the linearly damped model can be 
summarized as follows: 

( 
PaAeff Pm D J ( R s:) 'tc = 1c(l) = 'tc 2 ,-,-- = 'tc \j/,1-',v 

mro Xmax P. mro 
(19) 

RESULTS AND DISCUSSION 

Model predictions of the flapper closing times are presented in Fig. 4, along with the experimental data. The model 
predictions presented are for a value of the dimensionless pressure ratio parameter of ~=0.15; however, it can be shown that 
the results are essentially unchanged for 0:5~:50.3. The experimental data had a value of the pressure ratio in the range 
0.1 :5~:5:0.2. Model predictions are provided for several values of the dimensionless damping coefficient. The model under
predicts the closing times and does not account for the apparent delay in the flapper motion which is shown in Fig. 3. This 
behavior was found to be a result of the pressure at the flapper valve lagging the pressure at the combustion chamber at the 
time of the valve closing. A delay of approximately 11% of a cycle (t=0.7) was observed and apparently accounts for the 
delay in the flapper closing. 

Because the combustion chamber pressure is normally available for analysis of the flapper valve behavior, an attempt was 
made to predict the flapper closing with the combustion chamber pressure and a delay time. A dimensionless delay time of 
0.7 (11% of a cycle) was added to the model results to account for the pressure delay. The resulting flapper closing times are 
presented in Fig. 5. The model can be forced to produce the correct closing time by adjusting the dimensionless damping 
coefficient. For the metal flapper a value of approximately 10 is required for the dimensionless damping coefficient; while, a 
value of 25 is required for the fiber flapper. There apparently is not a universal value for this parameter, requiring that it be 
determined experimentally. There is also the need to establish a value for the delay time. A brief investigation of the 
Jependence of the delay time on the air inlet pipe length indicated that it was not a strong function of this variable. It is 
believed to be determined by the boundary conditions imposed by the flapper assembly at the end of the air inlet pipe. A 
representative plot of the dimensionless displacement is presented in Fig. 6 for \jl= 180 and ~=0.15. The model results, which 
include a delay time, agree reasonably well with the experimental data. 

CONCLUSIONS 

The model predictions for the linearly damped model were compared to experimental data for the closing of a pulse 
combustor flapper valve. The model predictions were found to have poor agreement with the experimental data when the 
combustion chamber pressure was used as the driving force for the flapper motion. When the combustion chamoer pressure 
was used as the driving force and a delay time was added to the results, the linearly damped model results were in good 
agreement with the experimental data when an appropriate value of the dimensionless damping coefficient was selected. This 
dimensionless coefficient was found to differ when the only physical parameter changed was the mass of the flapper. 
Therefore, it was concluded ·that a universal dimensionless damping coefficient can not be determined. This is the primary 
concern with using the linearly damped model; experimental measurements are necessary to determine the value of the 
damping coefficient. The results of this study emphasis the care that must be exercised when applying the linearly damped 
model to predict the closing time of springless valves. 
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