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DYNAMIC RESPONSE OF COMPRESSOR VALVE SPRINGS TO IMP ACT LOADING 
Qian Yang, Peter A. Engel 

State University of New York 
Binghamton. NY 13 902 

B.G. Shiva Prasad and Derek Woollan 
Dresser Rand 

Painted Post. NY 14870 

ABSTRACT 

Compression springs are as important to a self acting valve as a self acting valve is to a reciprocating 
compressor. Valve springs are not only subjected to dynamic loading but also to imp·act loading during the valve opening and closing events. Hence proper design and selection of helical springs should consider modeling the 
dynamic and impact response. This paper describes a computational method which was developed to simulate the behavior of helical springs subjected to impact loading and its application for predicting the dynamic stresses along 
the length of the spring. This study has underlined the imponance of dynamic response analysis, and provided a tool for evaluation of various designs. 

1. NOMENCLATURE 

r - spring radius 
d- diameter of spring wire 
p - pitch angle 
p - the density of spring material 
G - shear modulus 
E - Young's modulus 
1 - the moment of inertia of the spring 
Im - mass moment of inertia 

per unit length of spring wire 
s - arc length 
L - total helix length 
IV - rotation angle of spring wire 
K - curvature of spring 
r - torsion of spring 
F. P --force 
cr --stress 
y - axial displacement 
n - nwnber of active coils 
Ho - spring free height 
H. -- spring preset height 
a -- velocity of elastic wave propagation inside 

the spring 
[3 - damping coefficient 
r- time 
V 0 - valve impact velocity against guard 

2. INTRODUCTION 

Helical compression springs play a very important role in compressor valves. Springs not only control the dynamics of the valve and thus the performance of the compressor but also determine the reliability of its operation. Hence selection and design of valve springs is of utmost importance in the efficient and reliable operation of a compressor. 

Valve springs are subjected to dynamic and impact loading during the valve opening and closing events. Such a loading results in a phenomenon called "surge", which is a response in the form of initiation and propagation of a wave similar to an acoustic wave. Therefore proper design and selection of helical springs should consider modeling this type of response. This study is focused on computational simulation of a compressor valve spring under impact loading and its application for predicting the dynamic stresses along the length of the spring. Both cases - one with a bunon insened between the valve plate and the spring and the other without the button were considered. The main objective of a desim would be to select a spring to transmit the expect;d impact load, without its maximum stress exceeding that allowable for the spring material. For this purpose. the maximum srresses were computed as a function of plate impact velocity and the results are presented for the two cases studied. 
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Thomson and Tait (1883) pioneered the study of helical springs followed by Love ( 1927). Their formulae expressing curvature and torsion in terms of pitch angle and helix radiils are still widely used. Stokes ( 1974) used their relationships to study the impact response of springs. It was not untilllS years later, that Lin and Pisano (1988} extended the relationship between those imponant spring parameters to the more complex modem day spring designs involving variable pitch and helix radius. Wahl (1963) in his review of spring research noted that radial expansion could be analyzed only for helical springs with small constant pitch angle. This was later extended to the large pitch angle case by W"rttrick ( 1966), but he neglected the effect of curvature of the coil and the defonnarion due to tension and shearing forces. Pearson (1982) 



suggested a method of modeling the effect of 

variable pitch present in the ends of helical springs. 

The present work provides a simple computational 

tool based on a fmite difference solution of the 

equations derived using Hamilton Principle (Lin and 

Pisano, 1987) for analyzing the dynamic response of 

helical valve springs subjected to impact loading. 

Computations done for one particular case supponed 

the observations of Swanobori et al (1985) that the 

dynamic stresses are larger than static stresses. This 

emphasizes the need for dynamic stress analysis for 

spring design and selection. 

3. THEORETICAL ANALYSIS 

The analysis of dynamic response involves the 

mathematical simulation of the transient event by 

applying fundamental physical laws. in this case - the 

principle of conservation of energy. The governing 

equations were derived using Hamilton Principle (Lin 

and Pisano. 1987). The equations were reduced to a 

fmite difference form using an implicit method and 

solved by using appropriate boundary and initial 

conditions for the two cases - with and without the 

button. 
A computer program was written in C, and it took 

approximately 20 minutes to obtain a converged 

solution on an IBM RISC 370 workstation. The 

optimum time step appeared to depend on the impact 

velocity with larger velocities requiring smaller time 

steps. 

X 

Fig. 1 Helix in local-global coordinate system 

3.1 Basic Equation 
The equation of motion of a given helical spring 

along the spring axis is 

C 2
V 0' .3 2v· 

--:-7- + !3 -:- = a. -=:-';- (l) 
ot ot os· 

with general boundary conditions: 

y(O,t) = f(t) (2) 

y(L,t) = g(t) (3) 

and initial conditions: 

y(s,O) = h(s) (4) 

• 
y(s,O) = 0 (5) 

where: f(t), g(t) and h(s) are known functions. 

Using an implicit fmite difference method. and 

letting; 
Yij == y ( i.::ls. jilt) 
Q:::;jg,tl +I, Q:::;j:::;N (6) 

Eq. ( l) can be transformed to 

Yij+t-2YiJ+YiJ-t=a"m"12[(yi+tj+t-2YiJ~t+Yi-tj..-t)+{yi+l,t-t-
2yiJ-t+Yi+tj-t)] - !3.it/2(yij+t +yiJ-t) (7) 

where m = .it I .ru;, and 

YoJ =~ (8) 

YM+l,j=gj (9) 

Y~o= h; (10) 

(Yu-Y~-t)/2.:lt = 0 (ll) 

Eq. (7) along with the boundary and initial conditions 

was solved using a numerical technique. 

Then.. using the geometrical relationships (Wahl. 

1963), the following parameters were obtained: 

pitch angie p: 

. ( ) Y .. ;-• - Y, ,., 
sm p. = 

•.} 2.:ls 
(12) 

dynamic radius: 
r 11 cos(p .. J 

r,., = cos(p.) (lJ) 

where subscript 0 represents the value at time t equal to 

zero. 
curvature: 

COS
2 (p, .) cos2 (p.,) 

ilK, . = I (14) 
.; r1.; 

r. 
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torsion: 
sin(p; , ) cos(p, 

1
) 

ilr ,_,. == 
r 

( 15) 
'·/ 

force: 
GJ £I 

F==-;-cos(p,
1 
XM, 

1 
)-;-sin(P,_, )(&:, ,.) (16) 

I.} l.j 

and stress: 

(17) 

4. APPLICATION FOR WITH AND WITHOUT 
BUTTON CASE 

The method was applied for a typical spring with 
the following specifications: 

r0 = 3.823 mm (free spring radius) 
d = 1.0922 mm ( wire diameter) 
H0 = 15.113 mm (free height) 
L = 156.85 mm (spring length) 
n = 6.5 ( number of coils ) 
H. =I 0.3632 mm ( preset height ) 
P= 100 
m~ = 1.362 g 
( the lumped spring and button mass ) 

4.1 The Case without Button 
The case without button is relatively simple, the only 

thing we need to describe is the motion of the moving 
end as an input boundary condition. This is shown in 
Fig. 2 for V0 = I 0 rnlsec. 

valve 
closed 

valve 
open 

displacement 

O.ls time 

Fig. 2 Moving end displacement vs. time 

Fig. 3 and 4 show the response of the spring at 
various instants of time close to the end of its 
compression (corresponding to the full open position 
of the valve). Fig. 3(a) and 4(a) show the spring 
displacement relative to neutral (steady state) point 
along its arc length and its propagation with time. Fig. 

3(b) and 4(b) show the stress distribution at those 
instances. 

During the initial phase of the spring motion (t = 
0.0906 sec), the spring remains close to its steady state 
position and stress is close to the static case. During the 
subsequent phase (t = 0.0908 sec), the coil near 
moving end is squeezed, while the stress near fixed 
end has not changed yet. At the end of its motion 
(t=().Isec), the fiXed end gets squeezed, and shortly 
after this ( t = 0.1 002 sec), the stress in the fixed end 
reaches a maximum value. After this, the "coil 
squeeze", as well as the compressive stress propagate 
back and forth before dying out gradually. 

4.2 The Case With Button 
The case with the button is a little bit complicated 

than the case without button. The button separates the 
spring from the plate. Hence. even after the plate hits 
the guard and stops moving forward, the button 
continues its travel due to inertia This button motion 
was modeled by making a quasi static assumption as 
follows: 
The button ~ spring system is assumed as a simple one 

dimensional spring mass system shown as Fig. 5. After 
the plate stops moving, the button continues to move 
with the terminal velocity of the plate equal to V0• 
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I ilx 
K 

Fig.5 Illustration of button~ spring 
motion after plate impacts the guard 

From the principle of conservation of energy, we have 
I 2 I ~ - m V = - K D.x - (18) 2 e 0 2 

where, K is the stiffness of the spring 

P Gd 4 
K = 6 = 8 D 3 n (19) 

L\x is the distance where the button stops, 

D.x = hv 0 (20) 
The dynamic equation for the system of Fig. 5 can be 
written as 

00 

m x+Kt-=0. 
e 

with the initial conditions of 

(21) 



t =O.,..=V· 
,.~ 0' 

and 

t=tl,x=Qx=& 
the solution is 

where 

x = A cos~~ t + 8 sin J ~ t 

A= Bctg~me 1 
K I 

8"' ~me V 
K 0 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

The boundary condition for the moving end in the 

form of its displacement with time is shown in Fig. 6. 

Note the continued motion of the spring due to button 

inertia. even after the plate impacts the guard. 

displacement 

plate clos 0-
plate ope·n+--~ : 

button inertia; 

O.ls time 

Fig. 6 Moving end displacement vs. time 

Fig. 7 - 9 show the spring displacement relative to its 

neutral position and the stress distribution along its 

entire length at several instants close to the time when 

the plate impacts the guard. The motion of the spring 

in terms of the coil squeezing and its propagation 

towards the fixed end and the subsequent rebound and 

gradual decay, as well as the stress propagation and its 

decay appear to closely resemble the case without 

button. 

5. PREDICTION OF MAXIMUM STRESS 

The maximwn stress over the entire length of the 

spring during the complete valve event was predicted 

for several values of plate impact velocity and the 
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results are shown in Fig. 10 for the two cases studied. 

Below I m/sec. the maximum dynamic stress for 

both cases appear to be close to the static case. but as 

the velocity increases above this value. the presence of 

the button appears to make an increasing impact on the 

magnitude of the maximum stress. It is also interesting 

to note that for impact velocities above 9 mlsec (in the 

case without button), neighboring segments of the coil 

started clashing, and the number of clashing segments 

increased with increase in velocity. Also. for the case 

with button. the clashing started occurring at a much 

lower velocity, equal to 6 m/sec. 

6. COMMENTS AND CONCLUSIONS 

The following important conclusions emerge from 

this study: 
i). The maximum stress obtained from dynamic 

analysis is higher than that obtained from static 

analysis and the difference appears to increase with 

impact velocity. 
ii). The maximum stress occurs at the fixed end shortly 

after the coils get squeezed near that location. 

iii). Segments of neighboring coil start clashing 

beyond a threshold velocity. 

iv). The button appears to increase the maximum stress 

by approximately 20%- 30%. 

v). Damping appears to reduce the maximum stress. 
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