
Purdue University
Purdue e-Pubs

International Compressor Engineering Conference School of Mechanical Engineering

1996

Turbulent Flow Through Valves of Reciprocating
Compressors
C. J. Deschamps
Federal University of Santa Catarina

R. T. S. Ferreira
Federal University of Santa Catarina

A. T. Prata
Federal University of Santa Catarina

Follow this and additional works at: https://docs.lib.purdue.edu/icec

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Deschamps, C. J.; Ferreira, R. T. S.; and Prata, A. T., "Turbulent Flow Through Valves of Reciprocating Compressors" (1996).
International Compressor Engineering Conference. Paper 1135.
https://docs.lib.purdue.edu/icec/1135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4956837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ficec%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Ficec%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F1135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


TITRBULENT FLOW THROUGH VALVES OF RECIPROCATING COMPRESSORS 

C.J. Deschamps, R.T.S. Ferreira and A.T. Prata 

Department of Mechanical Engineering 
Federal University of Santa Catarina 
88 040~900, Florian6polis/SC, BRAZIL 

ABSTRACT 

The present work considers the modeling of turbulent flow in reed type valves of reciprocating compressors and is based 
on a simplified geometry of the actual valve, that is, a radial diffuser with axial feeding. Despite its simplicity the geometry 
chosen for the analysis has important flow features present in practical geometries. Due to its claimed capability to predict 
flow including features such as recirculating region, curvature and adverse pressure gradient (all of them present in the flow 
considered here), the RNG k-f model of Orzag et al. (1993) has been applied in the present numerical analysis, which is 
based on the finite volume methodology. Numerical results of pressure distribution along the front disc, for different valve 
lifts s and Reynolds numbers Re, when compared to experimental data showed that the RNG k-E model can predict quite 
successfully the flow. 

INTRODUCTION 

Most of reciprocating compressors employ automatic valves that open and close depending on the pressure difference 
across them. That is particularly true for small reciprocating compressors largely used in domestic refrigerators. Usually, 
these are reed type valves whose design requires a deep understanding of the fluid :flow through them. From the geometrical 
point of view a basic configuration for reed~type valves of reciprocating compressors is a radial diffuser with axial feeding. 
Fig. 1 presents a view of such a diffuser and details the geometric parameters that govern the flow, including a backward 
facing radial step. This step reduces the contact area between the valve reed and the valve seat and minimizes sticking. The 
basic configuration of Fig. 1 applies to both suction and discharge valves. In both cases the fluid enters the valve flowing 
axially through the valve port, bits the facing disk and, after being deflected by it, a radial flow is established. The impact of 
the flow on the facing disk produces a bell-shape pressure distribution yielding a resultant force that tends to open the valve. 
Depending on the gap between the disks and on the flow Reynolds number, negative pressure regions can occur which have 
a strong impact on both the pressure drop and the resultant force on the reed. 

Despite the numerous works related to laminar radial flows, very little attention has been given to turbulent flows. For 
references on laminar flow the interested readeris referred to Hayashi et al. (1975), Wark and Foss (1984), Ferreira et al. 
(1989), Gasche et al. (1992), Prata et al. (1995) and the literature cited therein. The few works dealing with radial turbulent 
flow focused on pure radial flow between parallel disks without considering the inlet which is of crucial importance for 
valve applications (Ervin et al., 1989 and Tabatabai and Pollard, 1987). 

e 

Fig. 1 - Geometry of radial diffuser with axial feeding 
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Apparently, the first attempt to solve the turbulent flow in axial feeding radial diffusers was made by Deschamps et al. 

(1988). There it was found that the High Reynolds Number k-E model used to close the averaged Navier-Stokes equations 

was unable to predict the flow, even with the inclusion of correction terms to take into account effects such as flow 

curvature. The bad perfonnance of the numerical solution was attributed to the wall-functions needed in the model. This 

was confirmed later when a Low Reynolds Number k-E model, which does not use wall-functions, produced better flow 

predictions (Deschamps et al. 1989). Nevertheless, even for this model there were signillcant differences between 

experiments and computations. In reality, the k-E turbulent model is known to produce excessive turbulence in the presence 

of adverse pressure gradient, as is the case at the entrance of the radial diffuser. This leads to an ovezprediction of 

turbulence intensity and to delay, or even suppress, eventual flow separations hinted at by the laboratory measurements. 

The main goal of the present paper is to perform a numerical simulation with experimental validation of the turbulent 

flow through the geometry depicted in Fig. 1. Due to the claimed capability to predict flows that include features such as 

stagnation and recirculation regions, curvature and adverse pressure gradients (all of them present-in the flow considered 

here) the k-E model of Orzag et al. (1993) was adopted in this work. 

TURBULENCE MODELING 

The time/ensemble averaged Navier-Stokes equations are closed using the concept of a 'turbulent' or 'eddy' viscosity v1• 

For an isothermal and incompressible flow under the effect of no body force the equations of motion (here written in 

Cartesian tensor notation) are: 

Mass conservation, (1) 

Momentum conservation for the X; component of velocity, 

(2) 

where Veff(= V+ Vt) is the effective viscosity, v (= !liP) is the air kinematic viscosity and !l and- p are the air absolute 

viscosity and density, respectively. 

By far the most common choice for modeling v1 has been that in terms of the turbulence kinetic energy k and its rate of 

dissipation E. Recently, Orzag et al. (1993) derived a model of this kind from the original governing equations for fluid 

using mathematical techniques called Renormalization Group (RNG) methods. Due to this mathematical foundation, Orzag 

and his colleagues argue that the RNG k-E model offers a wide range of applicability. Some examples of flows where the 

RNG k-E model has been seen to return better predictions than previous k-E models are those including flow separation, 

streamline curvature and flow stagnation. These flow features play a crucial role in the valve efficiency and, therefore, it 

seemed natural to adopt the RNG k-E model in the present work. 

The effective viscosity is given by 

(3) 

which is valid across the full range of flow conditions from low to high Reynolds numbers. The turbulence kinetic energy k 

and its dissipation E appearing in (3) are obtained from the following transport equations: 

(4) 
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The values of c11 , Ce1 e Cez are equal to 0.0845, 1.42 and 1.68; respectively. The inverse Prandtl number a for turbulent 
transport and the rate of strain term, R, are given by the following relationships: 

I 
a. -13929 0.63211 a.+ 23929 03679 = _v_ 

0.0 -13929 CX.o + 23929 Veff 

R = CIJ.rf(1- 11 I Tto) e2 

1+~1']3 k 
(5) 

where ao=l.O, (3=0.012, 11 =SkI E, T}o ""' 4.38 and S2 = 2Sipij is the modulus of the rate~of-strain tensor. In regions of 
small strain rate, the term R has a trend to increase Veff somewhat, but even in this case Veff still is typically smaller than 
its value returned by the standard k-E model. In regions of elevated strain rate the sign of R becomes negative and Veff is 
considerably reduced. This feature of the RNG k-8 is responsible for substantial improvements verified in the prediction of large separation flow regions. Also the reduced value of Cez in the RNG theory , compared to the value of 1.9 used in the 
standard k-E turbulence model, acts to decrease the rate of dissipation of E, leading to smaller values of Veff . 

Boundary conditions at inlet, walls, axis of synunetry and outlet are required to solve equations (1), (2) and (4). For the inlet boundary it was recognized by Ferreira et al. (1989) that, as the flow exits the feeding orifice of area Ar and enters the diffuser of area AI , the strong reduction of the passage area given by the ratio AI I Ar = 4 sld brings about a strong flow acceleration next to the orifice wall for small values of sld. Due to this phenomenon the inflow velocity profile plays no role in the solution of the flow field in the diffuser and hence the inlet boundary condition was specified as U= U;11 and V=O, 
where U;11 is the average velocity in the feeding orifice. Despite no information is available for the turbulence kinetic 
energy, numerical tests indicated that when the level ofthe turbulence intensity I (=../uU I Um) was increased from 3% to 
6% no significant change was observed in the predicted flow. Therefore, a value of 3% of turbulence intensity was used in the calculation of all results shown in this work. Finally, the distribution of the dissipation rate was estimated based on the 
assumption of equilibrium boundary layer, that is, E = ')J>/4 k312 I lm, where lm = 0.07 d 12 and A.= 0.09. At the solid 
boundaries the condition of non-slip and impermeable wall boundary condition were imposed for the velocity components, that is, U= V =0, with calculations being extended up to the walls across the viscous sublayer. For the turbulence quantities k 
and 8 rather than prescribing a condition at the walls, they were calculated in the control volume adjacent to the wall following a non-equilibrium wall-function. In the plane of symmetry, the normal velocity and the normal gradients of all other quantities were set to zero. At the outlet boundary, the solution domain had to be extended well beyond the diffuser exit where prevails the atmospheric pressure. The boundary condition for k in this case was fixed according to a turbulence intensity of 3% whereas the dissipation rate was estimated based on the same assumption of equilibrium boundary layer used at the inlet, as indicated above. Given the wall jet characteristic ofthe flow exiting the diffuser, it is expected that any eventual inaccuracy of the above outlet conditions will not have a significant impact on the numerical solution. 

NUMERICAL METHODOLOGY 

The numerical solution of the governing equations was performed using the commercial computational fluid dynamics code FLUENT, version 4.2 (1993). In this code the conservation equations for mass, momentum and turbulence quantities are solved using the finite volume discretization method. For this practice the solution domain is divided in small control volumes, using a non-staggered grid scheme, and the governing differential equations are integrated over each control volume with use of Gauss theorem. The resulting system of algebraic equations is solved using the Gauss-Seidel method and the SIMPLE algorithm. In the finite volume method, schemes used to evaluate property transport by convection across each volume surface can be of primary importance to the accuracy of the numerical results. In the present work, the QUICK scheme was adopted in the solution of momentum equations, yielding a second order accuracy for the intetpolated values. Yet, for the transport equations of turbulence quantities the Power Law Differencing Scheme (PLDS) was adopted since the unboundness of the QUICK scheme usually introduces serious numerical instabilities, causing calculations to diverge. Different grid levels were tested in the computation to guarantee a grid independent numerical solution. The refinement was mainly promoted in the entrance of the diffuser, where flow property gradients are steeper. Of great help to this test was some evidence of the discretization needed for the analysis and made available by Deschamps et al. (1989). The final 
computational grid used for the numerical predictions consisted of 70 and 80 nodes in the axial and radial directions, respectively. 
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RESULTS AND DISCUSSIONS 

The flow through the valve reed in Fig. 1 is investigated for three valve lifts s/d (=0.05, 0.07 and 0.10) and two 

Reynolds numbers, Re= pUind I J.L, (=10,000 and 40,000). Additionally, the effect of a backward facing radial step in the 

valve seat was also considered (pld=0.039 and t/d=0.138, according to Fig. 1). A careful experimental setup was built to 

measure the pressure distribution on the valve seat as a function of the Reynolds number and the valve lift. Of paramount 

importance in the experiments was the correct adjustment of the valve lift to the desired value due to the strong influence of 

this parameter on the flow field. A detailed description of both the experimental setup and procedure will not be presented 

here due to space limitations but can be found in Ferreira eta}. (1989). 

Fig. 2 shows the radial distribution of dimensionless pressure p* ( = 2P I pU[u) on the valve surface obtained from the 

experiments and computations, for a flow geometry without and with the backward step in the valve seat (Fig.2a and Fig.2b, 

respectively). In both situations there is a plateau of pressure on the central part of the curve (r/d < 0.5), as previously 

verified for the laminar flow by Ferreira et aL (1989). Also similar to the laminar flow is the sharp pressure drop at the 

radial position rid "" 0.5, which is due to the change of the flow direction. For the outer part of the curve (r/d>O.S) the 

pressure level never recovers a positive value, a situation which is also verified in the laminar flow for combinations of large 

valve lift and Reynolds number. In fact, for the situations shown, the pressure even at the exit of the diffuser is seen not to 

reach the atmospheric condition, remaining negative. The presence of negative levels of pressure may prevent the perfect 

valve operating conditions since it reduces the resultant force acting on the reed surface. The effect on the flow of the 

backward facing radial step is small. However, a careful examination of Fig. 2 suggests, as a consequence of the step, a 

small increase in the pressure values for rld>0.5 that yields an increase of the force on the valve reed. The good agreement 

between experiments and computations typically pictured in Fig. 2, which were similar to several other situations of valve 

lift and Reynolds number, provided confidence on the turbulence model. Thus, the next step in the analysis was to generate 

numerical simulations for flow situations not included in the experimental investigation. The computations were then 

conducted for three valve lifts s/d (=0.05; 0.07 and 0.10) and two Reynolds numbers Re (= 10,000 and 40,000) for the valve 

reed geometry without the backward facing radial step. The results plotted in Fig. 3 at first sight show no significant 

difference between the pressure distributions on the valve surfaCe for the two Reynolds numbers explored. However, a first 

distinction between the curves is that for increasing Re values, the magnitude of the negative pressure profiles decreases. 

Another important detail of the flow is disclosed with the help of Fig. 4. There, the pressure distributions of Re = 10,000 

and 40,000, normalized by the pressure value P0 at the center of the valve (rld=O), are presented for two valve lifts: sld 

=0.05 and 0.10. The figure shows that the pressure drop at rid"" 0.5 is more pronounced for smaller valve lifts. This is an 

expected result since as the valve lift increases the change in the flow direction at r/d ""0.5 is less stiff. Additionally, for 

s/d=0.05 an increase in the Reynolds number brings about a considerable enhancement of the negative region in the 

pressure distribution, whereas, for s/d=O.lO, the Reynolds number effect in the shape of the pressure distribution is much 

less prominent. 
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Fig. 2 - Typical numerical and experimental results for pressure distribution on the valve reed 

The force F acting on the valve surface is obtained by integrating the pressure distribution on the reed surface. Fig. Sa 

represent the dimensionless force F* (= 2F I pU[nAt) as a function of valve lift sld for two Reynolds numbers: Re=lO,OOO 
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and 40,000. For Re=lO,OOO there is a pronounced decay in the force when s/d is varied from 0.05 to 0.07. This is mainly 
associated with the strong drop in the pressure level on the central region of the valve (r/d<O.S) that occurs as the valve lift 
is increased. In the case of Re=40,000, the decay is less pronounced because of the fading of the pressure negative region 
that occurs as the lift is increased, which offsets the reduction in the stagnation pressure. 

The force needed to compute the valve movement in compressor simulation programs is usually obtained via the 
effective force area, Aer- From the pressure difference across the valve, lip= Pu- Pd (upstream- downstream pressure), Aer 
is determined from Aer= Filip. Plots of dimensionless A*ef (= ~fl AiJ as a function of sld are shown in Fig. Sb for two 

• Reynolds numbers. As can be seen from the figure, the most interesting change in A ef is observed for Re=40,000 when the 
valve lift is changed from s/d=0.05 to 0.07. This rise in A•ef is an outcome from the substantial decline in the negative 
pressure levels as the valve lift is increased. 

The effective flow area, Aee, is an useful parameter in the valve design and is related to the pressure drop through the 
valve. Given a pressure drop, Aee can yield the mass flow rate m across the valve. The higher Aee the lesser the loss of flow 
energy and, therefore, the better the valve performance. The effective flow area is defined as: 

(6) 

In the equation above r= PatmiPu , k = Cplcv and R = Cp _ Cv. On the other hand, Pu and T u are the pressure and 
temperature upstream the feeding orifice, Patm is the atmospheric pressure and Cp and cv are the air specific heats. Plots of 
dimensionless A· •• (=Aee I At:) are shown in Fig. 5c. In that figure one can see that as the valve lift is increased the 
efficiency of the valve in conducting the fluid also increases. On the other hand, as the Reynolds number becomes greater, 
the efficiency becomes smaller; probably due to the presence oflarger recirculating regions in the valve passage. 
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Fig. 3 - Numerical results for pressure distribution on the valve reed; no step on the seat. 
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Fig. 4- Results of normalized pressure distributions on the valve reed; no step on the seat. 
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Fig. 5 ~ Dimensionless force, effective force area and effective flow area; no step on :the seat. 

CONCLUSIONS 

The present work bas presented a numerical and experimental investigation of the incompressible turbulent and 

isothermal flow in radial diffuser. This is the basic flow problem associated to automatic valve reeds of reciprocating 

compressors. The flow was analyzed for different parameters such as Reynolds number and gap between the disks. The 

RNG k~e turbulence model used to predict the flow was found to reproduce well the experimental results. One of the main 

features observed in all flow situations is the presence of pressure negative levels along the entire diffuser on the valve 

sutface. For the cases investigated here, it seems that as the gap between the disks is increased the shape of the pressure 

distribution on the valve sutface becomes less and less dependent on the Reynolds number and the gap itself. 
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