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Identifiability properties for inverse problems in

EEG data processing with observability and

optimization issues

Juliette Leblond∗

Abstract: We consider inverse problems of source identification in electroen-
cephalography, modelled by elliptic partial differential equations. Being given
boundary data that consist in values of the current flux and of the electric poten-
tial on the scalp, the aim is to reconstruct unknown current sources supported
within the brain. For spherical layered models of the head, and after a pre-
liminary data transmission step, such inverse source problems are tackled using
best rational approximation techniques on planar sections. Both theoretical and
constructive aspects are described, while numerical illustrations are provided.

Keywords: Inverse boundary value problems, elliptic partial differential equa-
tion, medical imaging, EEG (electroencephalography), observability, optimiza-
tion.

1 Introduction

We discuss some inverse identification problems that arise in medical engineering
or in neurosciences for functional and clinical brain analysis purposes. We focus
on source recovery issues from boundary data in electroencephalography (EEG).
Maxwell’s equations are to the effect that the electric potential within the head
can be modelled as a solution to some partial differential equation (PDE), in
spherical or more general 3–dimensional domains [14]. In particular, with the
quasi–static assumption (time derivatives of the electromagnetic fields are ne-
glected), the EEG problem is modelled by an elliptic Poisson–Laplace PDE that
only involves the space variable. Boundary data are furnished by a number of
pointwise values of the electric potential on the scalp (measured by electrodes
on a part of the scalp, see figure 1), together with the (vanishing) current flux.
From such partial and overdetermined boundary measurements of the current
flux and the potential, the aim is to identify and to reconstruct:
- non–measured boundary data (a Cauchy transmission problem, cortical map-
ping step),
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- unknown current sources supported within the brain (singularities of the po-
tential), that correspond to the primary cerebral current.
These questions can be rephrased as identification or observation issues for in-
finite dimensional systems, where the given boundary measurements (flux and
potential) coincide with the input and output of the system, of which the elec-
tric potential and the current flux inside the head should be viewed as the state.
We consider below these inverse potential problems [13]. Related considerations
in magnetoencephalography (MEG) will be briefly discussed in conclusion, with
others from electric impedance tomography (EIT). Observe further that similar
deconvolution issues also appear in automatic control (on the boundary of do-
mains of dimension 2, however), concerning harmonic identification in frequency
domain [5].
For dipolar point sources, we review some identifiability results related to the
EEG inverse problem [9], that we also formulate as observability properties. Al-
gorithmical and numerical aspects are described, most of them requiring (best
constrained quadratic) optimization techniques. Our approach relies on har-
monic analysis and function theory (the link with holomorphy comes from har-
monicity), as does the work [15]. Compared to other methods (dipole fitting,
MUSIC algorithms, [18]), it has the desired feature of providing an estimate of
the number of sources (sources that may be correlated, in time).
The overview of the article is as follows. Some notation and definitions are
given in section 2. Models and inverse problems in EEG are discussed in section
3. Section 4 is devoted to a two step resolution scheme, which consists first in
data transmission (section 4.1), then in source identification (section 4.2). A
conclusion is proposed in section 5.

2 Notation, definitions

We recall the definitions of gradient, divergence and Laplace operators for func-
tions acting on R3, where the space variable is denoted by x = (x1, x2, x3) and
the inner product by “·”. The gradient and divergence operators are formally
defined by:

grad = ∇ =
(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)t

, div = ∇· ,

and the Laplace operator by:

∆ = ∇ · ∇ =
∂2

∂x1
2

+
∂2

∂x2
2

+
∂2

∂x3
2
.

(div acts on R3–valued smooth functions, while grad and ∆ act on R–valued
ones).
We set Ω ⊂ R3 to be a bounded domain with smooth boundary, and n the unit
outer normal vector on ∂Ω. The normal derivative on ∂Ω is then defined by:

∂u

∂n
(xb) = lim

x→xb∈∂Ω
∇u(x) · n(xb) .
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Functional Hilbert Lebesgue and Sobolev spaces, L2 and W 1,2, are classically
defined on Ω or ∂Ω, see e.g. [10], as well as C(Ω̄).

3 Models, inverse problems in EEG

Maxwell equations

Maxwell equations in electrostatics, under quasi–static assumptions, are to the
effect that, if E stands for the electric field, and Ψ for the electric potential in
the head [14]:

∇× E = 0⇒ E = −∇Ψ (Faraday’s law) .

The brain is a non magnetic medium, while it is subject to an electric activity
represented by the current density J which satisfies

J = σ E + J = −σ∇Ψ + J ,

if J stands for the primary cerebral current density and σ for the electric con-
ductivity of the head Ω ⊂ R3. Hence,

∇ · J = 0 (charge conservation) ⇒ ∇ · (σ∇Ψ) = ∇ · J .

Note that J is supported in the domain Ω0 ( Ω corresponding to the brain
(there are no current sources outside the brain).

Partial differential equation

The electric potential Ψ = Ψ(x) is a real–valued function (or distribution) of
the space variable x ∈ R3 which is solution to the following second order elliptic
PDE (to be understood in distribution or variational sense, see section 4):

div (σ grad Ψ) = div J or ∇ · (σ∇Ψ) = div J in R3 , (1)

whence
3∑

i=1

∂

∂xi

(
σ
∂Ψ
∂xi

)
=

3∑
i=1

∂J
∂xi

or ∇σ · ∇Ψ + σ∆Ψ = ∇ · J ,

for the function or distribution J with values in R3 and supported in the proper
subset Ω0 of Ω with smooth boundary ∂Ω0 (and such that Ω0 ⊂ Ω). Note that
the source distribution div J is real–valued (or acts on real–valued functions).
In EEG, and in the present work as well, σ is often assumed to be isotropic
(real–valued) and piecewise constant whence the above PDE reduces to a set of
Laplace–Poisson equations (see equations (3) below).

Inverse EEG problem

The inverse EEG problem consists in recovering J (at least its support in Ω0)
in some class of source terms, from available boundary values of a solution Ψ
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Figure 1: Left (l): measures u provided by electrodes on the scalp ∂Ω; right (r):
head geometries Ω.

to equation (1):

u =
∂Ψ
∂n

on ∂Ω , y = (Ψ(γi))
t
, γi ∈ Γ ( ∂Ω , i = 1, · · · , L , (2)

u being the given current flux on the scalp ∂Ω, y the measured potential (or
difference of potentials), by L electrodes on the upper part of the scalp, located
at positions γi on a part Γ ( ∂Ω of the boundary (see figure 1, (l)).
The above inverse problem is basically ill–posed, and requires additionnal as-
sumptions concerning Ψ and J in order to admit a unique solution. Still, stabil-
ity properties of the solution are difficult to ensure, and only hold under further a
priori assumptions on the model and the data [13]. These well-posedness aspects
will be discussed within the harmonic framework of section 4, having in mind
that the available measurements u, y are incomplete and may be corrupted, in
practice.

Direct EEG problem

Concerning the associated direct problems, the source distribution J is given
(supported in Ω0), as well as boundary data of Dirichlet or Neumann type [10].
Dirichlet boundary data consists in the potential Ψ on the overall ∂Ω, while
Neumann data are furnished by ∂Ψ

∂n . For smooth conductivities, these problems
are well–posed, under the following necessary and sufficient compatibility con-
dition for the second one, with which the solution is unique up to an additive
constant: ∫∫

∂Ω

σ
∂Ψ
∂n

ds = 0 ,

with respect to the Lebesgue measure ds on the surface ∂Ω. This is a conse-
quence of Green’s formula together with the fact that J vanishes outside Ω0
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hence on ∂Ω. In particular, whenever Ψ is smooth enough on ∂Ω, then so is Ψ
in Ω. Actually, for smooth or piecewise constant conductivities σ, the boundary
assumption Ψ ∈ W 1,2(∂Ω) is enough to ensure that Ψ ∈ C(Ω̄), see e.g. [8] for
constant σ.

Observability issues

The electric potential Ψ = Ψ(x), a real valued function (or distribution) of the
space variable x ∈ Ω ⊂ R3 may be viewed as a state variable for the static
infinite dimensional state model (1). On the boundary ∂Ω, the current flux
u corresponds to the associated input, the potential y to the output. The
inverse source problem consists in finding the state or its singularities, given
input/output data u and y, which is an observability problem (in general, for
EEG, u is assumed to vanish).
At this stage, we directly get from (2) that:

y = C
(
Ψ|∂Ω

)
,

where C denotes the pointwise evaluation operator at the L points γi ∈ Γ (
∂Ω, and corresponds to an observation operator. With the above smoothness
assumptions, the linear operator C is continuous, and it holds that:

|y| . ‖Ψ‖L∞(∂Ω) . ‖u‖L∞(∂Ω) .

Note that C has finite dimensional range and is formally defined on those contin-
uous functions on ∂Ω. Without further assumption, the reconstruction of the
infinite dimensional state Ψ within the head with very few observations (the
boundary measurements y) is lost in advance. We will see that it goes differ-
ently under suitable hypotheses, and that some quantities become observable,
at least approximately.
Similarly, the relations (1) and (2) may be expressed through Green formula,
see (5) and (8), as:

u = KJ

(
Ψ|∂Ω

)
, where KJ : Ψ|∂Ω 7→

∂Ψ
∂n |∂Ω

,

for the so-called Dirichlet–to–Neumann operator KJ. In the present situation, a
preliminary step is required in order to build Ψ on ∂Ω from y, a step which would
not be needed if the measurements y were available on the whole boundary ∂Ω,
rather than at points in Γ ( ∂Ω. Nevertheless, this only reinforces the strong
ill–posedness property of the corresponding observability issue, of building the
state Ψ on Ω from u and y on ∂Ω, but unknown J, among solutions to (1),
an impossible task. Regularization schemes by constrained optimization (best
quadratic approximation) are then used in order to state and to solve these
inversion issues in several consecutive steps.
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Figure 2: (l): 3 layers spherical head model (planar cross section); (r) : measured
values y = y2 of Ψ by L = 128 electrodes on the upper part of the scalp,
(x1, x2, x3) coordinates.

4 EEG inverse source problem

Spherical head models are classically considered and supposed to be made of 3
spherical homogeneous layers [9]. Put then Ω = B for the unit ball and ∂Ω = S
for the unit sphere. Put Ω0 = r0 B for some 0 < r0 < 1 (brain), Ω1 (skull), Ω2

(scalp), such that Ω = Ω0∪Ω̄1∪Ω2, with ∂Ωi = Si−1∪Si for i = 1, 2 and spheres
Si, see figure 2, (l). In particular, we get S0 = ∂Ω0 = r0 S and S2 = ∂Ω = S.
The head conductivity σ is assumed to be known and piecewise constant: on
Ωk, σ = σk > 0 (with σ0 = σ2 = 1 up to a renormalization, and 1/σ1 ∈ [20, 80]).
Further, because R3\Ω̄ (the air, the neck is ignored) is a non conductive medium,
we have that σ vanishes outside Ω.
Given u and y on ∂Ω from (2) (see figure 2, (r)), we thus want to find J or at
least its support, such that Ψ satisfies (1). Of course, necessary assumptions
are needed to ensure well–posedness and observability properties, like hypothesis
(9) below, to the effect that J is a finite sum of pointwise dipolar sources. In
particular, we want to locate the singularities of Ψ in Ω0. More precisely, we
get from (1) that:

∆ Ψ = 0 in
(
R3 \ Ω̄

)
∪ Ω2 ∪ Ω1 ,

∆ Ψ = div J in Ω0 ,

Ψ and σ
∂Ψ
∂n

continuous across Si , i = 0, 1, 2 .

(3)

The above transmission conditions (obtained from Green formula, see (5) below)
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express the continuity of the potential and of the normal current across the
interfaces Si. We use two main consecutive steps for solving the EEG inverse
source problem [9]:
- A first boundary data extension / transmission step (Cauchy type inverse
problem), also called “cortical mapping” step, in the present framework: the
given boundary data are transmitted from ∂Ω = S2 (scalp) to S0 (cortex), see
section 4.1.
- A second source localization step, in Ω0, for some class of J (geometric inverse
problem): from the above transmitted data on S0, locate the sources inside Ω0,
see section 4.2.

4.1 Data transmission

Let S±i denote the inner and outer sides of Si, for i = 0, 1, 2. From (3), we get
in the outermost two layers Ωi, i = 1, 2, with the convention σ3 = 0:

∆ Ψ = 0 in Ωi , i = 1, 2,

Ψ|
S
−
i

= Ψ|
S

+
i

, σi
∂Ψ
∂n |

S
−
i

= σi+1
∂Ψ
∂n |

S
+
i

.

In order to get the Cauchy data on S0, we thus face two consecutive Cauchy type
transmission problems in the spherical shells Ωi, from their outer boundaries
S−i to their inner ones S+

i−1. Put y = y2, u = u2 = 0. The first transmission
problem is the following. Given y2 ∈ RL such that:

∆ Ψ = 0 in Ω2 ,

(Ψ(γi))
t = y2 ∈ RL , γi ∈ Γ ⊂ S2 , i = 1, · · · , L ,

∂Ψ
∂n |

S
−
2

= u2 = 0 ,

get on S+
1 :

y1 = Ψ|
S

+
1

and u1 =
∂Ψ
∂n |

S
+
1

,

recalling the normalization σ2 = 1. Once u1 and y1 have been computed on
S+

1 (either by their pointwise values at points from a mesh or by their spherical
harmonics expansions [10]), the second transmission problem in Ω1 can be stated
as follows. Given u1, y1 on S−1 such that:

∆ Ψ = 0 in Ω1 , Ψ|
S
−
1

= y1 , σ1
∂Ψ
∂n |

S
−
1

= u1 ,

get on S0:

y0 = Ψ|
S

+
0

and u0 = σ1
∂Ψ
∂n |

S
+
0

.
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Cauchy-Holmgren uniqueness result asserts that, for compatible (exact) data,
there exists a unique solution to the above transmission problem. Ill-posedness,
however, comes from unstability properties of such Cauchy type issues, though
sufficient conditions for stability are available [1], [21]. As soon as we turn to
experimental (corrupted) data, an exact solution may not even exist.
However, robust approximated identifiability / observability properties can be
ensured as follows, by regularization and approximation techniques, from which
constructive resolution schemes are derived. Let E3 be the radial fundamental
solution of Laplace equation in R3, see [10]:

E3(x) = − 1
4π|x|

, which satisfies ∆E3 = δ0 on R3 , (4)

if δC stands for the Dirac distribution (mass) at point C. Using Green formula
for harmonic functions, we get that for x 6∈ Ωi and i = 1, 2:∫∫

∂Ωi

(
Ψ(y)

∂E3

∂n
(x− y)− E3(x− y)

∂Ψ
∂n

(y)
)
ds(y) = 0 , (5)

where
∂E3

∂n
(x− y) =

(x− y) · n(x)
4π |x− y|3

.

To handle this cortical mapping step, we use boundary elements methods (BEM)
described in [9]. The quantities Ψ, ∂Ψ

∂n are discretized on the meshes and rep-
resented as a (big) vector Ψ which represents (ui , yi) at points on the spheres
Si, i = 0, 1, 2. We then look for a vector Ψ such that M Ψ = (u2 , y2) (the
given data), for a measurement matrix M (depending on the meshes). Further,
we require that Ψ belongs to the kernel of some matrix H, a relation which ex-
presses formula (5) and that links ui, yi on Si to ui−1, yi−1 on Si−1, for i = 1, 2.
Formula (5) however is solvable only for compatible (exact) data, whence we
turn to optimization. This raises the issue of minimizing the following discrete
criterion on ∂Ωi [16]:

min
H Ψ=0

‖M Ψ− (u2 , y2)‖2l2 + λ ‖RΨ‖2l2 , (6)

for some Lagrange parameter λ > 0 and an appropriate matrix R which ex-
presses the constraints (Tikhonov regularization). This furnishes a regularized
resolution scheme, even for non-compatible data. Numerical illustrations are
furnished in figure 3, which represents the transmitted Cauchy data y0, u0 on
the cortex S0 = ∂Ω0, at 642 points on the meshed spheres, computed using
boundary elements (BEM) from the electrodes pointwise data y = y2 on the
scalp ∂Ω2, see figure 2. There, and in figures 5, 6, 7 as well, we simulated direct
data with J as in (9) and K = 2 sources C1 = (.5, .5, .5), C2 = (.5,−.5,−.4).
All the numerical experiments were obtained using the software FindSources3D
(matlab) [12]. Note that related bounded extremal problems (BEP) express a
criterion similar to (6), though expressed in L2(∂Ωi) norm, within Hardy classes
of gradients of harmonic functions [3]. There, expansions on bases of spherical
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Figure 3: Potential and normal current transmitted on S0, (x1, x2, x3) coordi-
nates: (l) y0; (r) u0.

harmonics may be used rather than pointwise values for the discretization. In
both cases, robust solutions are furnished from best quadratic approximation of
the given boundary data, using discretizations of the Laplace operator (BEM)
or expansions of harmonic functions (BEP), together with regularizing norm
constraints.

4.2 Source identification

From the cortical data y0, u0 on S0, the inverse source problem consists in
finding the distribution J (or its support inside the ball Ω0) such that:

∆ Ψ = div J in Ω0 ,

Ψ|S0
= y0 ,

∂Ψ
∂n |S0

= u0 .
(7)

Without further assumptions, this is still an ill-posed problem which admits
infinitely many solutions J.
The potential Ψ may be expressed in terms of J, by convolution with a fun-
damental solution of Laplace equation in R3, see [10]. Indeed, we get for
x ∈ Ω0 \ supp J:

Ψ(x) = h(x) +
∫∫∫

Ω0

E3(x− y) div J(y) dy

= h(x)−
∫∫∫

Ω0

∇E3(x− y) · J(y) dy = h(x) + Ψs(x) , (8)

for some function h harmonic in Ω0, where Ψs represents the singular part
of Ψ and contains all information about the source term. Note that Ψs is
harmonic outside Ω0 and vanishes at∞; it can be computed on S0 from u0 and
y0 expanded on the spherical harmonic basis [10].
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4.2.1 Dipolar point sources

The following hypothesis on J is classical in EEG, which amounts to assume that
the potential Ψ is created by K dipolar point sources Ck ∈ Ω0 with associated
moments pk ∈ R3:

J =
K∑

k=1

pkδCk
, whence ∆Ψ = div J =

K∑
k=1

pk · ∇δCk
. (9)

In this situation, we get from (4), (8), at x 6= Ck in R3:

Ψs(x) =
−1
4π

K∑
k=1

pk · (x− Ck)
|x− Ck|3

.

It ensures well-posedness of the above homogeneous inverse source problem (7),
with unknown K, Ck, pk, from Dirichlet-Neumann data on S0 [20], [21]. As
a consequence, source identifiability properties from scalp boundary data on
∂Ω hold true for the inverse EEG problem (1), (2), provided that the Dirichlet
data y2 is furnished on an open subset Γ ⊂ ∂Ω. Whenever the potential values
are only given at L points γi ∈ Γ, which is practically the case, a first robust
interpolation step is thus required. Uniqueness of J in the above class, hence
of K, pk, Ck, for k = 1, · · · ,K, is established in [11]. Such identifiability
results from boundary data can be viewed as observability properties. Again,
constructive aspects and robust resolution algorithms constitute the key points.

4.2.2 Source localization scheme

Given the function Ψs on S0, we now show how to identify the 6K+1 real valued
quantities that characterize the sources (K itself, and Ck, pk, for k = 1, · · · ,K).
We assume Ψs to be either expanded as a series on S0 or given by pointwise
values at the mesh points there, for computational purposes. The localization
algorithm is described in [4], [9]. It consists in singularities estimation by best
quadratic rational approximation of Ψs (actually, of Ψ2

s) on the boundaries
(circles) of families of planar sections of Ω0 (disks).

Singularities in planar sections

Let, for instance, Π = {(x1, x2, x3) , x3 = 0} denote the (x1, x2) plane, and
Πp = {(x1, x2, x3) , x3 = x3p}, with the disk Dp = Πp ∩ Ω0 and the circle
Tp = ∂Dp = Πp ∩ S0, p = 1, · · · , P , for some integer P > 0 (see figure 4).
From Ψs on S0, for each p = 1, · · · , P , build the complex variable functions fp

such that, for z = x1 + i x2 ∈ Tp:

fp(z) = Ψ2
s (x1, x2, x3p) .

It then holds that:

fp(z) =

[
K∑

k=1

φkp(z)
(z − zkp)3/2

]2

(10)
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Figure 4: Planar sections Πp = {(x1, x2, x3p)} of Ω0 ; disks Dp ⊂ Πp, p =
1, · · · , P .

=
K∑

k=1

φ2
kp(z)

(z − zkp)3
+

K∑
j,k=1
j 6=k

2φkp(z)φjp(z)
(z − zkp)3/2 (z − zjp)3/2

,

for functions φkp such that the products φkp φjp are holomorphic in Dp for
j, k = 1, · · · ,K and complex valued singularities zkp ∈ Dp.
Indeed, the denominator of Ψs involves the quantities |x − Ck|3 that can be
computed as follows. If we write Ck = (x1k, x2k, x3k), zk = x1k + ix2k for the
complex affix of Ck in Π∩S0 ' C, rp =

√
1− x2

3k and hkp = x3k − x3p, we get:

|x− Ck|2 = |z − zk|2 + h2
kp = (z − zk) (z − zk) + h2

kp .

When x ∈ Tp, then z ∈ Tp and z = r2
p/z, whence

|x− Ck|2 = (z − zk)

(
r2
p

z
− zk

)
+ h2

kp .

Assume that zk 6= 0, which generically holds if Ck 6= 0 since zk only depends on
Ck and Π. Expanding the above rational function of z, we find:

−zk

z

(
z2 −

r2
p + h2

kp + |zk|2

zk
z +

zk

zk
r2
p

)
= −zk

z
(z − zkp)

(
z − z(r)

kp

)
, (11)

for zkp ∈ Dp and z
(r)
kp 6∈ Dp such that∣∣∣zkp z

(r)
kp

∣∣∣ = r2
p ,

in particular. This implies that, on Tp:

pk · (x− Ck)
|x− Ck|3

=
φkp(z)

(z − zkp)3/2
, where φkp(z) =

√
z πkp(z)(

z − z(r)
kp

)3/2
,

11



where πkp is a polynomial of degree 2, which depends on pk, zk, hkp, rp. Because
z

(r)
kp 6∈ Dp, this shows that φkp φjp are holomorphic functions in Dp, for j, k =

1, · · · ,K, and establishes (10). Observe that the functions φkp are multiply
valued in Dp, due to the presence of

√
z in their numerators, while this is no

longer the case for the products φkp φjp; this is the reason why we consider the
squared values Ψ2

s of Ψs.
As a consequence, we get that for each p, fp coincides on Tp with a function
that admits K singularities zkp in Dp. These singularities zkp are due to the
sources, and related to their parameters Ck, pk (and to x3p as well). Indeed,
assuming that zk 6= 0, the following behaviour of zkp can be checked from (11).
(i) The complex arguments of the K singularities (zkp) of fp do not depend on
p and coincide with the argument of zk (because zkp/zk are real valued).
(ii) For fixed k, the modulus |zkp| is maximum w.r.t. p in the section Dp∗ closest
to (or containing) Ck, where zkp∗ = zk.

Figure 5: Sources Ck in Ω0 (big black dots), singularities (zkp) (small green
dots), for k = 1, 2; left (l): side view, (x1, x2, x3) coordinates; right (r): from
above (top of x3 axis), superimposed (x1, x2, x3p) planes .

Whenever zk = 0, the corresponding term within fp in (11) degenerates and
admits a simple pole at zkp = 0, for p = 1, · · · , P . Actually, it behaves as
πkp/z.
These properties are illustrated in figure 5 with K = 2 sources C1, C2 as in
section 4.1 and figure 3, and for P = 21 sections (where yellow circles correspond
to boundary circles Tp, as in the next figures). They allow us to reduce the
3D inverse source problem to a family of 2D boundary value problems, for
p = 1, · · · , P : being given fp on the boundary Tp, recover its K singularities
zkp ∈ Dp.

Poles of rational approximants

For fixed p, we see from (10) that the singularities zkp ∈ Dp appear both as K
triple poles and as K branchpoints of fp. It then turns out that they may be
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approximated by the poles in Dp of best quadratic rational approximants to fp

on Tp, defined as follows. Consider the best rational approximation (constrained
optimization) problem:
For n ≥ 0, find polynomials pn, qn with degree pn ≤ degree qn ≤ n and qn with
less than n zeroes in Dp, that minimize∥∥∥∥fp −

pn

qn

∥∥∥∥
L2(Tp)

among such functions [6].
Solutions pn/qn are the best quadratic rational approximants to fp on Tp of
degree n. Their poles in Dp, those zeroes of qn within Dp, accumulate (in
some sense) to the singularities zkp of fp as n increases, which is a deep result
from potential theory established in [7]. Related resolution schemes are briefly
described in [9] again. Hence, computing the zeroes of qn for suitable values of n
allows us to efficiently estimate the quantity K of sources and to approximately
localize the singularities zkp. Indeed, one first increases the degree n until the
value of the approximation criterion (the quadratic error on Tp) is small enough
on Tp (or stationary): this furnishes an estimation of K, a nice feature of this
scheme. Then, for such a degree n, one compute the solution pn/qn and its n
poles, which are close to zkp. Similarly, one computes best rational approximants
with m triple poles within Dp, represented as rationals p3m/(qm)3 in the above
criterion. It appears that a single triple pole (m = 1) already approximates
well enough the singularities zkp. This property is established in [9, Prop. 1]
for the case K = 1 of a single source. It also numerically holds for K = 2
or more, as illustrated by figure 6, where the algorithm is run by the software
FindSources3D [12]. We see there that in northern and southern planar sections
Dp, the single triple pole is close to the one of the two singularities zk,p (k = 1, 2)
which accounts for the closest source. This property furnishes an estimate of the
quantity K of sources from the behaviour of m = 1 triple pole (in the present
example, K = 2), and - more approximately - there locations. A further rational
approximation step must then be performed similarly, looking for triple poles
at exact degree m = K (see figure 7).

From 2D to 3D

The above planar rational approximation algorithm is then run at degree m =
K = 2 for planes Π along 12 different directions. Figure 7 shows the 12 corre-
sponding views from above of the singularities (zkp). These are estimated using
the 2 triple poles computed in sections Πp, for some values of p, together with
a further step accounting for the last sum in expression (10). In some of the 12
pictures, the estimated singularities are located along 2 lines. We then select
these most significant directions Π. The selected series of estimated (zkp) then
approximately intersect within the ball Ω0 at the sources locations Ck, as they
should exactly do, see figure 8. We finally run a last clustering step, in order to
refine the estimation.
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Figure 6: Sources Ck in Ω0 (big black dots), singularities (zkp) (small green
dots), for k = 1, 2, single triple pole (small red dots) in 21 parallel planar
sections Πp.

Source estimation algorithm, in short

• Input: spherical meshed geometry of S0 and pointwise values of the sin-
gular part ΨS of the potential (or coefficients of a spherical harmonic
expansion; ΨS can be computed from Ψ and ∂Ψ

∂n ); an integer P (quantity
of parallel slices Πp for each of the 12 planar sections Π).

• For each section Π, get fp on Tp, for p = 1, · · · , P .

• For some section Π, compute its best rational approximant with a single
triple pole in Dp, p = 1, · · · , P , and estimate the quantity K of sources.

• For each section Π:

– Compute the best rational approximant to fp on Tp with m = K
triple poles in Dp, for p = 1, · · · , P ,

– estimate the singularities (zkp), k = 1, · · · K.

• Cluster the computed singularities, and find estimates of Ck, k = 1, · · · ,K.

• Output: estimated source locations Ck, k = 1, · · · ,K.

Note that, once the source locations Ck are estimated, their moments pk can
be recovered by computation of the residues of the functions fp in the selected
planar sections.
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Figure 7: For 12 different planes Π, views from above of superimposed estimated
singularities (zkp), k = 1, 2, p ∈ {1, · · · , 21}, using 2 triple poles.

Numerical illustrations

For figures 8, 9, 10, the numerically generated data on S0 correspond to J as
in (9) and K = 2 sources C1 = (.2, .3, .4), C2 = (−.3,−.2, .4). Figures 9 and
10 show actual and estimated sources and moments. Though a small noise was
added to the cortical data, the results however remain good enough, with a small
localization error for the sources, as expected. In figure 10, the result is shown
in a more realistic geometry (from MRI data, then translated on spheres).
These numericals illustrate the robustness and the efficiency of the involved
identification schemes. They were all performed with the software FindSour-
ces3D [12]. It typically takes a few minutes to compute a solution to the full
inverse EEG problem (on a linux laptop), from L = 128 electrodes values to
the estimation of K = 2 sources, with P = 21 planar sections in 12 different
directions.
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Figure 8: Superposition of estimated singularities in various slicing directions;
the coloured series (lines) of singularities intersect at (next to) the sources.

Figure 9: K = 2 actual and estimated sources and moment, spherical geometry.
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Figure 10: K = 2 actual and estimated sources and moments, realistic geometry,
with the courtesy of BESA GmbH.

5 Conclusion

Beyond the many inverse boundary value problems that arise in medical imag-
ing, we discussed source recovery issues for EEG. In a spherical layered geo-
metric head model, we presented a robust resolution scheme (observer) in order
to estimate the source locations from the measured boundary data. It consists
in a best rational approximation procedure on planar sections, coupled with
a boundary element method (BEM) for preliminary data transmission steps.
More realistic geometries can be considered with similar techniques, though the
numerical complexity increases (several planar singularities may be associated
to a single source) [17].
Further uniqueness / identifiability properties for geometric inverse problems of
singularity localization (they may be sources, defaults, cracks) from boundary
data are currently under study. In particular, a source term J is said to be
silent in Ω0 if it not visible from outside Ω0, and produces a potential that
vanishes there: Ψ = 0 on R3 \ Ω̄0. Silent (non-observable) sources for the
homogeneous EEG inverse problem are analyzed (they are never pointwise).
Taking the time variable into account within the model should also be done,
using infinite-dimensional linear system theory [19].
A somehow similar model is also valid for the magnetic potential, and the in-
verse source problem in magnetoencephalography (MEG) can be tackled as well.
There, the measured data are pointwise values of the radial component of the
magnetic field, taken on part of a sphere located at some height above the scalp.
Simultaneous EEG-MEG signals recordings should be available, which will im-
prove the source estimation. Analogous inverse source problems also appear in
geosciences and paleomagnetism [2], or for other physical potentials solutions
to Newton’s equations.
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Concerning electric impedance tomography (EIT) related issues, the conductiv-
ity σ itself is unknown in (1) and is one of the quantities to be recovered (a
question related to Calderón’s inverse problem). One may then use the normal
current u applied by electrodes on the scalp as an effective control, in order to
estimate the conductivity values and to look for some optimal location of its
support.
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