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LINEAR COMPRESSORS: MOTOR CONFIGURATION, MODULATION AND SYSTEMS 

Robert Redlich, Ph.D., Reuven Unger, Nicholas 't-1lll der Walt 
Sunpower, Inc., Athens, OH 

ABSTRACT 

Many linear motor configurations are potentially applicable to linear compressors. Problems associated \Vith some of these 
are discussed Properties of, and ex-perimental data relating to a particular configuration that has proven itself in many 
applications are presented Two methods of linear compressor control that have been successfully applied are described. 
Refrigeration systems that can use the flow rate modulation capability of a linear compressor advantageously are briefly 
discussed. 

INTRODUCTION 

In a free-piston linear compressor the piston is not rigidly attached to a driving mechanism such as a crank. It is rather 
driven by a linear motor which applies a force directly on the axis of reciprocation. The reciprocating mass may be· 
resonated by force generated by gas and mechanical springs attached to the piston. Both the stroke and mean }XlSition of 
the piston change and are dictated by the mechanical, magnetic and pressure forces acting on it. The piston motion is not 
pre-defined, making it necessary to have some mechanism to control its position, particularly when fragile parts might 
collide. This, however, makes the machine more versatile since the piston motion can be acljusted continually to achieve 
optimum performance. Another advantage of a free piston over a crank compressor is that, because all the driving forces 
act along the line of motion, side-loads on the piston can be very low, reducing friction losses and associated wear and 
allowing use of gas bearings for oil-less operation. Linear motors are basically simple devices in which axial forces are 
generated by currents in a magnetic field, according to the well known equation: 

force/ unit volume = current density X magnetic field 

Each term in the equation is a vector and X means cross product. Current density can exist in wires or as a surface density 
of magnetic current, according to the equation: 

magnetic surface current density (amps/ meter) = M X n 

where M is intrinsic magnetization in amps./meter and n is a unit normal to the surface. 

Analysis of moving magnet linear motors by means of magnetic surface currents is simple, accurate and physically 
transparent It also helps in understanding problems that can occur with some configurations. 

LINEAR MOTOR TYPES 

Moving Coil 

A typical application and analysis is given in Ref 1. In this case, current is alternating and exists in moving wires and the 
magnetic field with which the current interacts is generated by a permanent magnet. Analysis shows that required magnet 
volume is many times greater than that needed by a moving magnet configuration of the same power output and 
efficiency. Since magnets are the most expensive constituent of most linear motors, moving coil motors of this type are 
only suitable for cost insensitive applications. For a given efficiency, the mass of moving copper wire far exceeds the mass 
of moving magnet in an equivalent moving magnet motor. This mass must be approximately resonated with springs in 
order to avoid excessive reactive currents in the motor. Thus· a moving coil motor will require much more spring mass 
than a comparable moving magnet motor. One clear advantage of the moving coil motor is the absence of radial forces, 
open circuit 3xial forces and torques on the moving coil. Such forces and torques are present in some other linear motor 
types and can cause serious practical difficulties. 
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Fig. 1: An Example of a Moving Coil Motor. Adapted from Ref. 1. 

These have been made in several configurations, distinguished by presence or absence of moving iron, whether the 

moving magnets leave the air gap during the reciprocation cycle, and orientation of the lamination plane. Two motors 

using magnets that partly leave the air gap are illustrated in Figs. 2 and 3. Further information on the :first of these can be 

found in Refs. 2, 3 and 4. All such motors have the potential for serious eddy current loss in their surroundings, because 

of strong, relatively long range time-varying fringing fields generated by the emerging magnets. A less serious 

disadvantage is difficulty in accurately predicting power output, which depends partly on interaction of fringing field of 

the coil currents with magnetization surface currents outside the air gap. Another disadvantage is the existence of axial 

magnetic forces when the magnets are not centered These forces are difficult to calculate and can affect machine 

dynamics. 

If a linear motor is axially symmetric, its magnetic fields lie in planes passing through the symmetry axis, which planes 

must then also be the planes of the laminations comprising the flux path. Ideally, this means tapered laminations. 

Practically, multiple stacks of nearly radial laminations can keep eddy current loss to levels insignificantly higher than 

that of tapered laminations. In either case, tapered or multiple stack, construction of the iron flux path is more complex 

than that of a conventional AC rotary motor, which needs only a single stack of laminations oriented perpendicular to the 

axis of rotation. Two linear motors that use the same sort of flux path construction as a rotaty AC motor are the Corey and 

Shtrikman types. Further information on these motors can be found in Refs. 5 and 6 respectively. One disadvantage of 

such construction is inefficient use of copper compared to an axially symmetric configuration. Another is that fringing 

fields of both coil and magnets enter the laminations perpendicular to their plane and therefore can induce eddy current 

losses. In the case of the Corey type motor, magnet fields within the iron adjacent to the air gap cross the lamination plane 

and will induce eddy currents. 
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Fig. 2: An Example of a Corey Type Mol-ing Magnet Alternator 
with Axially Stacked Laminations. Adapted from Ref. 5 

-----Moving Magnets 

Lamination Stack 

Fig. 3: An Example of a Sbtrikman Type Mol-ing Magnet Configuration. 
Adapted from Ref. 6. 

Some linear motors, e.g. the Bhate type (Ref. 2), use moving iron in the flux path, which can cause serious practical difficulties as a result of rotational instability of the entire moving structure around axes perpendicular to the axis of reciprocation. The structure tends to rotate and close the air gap, and may overpower gas bearings or even oil lubricated bearings. · 

A configuration that has proved itself in many applications at power levels from 40 W to 15 kW is described in Ref 7 and illustrated by Fig. 4. It is relatively insensitive to its surroundings because the magnets do not leave the gap and because the magnet fringing fields are not time varying even though the magnets move within the air gap. It uses no moving iron and therefore subjects supporting bearings to very low forces and torques. The design of this machine using magnetization surface currents is simple and bas proved to predict performance accurately. Fringing fields are of secondaiy importance since they only affect the motor inductance. They can be estimated with acceptable accuracy by using simple permeance approximations. An equivalent circuit based on the physics of this motor is shown in Fig. 5. The physical basis for the equivalent circuit can most easily be explained by temporarily considering Rl to be an open circuit. Vapplied is then the sum of the IR drop in the winding and the voltage induced in the winding by time varying flux. The induced voltage is the sum of voltage induced by motion of the magnets (Vgenerated) and the voltage induced by current in the winding (L di/dt, where Lis the winding inductance). A series connection ofVgenerated, Land a resistance R2 follows. Resistor Rl accounts for core losses which, at a particular frequency, are proportional to the square of the resultant core flux, i.e., to 
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the square of the induced voltage. Rl is therefore connected across the total induced voltage. It is worth noting that there 

is a loss in Rl even if 1=0, provided that the magnets are moving so that Vgenerated is not zero. Under these conditions, 

loss in R2 is associated '"'ith braking by hysteresis and eddy currents in the core and has been referred to as shuttle loss. 

Typically it is about 2% of the rated power. Resistor R2 is the swn of DC '"'inding resistance and loss resistance associated 

'"'ith losses induced in the motor swroundi.ngs (exclusive of core losses) by time vacying field generated by winding 

current. All of the quantities appearing in the equivalent circuit can be determined from static measurements and, once 

fOUlld, they suffice to predict the performance of the motor under any load conditions. 
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Fig. 4: Linear Motor Dynamometer Coupled to Redlich Type Linear Motor 

Vgenerated Vapplied 

Force on magnets = alpha x I 

Vgenerated = alpha x magnet velocity 

Fig. 5: Equivalent Circuit for Redlich Type Linear Motor 
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The equivalent circuit as determined by static measurements for a 250 watt motor l\'1lS verified with dynamometer 

measurements. One such measurement was direct determination of the machine constant, alpha, in two different ·ways, the 

first as the ratio [Vgenerated I (magnet velocity)], the second as the ratio [(force on magnets) I I]. The average of seven 

measurements of the first type was 89.0 volt seconds/meter. The average of seven measurements of the second type was 

89.7 newtons/amp. Agreement was v.ithin experimental error and is considered strong confirmation of the basic theory of 

the motor. Fig. 6 shows the results of another set of measurements in which efficiency and amplitude of magnet motion 

were measured with the linear dynamometer in Fig. 4 and compared with the same quantities as calculated from the 
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equivalent circuit and measured values of Vapplied and L Agreement is within exl)erimental error and is considered 
confinnation of the predictive ability of the equivalent circuit. Noteworthy in Fig. 6 is the fact that efficiency is 
maintained at low power levels. This can be important in refrigeration compressors. 
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Fig. 6: Efficiency Cun·es for Linear Motor: Comparison of Test Data to Theory 

CONTROL 

Since the moving parts of a linear compressor are not constrained by a rigid crank mechanism,. closed loop control 
involving feedback from sensed piston position to voltage applied to the linear motor is necessary. The demands imposed 
on the control system for a linear compressor in a refrigerator are rigorous. Clearance between piston and valve head at 
top dead center (TDC) must be kept within a few tenths of a millimeter to keep hysteresis losses do"\\n. The entire 
discharge phase typically takes place in about 1 mm before TDC, hence 0.1 mm change in piston position at TDC has a 
significant effect on flow rate. Collisions must be avoided, and the control must function over a temperature range of 
about 60 oc. This feat of control must be reproducible and inexpensive, particularly in the case of domestic refrigeration. 

Control using a position sensor 

Satisfactory control has been achieved using an inductive position sensor in which the inductor is a small stationary coil 
wound on a ferrite core. The high frequency inductance of the sensor is reduced by a moving aluminum band that enters 
the flux path of the inductor at about 4 mm before IDC. Electronics convert minimum inductance to a signal that is 
compared with a set point signal. The difference between the two signals modulates the firing angle of a triac so that if the 
piston is closer to the head than it should be according to the set point signal, the triac fires later and the effective applied 
voltage is reduced, thus reducing stroke and moving the piston away from the head 

Control using the linear motor as a sensor 

For a motor of the type described at the end of the preceding section, the parameter alpha is independent of magnet 
position within less than 0.5% provided the magnets come no closer to the end of the air gap than about 112 of the gap 
dimension, and provided the iron does not saturate. If these conditions are met, V generated, the "back EMF', is an 
accurate measure of piston velocity. Vgenerated can be recovered by an analog or digital calculation based on the 
equivalent circuit and measured values for Vapplied and I. Both of the required measurements can be made external to the 
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compressor. After deriving piston velocity, piston position can be obtained by integration and used for control of a triac. 
As just described, the steady state piston position recovered by a motor analog will have no average component because of 
the limitations of practic:al integrators. Actual piston position, however, does have a very significant average component 
because the average pressure over a cycle is positive and moves the piston out against the springs used to resonate piston 
mass. Average position can be recovered by a calculation based on the dynamics of piston motion during suction, when 
the pressure force on the piston is practically zero so that all the forces on the piston are accessible from the motor analog. 
Details of this computation can be found in Ref. 8. Sensorless control of this type bas been successfully applied to 
refrigerator compressors. Difficulties encountered with such control have been associated with recovery of average piston 
position, which requires an analog of piston acceleration and thus a differentiation, which is noise sensitive. Use of a triac 
exacerbates noise problems because of discontinuities in applied voltage associated with triac control. Careful filtering bas 
been found to be necessary, but the control scheme now appears to be practical, and work is in progress on adapting it to a 
production setting. 

MODULATION 

The flow rate of a linear compressor whose TDC position is controlled by a closed loop feedback system is easily changed 
by changing the reference TDC position with which the measured position is compared. thus changing the spatial extent 
of the discharge phase. Reference TDC position will be in the form of a control signal that can readily be altered, a 
simpler process than variability of frequency needed to modulate rotary compressors. A linear compressor powered by a 
motor of the type shown in Fig. 4 can be modulated to power levels as low as 200,4. of rated power before significant 
degradation of motor efficiency occurs (Fig. 6). A linear compressor with controlled IDC position thus bas inherent 
flexibility to continuously respond to changing conditions with changes in flow rate. This property can be used to 
advantage in many systems, such as air conditioners, in which reduced flow at part load increases efficiency by reducing 
the temperature drop across each of the heat exchangers (Ref. 9). 

CONCLUSIONS 

Choosing between different linear motor configurations involves obvious considerations like cost, size and efficiency. 
Evaluation of less obvious factors is also appropriate, such as: radial and rotational instabilities; sensitivitY of losses to 
materials in the motor surroundings; ease of design and ability of the design procedure to accurately predict performance; 
springing requirements for the reciprocating mass; existence of significant axial magnetic forces under open circuit 
conditions and suitability of the motor tJpe for use as a transducer if sensorless control is contemplated. Control of a linear 
compressor for refrigerators must meet rigorous requirements but has been accomplished with either a position sensor or 
by using the linear motor as a sensor. Many compressor applications could benefit from the modulation capability of a 
linear compressor. 
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