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Abstract

The focus of this work is calibration of the land use module of an integrated land use and transportation

model (ILUTM). The calibration task involves estimating key parameters that dictate the output of the

land use module. Hence, an algorithm based on maximum likelihood estimation (MLE) is developed for

calibration. Furthermore, the observed values of the outputs from the land use module are assumed to

admit a Gaussian error.

The ILUTM methodology used here is TRANUS which is used to model the city of Grenoble in France.

The aforementioned algorithm is then applied to calibrate the land use module of the Grenoble model. The

covariance of the Gaussian error term is assumed to be unknown. It is represented as a function of the land

use module inputs and “hyperparameters”. The resulting MLE optimization problem has 111 parameters to

be estimated, 90 of which are land use parameters and 21 are hyperparameters of the Gaussian covariance

kernel. The performance of the proposed calibration methodology is then compared to traditional calibration

techniques used for land use and transportation models, when applied to the Grenoble land use model. It

is observed that the proposed method outperforms the traditional technique when compared based upon a

given quantity of interest.
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Index Terms

Integrated land use and transportation, calibration and validation under uncertainty, maximum likeli-

hood estimation, Gaussian process modeling, supervised learning.

1 INTRODUCTION

In recent years, due to constantly increasing environmental awareness, urban sustain-

ability has become a key policy issue. The European Commission for Sustainable Devel-

opment Strategy (EUSDS) has clearly identified environmental protection as one of the

four objectives for sustainable development [1]. Moreover the 2009 review of EUSDS has

emphasized the creation of a low carbon economy and fight against climate change, as

major focus areas [2]. It is a well known fact that land use and transportation modeling

plays a key role in the context of urban sustainability [3]. Hence, integrated land use

and transportation modeling is important in order to create sustainable cities for future

[4].

The integration of land use and transportation creates a complex system both tem-

porally and spatially, which evolves in different scales [5]. Analyzing such systems,

especially in presence of uncertainty is typically a difficult problem [6, 7]. Calibration

plays a central role in such cases, as it helps us determine optimal parameters to create

a reliable model. But it results in a problem which is hard to solve, since the parameters

to be calibrated are large in number with hardly any prior information available about

them. Also, the observed data set is erroneous and sparse [8]. Traditionally, calibration

of such models is done manually, using expert opinion about variation of parameters

gained through years of experience and practice [6, 9]. It is a well known fact that

such a process is tedious and time consuming [10]. Moreover, it cannot be discounted

that the method is not error free [11]. All these reasons emphasize the need of a better

and comprehensive method of calibration, where the parameters to be calibrated can

be estimated from the observed data, taking into account inherent errors.

For most mathematical models, if the number of parameters is large and the ob-

served data is erroneous, calibration can be performed in maximum likelihood (ML)

framework [12], where the state estimate is the parameter which maximizes the likelihood

May 3, 2013 DRAFT



3

function. However, up until now, ML framework has not been used to calibrate ILUTMs.

Maximum likelihood estimation (MLE) yields estimates of the unknown quantities

that maximizes the probability of obtaining the observed set of data. MLE has found

application in myriad areas; from wireless communication systems [13] to psychometrics

[14], and from astrophysics [15] to genetics [16]. MLE has several desirable properties;

for example the estimate is asymptotically efficient, is invariant and is consistent [17, 18, 19].

Several other properties of MLE along with proofs can be found in the book by Sorenson

[20]. This work uses MLE to estimate parameters of a nonlinear regression model, with

erroneous outputs. The error in the outputs is assumed to follow a Gaussian process.

Gaussian processes has been widely used in statistics and machine learning communi-

ties for modeling natural processes for regression and classification [21]. The advantage

of using Gaussian process is that the modeling technique is entirely data-based and

is a generalization of nonlinear multivariate regression. The approach does not require

the modeler to specify the structural relationships between independent and dependent

variables. Instead, the modeler specifies the covariance structure of the outputs in terms

of the input parameters and hyperparameters [22]. In a nonlinear regression setting,

often the errors in observed outputs are modeled to follow a Gaussian process. In such

cases, MLE can be used to estimate parameters [23, 24]. Use of Gaussian process to

represent observation errors and subsequently estimating model parameters using MLE

is often known as krigging [22]. In this work, we have modeled the outputs of the land

use module of an ILUTM as a nonlinear regressor, whose error term follows a Gaussian

process. Thereafter, the parameters of the land use module, and the “hyperparameters”

of the Gaussian covariance kernel are estimated using MLE. Although the estimates

obtained using the aforementioned algorithm, has all the advantages of a ML estimate,

there are certain drawbacks to this technique. MLE is prone to “overfit” the given

training data, and also it does not incorporate prior knowledge about the parameters

[20]. The overfitting problem can be avoided by regularization of the MLE objective

function. Moreover prior knowledge can be encoded if the parameters are estimated

in a Bayesian setting [12]. However, land use module of an ILUTM has an unique

nonlinear structure, with no known regularizer. On the other hand, a priori information

in terms of expert opinion may be available and can be used to approximate a prior
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probability density function (PDF) if Bayesian estimation is performed. However, it is a

challenging task in itself to encode expert opinion in terms of prior PDF. In this work,

prior knowledge about the land use parameters has been used to find appropriate ranges

of parameters as well as the starting point for the nonlinear programming (NLP) solver,

used to solve the MLE optimization problem.

A lot of work has been done on regarding uncertainty analysis in land use and

transportation models [25, 6]. These research mainly focus on propagation of uncertainty

during calibration of parameters and prediction of land use and transportation scenarios,

and sensitivity analysis of the land use and transportation parameters. As far as parame-

ter estimation is considered, Sevcı́ková et al. have used Bayesian melding, where they use

maximum a posteriori estimation, to find optimal parameters in UrbanSim, an ILUTM

[26]. Likewise, Clay et al. have investigated on multivariate uncertainty analysis along

with validation exercises for MEPLAN [27]. But a comprehensive analysis, where the

uncertainties have been modeled to follow a certain random process, and furthermore

calibration in presence of uncertainties has largely been ignored. In this work we have

taken into account uncertainties while analyzing the land use part of land use and

transportation models. The observed data of the land use module is modeled to admit a

Gaussian error. The land use and transportation modeling system used here is TRANUS.

We have applied MLE to calibrate the land use part of TRANUS, which is used to model

the city of Grenoble, France. TRANUS has been used by city planners and modelers

to predict future land use and transport structures in many cities [28]. It uses several

discrete choice logistic regression models, which are linked consistently with each other.

Detailed description of the TRANUS modeling philosophy is omitted here and can be

found in [28].

This paper has two key contributions. First, we show how the observation errors of

the land use module of TRANUS can be modeled as a Gaussian process, which further

enables the use of nonlinear regression techniques for parameter estimation. Secondly,

we show that calibration of the land use module of TRANUS can be done by solving an

optimization problem in ML framework. Further, we provide strong numerical results

suggesting that the proposed calibration technique is superior than the traditionally

used calibration methodology when applied to Grenoble model of TRANUS.
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The rest of the paper is organized as follows: in Section 2, the technique of MLE

is introduced, and calibration methodology using MLE is presented in context of land

use models. In Section 3, the TRANUS land use algorithm is introduced, and a calibra-

tion algorithm is proposed using MLE. Finally in Section 4, we present the results of

application of the proposed calibration algorithm on the land use model of Grenoble,

France.

(a) Division of zones for the Grenoble model. (b) Grenoble transportation network.

Fig. 1. Figure representing division of zones in the Grenoble urban agglomeration. The

left figure is a map of Grenoble urban area and shows how it is divided into geographical

zones. The right figure shows how they are interconnected through transportation

network. TRANUS finds the production values for each sector in table 1 in each zone.

The figures are not to scale.

2 CALIBRATION USING MAXIMUM LIKELIHOOD ESTIMATION

Consider a vector valued function f : Dy × Dρ 7→ DX , and let X ∈ DX ρ ∈ Dρ and

y ∈ Dy be the vector of outputs, parameters and input data respectively, where Dρ ⊂ Rp,
Dy ⊂ Rn and DX ⊂ Rq, and q, n, p ∈ N. p is the number of parameters in the model and

n and q are sizes of input and output vectors respectively.

Let Xo ∈ DX ∈ Rn be the vector of random observed outputs. The calibration task

involves finding the parameters ρ such that the outputs of the model X are consistent

with the observations Xo. If the observations are modeled as in conventional nonlinear
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regression analysis, then

Xo = f(y, ρ) + η, (1)

where η is the error between observed and modeled behavior. Let us assume that

η ∼ P(η; θ), where θ ∈ Dθ ⊂ Rr are the parameters of the PDF of η also called the

“hyperparameters”.

In ML framework, we obtain the estimates of ρ and θ by maximizing the likelihood

function. The parameters and the hyperparameters form an extended parameter space

ϕ = [ρ, θ]>, ϕ ∈ Dϕ ⊂ Rr+p, from which the optimal estimates are found. In other words,

the estimate ϕ, maximizes the probability that the modeled behavior is in agreement

with the observations, hence

ϕ̂ = argmaxϕ∈Dϕ
L[ϕ|Xo; y], (2)

where L(·|·) is the likelihood function and ϕ̂ is the ML estimate. Likelihood function gives

us the conditional probability of observing Xo given the parameters ϕ and the input

data y, which can be written as P(Xo|ϕ, y). Hence, it is a function of ϕ for a given value

of Xo and y.

If there are s independent and identically distributed (i.i.d.) observations, X1
o , . . . , X

s
o ,

obtained from s input sets, i.e. y1, y2, . . . , ys, it is customary to find ϕ̂ that maximizes

the joint density of the i.i.d. samples, in other words,

ϕ̂ = argmaxϕ∈Dϕ

s∏
i=1

L(ϕ|X i
o; y

i).

In practice, it is easier to optimize the logarithm of the likelihood function, especially

if the PDF of the observation process belongs to the exponential family. Then resulting

function is called the log likelihood function. Thus, the optimization problem is given as

ϕ̂ = argmaxϕ∈Dϕ

s∑
i=1

log
[
L
(
ϕ|X i

o; y
i
)]
. (3)

The ML estimation problem is generally solved as an unconstrained optimization prob-

lem. However, in the presence of constraints between input parameters a constrained

optimization problem can be solved. In such cases the optimization problem is written
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as,

max
ϕ∈Dϕ

s∑
i=1

log
[
L
(
ϕ|X i

o; y
i
)]
,

subject to

g(ϕ) ≤ 0, h(ϕ) = 0, ϕ ∈ [ϕl, ϕu] , (4)

where g(ϕ) and h(ϕ) are bounded nonlinear functions. The calibrated parameter ϕ̂ is

obtained by solving the above optimization problem.

2.1 MLE of a Nonlinear Model with Gaussian Error

If the model outputs are X = f(y, ρ) and X ∈ L2, then it is customary to assume

that η follows a zero mean Gaussian process, hence η ∼ N (η; 0, Σ(θ)), where θ are the

hyperparameters of the Gaussian covariance kernel, Σ(θ) ∈ Rq×q. Assuming ϕ = [ρ, θ]>,

from (1) the conditional PDF of the observations given the inputs and the parameters,

can be written as,

P[Xo|ϕ, y] = L (ϕ|Xo; y) =
1√

(2π)q|Σ(θ)|
e−

1
2
[Xo−f(y,ρ)]>Σ(θ)−1[Xo−f(y,ρ)]. (5)

where P[Xo|ϕ, y] is the conditional PDF of the observations (Xo) given the parameters

(ϕ = [θ, ρ]>) and L (ϕ|Xo; y) is the likelihood function. q is the size of the output vector.

If there are s i.i.d. observations, the likelihood function will be the product of s terms

having same form as (5). The constrained MLE objective function in (4) is then given

by,

min
ϕ∈Dϕ

s∑
i=1

[
1

2

[
X i
o − f(yi, ρ)

]>
Σ(θ)−1

[
X i
o − f(yi, ρ)

]]
+
s

2
log (|Σ(θ)|) . (6)

The estimated parameter ϕ̂ is the argument that minimizes the above optimization

function subject to the constraints in (4).

2.2 Special Case for Land Use Models

Let f(·, ·) be the land use model and Xo be the observed data corresponding to outputs

of the model. The constraints on the parameters are linear and are generally given by
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inequalities. Hence, the MLE optimization problem in (4) can be formulated as,

min
ϕ∈Dϕ

s∑
i=1

[
1

2

[
X i
o − f(yi, ρ)

]>
Σ(θ)−1

[
X i
o − f(yi, ρ)

]]
+
s

2
log (|Σ(θ)|) ,

subject to,

Aρ ≤ b, (7)

where A ∈ Rh×p represents the linear constraint matrix and b ∈ Rh is a vector. Note that

we have included the upper and lower bound information of the parameters in matrix

A. An example of how matrix A is constructed will be given in Section 4. The objective

function in (7) can be augmented to form the Lagrangian from where the first order

necessary conditions for optimality can be derived. Let µ ∈ Rh be the Karush Kuhn

Tucker (KKT) multipliers. Then using properties of matrix derivatives and utilizing the

fact that the objective function is a scalar, the derivative of the ML objective function

can be obtained,

∂L(ϕ|Xo; y)

∂ϕ
= −

s∑
i=1

[
∂f(yi, ρ)

∂ϕ

>

Σ(θ)−1
[
Xi

o − f(yi, ρ)
]]

+A>µ+
s

2
Tr

[
Σ(θ)−1 ∂Σ(θ)

∂ϕ

]

−1

2
Tr

[
Σ(θ)−1 ∂Σ(θ)

∂ϕ
Σ(θ)−1

s∑
i=1

[
Xi

o − f(yi, ρ)
] [
Xi

o − f(yi, ρ)
]>]

. (8)

Elementary matrix operations used to derive the above equation can be found in

Appendix A and a discussion on how the derivatives are calculated is in Appendix

C. At optimality, the first order optimality conditions and the complementary slackness

condition must be satisfied. Moreover the optimal solution must satisfy the constraints

too. Hence, the optimal solution is obtained by solving the following system of equations

simultaneously,

s∑
i=1

[
∂f(yi, ρ∗)

∂ϕ∗

>
Σ(θ∗)−1

[
Xi

o − f(yi, ρ∗)
]]
−A>µ∗ −

s

2
Tr

[
Σ(θ∗)−1 ∂Σ(θ∗)

∂ϕ∗

]

+
1

2
Tr

[
Σ(θ∗)−1 ∂Σ(θ∗)

∂ϕ∗
Σ(θ∗)−1

s∑
i=1

[
Xi

o − f(yi, ρ∗)
] [
Xi

o − f(yi, ρ∗)
]>]

= 0, (first order optimality,) (9a)

µ>I(Aρ∗ − b) = 0, (complementary slackness,) (9b)

Aρ∗ ≤ b, (primal feasibility,) (9c)

µ ≥ 0, ∀µ, (dual feasibility,) (9d)

May 3, 2013 DRAFT



9

where I = Ih×h in (9b) is the identity matrix. The above problem can be solved by using

an appropriate NLP solver. For the current work, we have used NLP solvers based on

sequential quadratic programming.

3 CALIBRATION OF TRANUS LAND USE MODEL

The land use model of TRANUS [28] is based on random utility theory [29]. Typically

it combines traditional input output model with multinomial logit model for allocation

of activities and land use. The final output is obtained by recursively solving a set of

nonlinear algebraic equations. An intense mathematical description of the model can

be found in [29, 30].

Input-output models characterize interactions between market elements, aggregated

into economic sectors. The model calculates flow of commodities or services between

sector, giving rise to productions and demand. For a multiregional model, flow can occur

between different regions, adding a spatial element. The different regions are called

geographical zones. If the region of interest is a city then an example of a geographical

zone may be a neighborhood near an university or near an industry in the city and economic

sectors can be students or industry workers.

The inputs to a multiregional input-output model are final demand and primary inputs

for each sector and zone. From these inputs the intermediate demands are calculated. To

meet the intermediate demand, production of services and commodities is required. The

total production for a sector in a zone is essentially seen as the output of the model. If

the multiregional input output structure is determined by a multinomial logit model,

we have the random utility based multiregional input output (RUBMIO) model.

In this work we calibrate the parameters of the TRANUS land use algorithm which

is based on RUBMIO theory.

3.1 Description and Governing Equations for TRANUS

In the literature there are several descriptions of TRANUS [31, 30], which are not exactly

identical but share the same principles. The differences are in fact rather minor. Here,

we use the mathematical equations detailed in Ref. [30].

May 3, 2013 DRAFT
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Let us have M economic sectors and J geographical zones. Let Y m
i ∈ RM×J represent

the matrix of final demand of sector m ∈ N[1,M ] in zone i ∈ N[1, J ]. Consider the tensor

of technical coefficients, amnj ∈ RM×M×J , which is a function of υmn, the demand elasticity

of sector m with respect to goods produced in sector n; and P n
j , which is the price of

sector n in zone j. amnj is denoted by function described as amnj = F(P n
j , υ

mn) (Chapter

5 in Ref. [30]). In TRANUS framework, the demand elasticity υmn is further a function

of Xmn and Xmn
which are the maximum and minimum requirement of sector n per

unit of sector m respectively; and δmn which is the elasticity of sector m with respect to

cost of sector n (Chapter 6 in Ref. [30]). Let us also, consider the utility function tensor

V n
ij ∈ RM×J×J which is calculated as follows:

V n
ij = ϑnξj + tnij, (10)

where ξj is the value of land (real estate) in zone j, tnij is obtained from the transport

model and is the transport disutility for sector n for transportation from production zone

i to consumption zone j and ϑn is a parameter for regulating the importance of ξnj as

compared to transport disutility (Chapter 6 in Ref. [30]).

The intermediate demands and final production outputs of TRANUS are calculated

using a nested multinomial logit model. Let us consider that the random dispersion

parameter of the multinomial logit model is given by βn ∈ RM . Looking at how amnj

and V n
ij are calculated, we can say that the primary inputs to the land use model consists

of Xmn, Xmn
, δmn, P n

j , βn, ϑn, ξj and tnij .

The intermediate demand in the first iteration is given by

1Dmn
ij = Y m

i a
mn
j

exp (−βnV n
ij )∑

k

exp (−βnV n
kj)
, (11)

where 1Dmn
ij represents the amount of commodities or services of sector n required in

zone j due to the final demand of m in zone i at the first iteration. Hence the total

requirements for sector n in zone j is then

1Rn
j =

∑
i

∑
m

1Dmn
ij . (12)

As mentioned earlier, the calculation of intermediate demand is done iteratively. Hence

for successive iterations, if n,m ∈ RM are economic sectors and i, j ∈ RJ are geographical
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zones, the requirement of nth sector located in jth zone in rth iteration is

rRn
j =

∑
i

∑
m

rDmn
ij , (13)

where, rDmn
ij = r−1Rm

i a
mn
j

exp (−βnV n
ij )∑

k

exp (−βnV n
kj)
. (14)

If the equilibrium is achieved after p iterations then the total amount of sector n in zone

j required to be produced is given by

pXn
j =

p∑
r=1

rRn
j + Y n

j , (15)

where pXn
j is the total production of sector n in zone j and the output of TRANUS land

use model.

3.2 Traditional Calibration Methodology

Traditionally ILUTMs are calibrated manually, using feedback from past experience. This

is a very cumbersome job and needs expertise based on practice. In practice, calibration

of ILUTMs like TRANUS is difficult to achieve, as correcting the parameters to obtain

an optimal solution is a delicate task. This calibration method is performed by trial-and-

error, where some goodness of fit metric is numerically computed and used to guide

the modeler. The calibration can typically take up to 6 months for a medium size model

(about 100 geographic zones, about 10 sectors).

3.3 Calibration Algorithm Using MLE

In this work, we apply MLE to calibrate primary inputs of the land use module of

TRANUS. The land use module of TRANUS is represented in a similar way as (1), where

f(·, ·) is the TRANUS land use algorithm and Xo are the observed land use production

values. It can be shown that under certain conditions, the outputs of RUBMIO models

like TRANUS are L2(P) regular (see Appendix B). Hence, the errors in observations are

modeled to follow a Gaussian process.

Xmn, Xmn
, δmn, ϑn and βn constitute the space of parameters (ρ); and the input space

(y) consists of Y n
j , P n

j , ξj and tnij . The parameters are estimated given the inputs and the
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observed land use production outputs. Moreover η is modeled as a Gaussian process

with unknown covariance. The hyperparameters (θ) of the Gaussian covariance kernel

are estimated by solving the MLE optimization problem.

It is well documented that land use and transportation models suffer from lack of data

[11, 32]. This is true for most TRANUS models, including the current application. The

government agencies collect land use data from population and transportation statistics,

maintain them in a form which is not readily usable as inputs and outputs of the land

use module of TRANUS. To obtain a set which is compatible with the land use module,

data integration is required, which in effect reduces the amount of data available as

observation replicates [33]. Even obtaining the said data is difficult, expensive, as well

as time consuming. For example, for the present work, integration of data took around

6 months of time. Hence, often the modeler is left with only a single set of replicate. In

such cases, constituting the MLE objective function is a difficult task.

To circumvent this problem we have adopted an approach where the observation

replicates are created from a single set of observed land use outputs. In other words,

let us have M economic sectors and J geographical zones. Then we have a matrix of

M × J land use data available to work with. At first we divide the zones (columns)

into training and test zones, by selecting them randomly. Then within test and training

sets, observed output of each sector is assumed to be an i.i.d. observation. However,

for a given sector observed output of a zone is assumed to be dependent on outputs of

other zones of the same sector. Hence given a zone, observations for each sector within

that zone are independent, but given a sector, observations for zones within that sector

are not independent. To describe the approach mathematically, let the observed data

for sector n and zone j be given by Xn
oj and the corresponding inputs be y = ynj , where

n = 1, . . . ,M, j = 1, . . . , J . Let the number of training zones be Jtr and test zones be

Jt, where N[1, Jtr] ⊂ N[1, J ] and N[1, Jt] ⊂ N[1, J ]. Then the training data is is given by

X̄o = {X̄n
oj} = {Xn

oj}Jtrj=1 and the test data is given by X̃o = {X̃n
oj} = {Xn

oj}Jtj=1, ∀ n ∈
N[1,M ]. Amongst training sets we have

P
(
X̄1
ojX̄

2
oj . . . X̄

M
oj |ϕ, y

)
= P

(
X̄1
oj|ϕ, y

)
× P

(
X̄2
oj|ϕ, y

)
. . .× P

(
X̄M
oj |ϕ, y

)
, ∀ j = 1, . . . Jtr,

May 3, 2013 DRAFT
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and similarly for test sets:

P
(
X̃1
ojX̃

2
oj . . . X̃

M
oj |ϕ, y

)
= P

(
X̃1
oj|ϕ, y

)
×P

(
X̃2
oj|ϕ, y

)
. . .×P

(
X̃M
oj |ϕ, y

)
, ∀j = 1, . . . Jt.

This describes the independence of sectors for a given zone j. But, within training and

test sets the following is true,

P
(
X̄n
o1X̄

n
o2 . . . X̄

n
oJtr |ϕ, y

)
6= P

(
X̄n
o1|ϕ, y

)
×P

(
X̄n
o2|ϕ, y

)
. . .×P

(
X̄n
oJtr |ϕ, y

)
, ∀n = 1, . . .M,

and

P
(
X̃n
o1X̃

n
o2 . . . X̃

n
oJt |ϕ, y

)
6= P

(
X̃n
o1|ϕ, y

)
×P
(
X̃n
o2|ϕ, y

)
. . .×P

(
X̃n
oJt |ϕ, y

)
, ∀n = 1, . . .M,

which shows dependence of zones for a given sector n.An important point to note is

Jt is fixed to a certain value while Jtr is varied, hence we always have Jtr + Jt ≤ J .

Although the methodology described above is not ideal, our goal here is obtain best

possible approximation of i.i.d. observation replicates from the limited data available.

Due to the connection of land use module to transportation network there is a pro-

duction demand and supply loop between geographical zones of a given sector, which

leads to strong correlation between them. However, from prior knowledge of TRANUS

implementation, we can say that the production output of economic sectors for a given

zone are weakly dependent on each other [28, 34]. Hence, the aforementioned approach

is justified. A generic way of obtaining observation replicates from the available data

will be addressed in our future work.

At first the initial guess for the MLE optimization problem in (7) is obtained by

randomly sampling the parameter space using Monte Carlo sampling (accept-reject

procedure) to get Ns number of samples. The ML objective function is then calculated

after obtaining the outputs from TRANUS. While sampling, an uniform distribution is

assumed on the parameters and the parameter ranges are obtained from expert opinion.

The accept-reject procedure makes sure that for each sample the constraints on the

parameters are not violated. The sample providing the lowest objective function value,

in (7) with s = M , is considered as the initial guess. Point to note here is that to get the

initial guess, no distinction is made between test and training zones and each of the s

observations is of size J .
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To obtain the optimal parameter values from the training set, a NLP problem is solved,

which is formulated according to (7), with constraints upon the land use parameters

taken into account. Let the calculated land use assignment values be denoted by X̃, for

all sectors and all test zones. The calibration task is achieved if the square of the L2

norm of the error between observed and calculated values, also called the quantity of

interest (QoI), for the test set is less than a prespecified value (Qd).

Q = ||X̃− X̃o||22 < Qd. (16)

The whole algorithm is shown in Algorithm 1.

For the TRANUS run during optimization, parameters (ρ) for all the sectors and

zones are considered. However, TRANUS takes in the inputs (y) for only the zones that

are considered as training sets, during training; or inputs for test sets, when the test

cases are run. The rest of the inputs are assumed to be zero. Similarly, while evaluating

the MLE objective function only the outputs (X) of the training sets are compared to

their respective observations (Xo), while training; and the outputs of the test sets are

compared to the observations of the test sets after they have been run.

4 APPLICATION TO CALIBRATE THE GRENOBLE MODEL

In this section, we have applied the proposed algorithm based on MLE to calibrate the

TRANUS model of Grenoble, France [6]. The results obtained from the proposed model

are compared to a traditionally calibrated model of Grenoble, against the QoI given in

(16). It is observed that, the proposed MLE based algorithm improves the calibration

results significantly.

4.1 Description of the Land- Use Model

The Grenoble model considers 21 economical sectors. The economic sectors consists

of employment, population and real estate. The real estate represents work place or

residence for the population, and population tends to choose the place of residence

based upon employment. The sectors that are used for the Grenoble model is given

in Table 1. The data for calibrating the land use model are obtained from INSEE1,

1. Institut National de la Statistique et des Etudes Economiques
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Algorithm 1 TRANUS calibration using MLE
Require: M,J ∈ N, . Sector and zone definitions.

Xn
oj . Observed production values.

ϕl, ϕu . Parameter ranges.

ynj . Input values.

f(·, ·) . TRANUS land use structure.

Jtr . Training zones.

Jt . Test zones.

Qd . Desired QoI value.

1: {ϕk}Ns
k=1 ←MC[Uniform(ϕl, ϕu)]. . Get samples assuming uniform distribution on

parameters using accept reject procedure.

2: Xo = [Xn
oj] ∀j = 1, . . . , J ; n = 1, . . . ,M . . Vector of all observations.

3: for k = 1 to Ns do

4: Lk(ϕk|Xo; y)← L[ϕk|Xo; y]. . Lk(·|·) refers to the augmented Lagrangian of (7)

for kth sample.

5: end for

6: ϕ0, K0 ← argmink∈[1,Ns] Lk[ϕk|Xo; y]. . Get the initial guess. K0 is the index.

7: K0 = NULL . Rejected initial guess set.

8: repeat

9: X̄o ← {Xn
oj}Jtrj=1 . Get the data in training zones (Jtr).

10: ϕ̂← argminϕ∈Dϕ
L[ϕ|X̄o; y]← NLP(L[ϕ|X̄o; y], ϕ0) . Calibration. Using (7)

11: X̃o ← {Xn
oj}Jtj=1, . Get the data in test zones (Jt).

12: X̃n
j ← f(ynj , ϕ̂) ∀j ∈ [1, Jt], n ∈ [1,M ], . Run TRANUS for test zones.

13: X̃← [X̃n
j ] ∀j = 1, . . . , Jt; n = 1, . . . ,M . Vector of calculated test outputs

14: Q← ||X̃− X̃o||22 . Validation. Q is the QoI

15: if Q > Qd then

16: K0 ← [K0, K0] . Augment the set of rejected initial guesses.

17: ϕ0, K0 ← argmink∈[1,Ns]�K0
Lk[ϕk|Xo; y] . Get the initial guess.

18: else

19: ϕoptimal = ϕ̂ . Do nothing, optimality reached.

20: end if

21: until Q < Qd
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AURG2, UNEDIC3 and EMD4, for the year 2010. These data have been processed to

obtain population and employment by type and by zone as well as the prices of the

real estate. The sector classification is based upon the kind of data available and how

important is a sector towards land use and policy decisions.

TABLE 1

Description of the sectors.

Sector number Description Sector Type

1 Industrial employment Employment

2 Public employment Employment

3 Offices, research & development employment Employment

4 Retail employment Employment

5 School employment Employment

6 Household income (rich) Population

7 Household income (above average) Population

8 Household income (below average) Population

9 Household income (poor) Population

10 Students Population

11 Individual housing Real estate

12 Apartment Housing Real estate

13 Land for economic activities Real estate

14 Land for shops in urban area Real estate

15 Social housing Real estate

16 University Employment

17 Retail employment (less frequent) Employment

18 Supermarket employment Employment

19 Retired income (rich) Population

20 Retired income (poor) Population

21 Land for other commercial ventures Real Estate

2. Agence d’Urbanisme de la Région Grenobloise

3. Union Nationale Interprofessionnelle pour l’Emploi dans l’Industrie et le Commerce

4. Enquète Ménage Déplacement
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4.2 Description of the Transportation Network

The Grenoble urban agglomeration is divided into 225 geographical zones, and the

transport network is composed of 2413 nodes. The data of the transport network are

obtained from the SMTC5. The transport data on peak hours are mainly gathered

from SMTC, AURG, INRETS6 and the survey EMD made on Grenoble in 2010. The

transportation network along with the geographical zones for the Grenoble model is

shown in Fig. 1. In this work we do not calibrate the transportation network. The

transportation model parameters are assumed to be known and constant throughout the

calibration process of the land use model. However, in future we do plan to calibrate

both land use and transportation parameters together.

4.3 Calibration of the Grenoble Model Using MLE

For the Grenoble model, the parameters that are assumed to be unknown are the cost

elasticity parameters (δmn), the minimum and maximum requirement parameters (Xmn,

and Xmn
), the scaling parameter ϑn and the dispersion parameter (βn) (please refer to

Section 3 for their definitions). Amongst 210 possible choices of m and n, 22 of δmn

and 21 each of Xmn, and Xmn
are assumed to be uncertain. For the other parameters,

amongst 21 choices, 8 of βn and 18 of ϑn are uncertain parameters. Hence, in all, there are

90 land use parameters which are to be estimated. The choice of uncertain parameters

is based upon expert opinion about the TRANUS Grenoble model and its parameters.

As for the covariance of the Gaussian model, it is assumed that the error between

observed and calculated total production (Xn
j ) for each sector is uncorrelated to each

other. The covariance kernel is constructed based on the independence structure given

in Section 3.3. For computational simplicity, in the Gaussian covariance kernel, each

sector is assumed to be represented by a single hyperparameter, hence the number of

hyperparameters to be estimated are 21. If referred to Section 2, p = 90 and r = 21.

The number of outputs and inputs depend on number of test or training zones used,

5. Syndicat Mixte des Transport en Commun

6. Institut National de REcherche sur les Transports et leur Sécurité
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hence n = q = number of training/ test zones×number of sectors. s is the number of

independent observations which here is the number of sectors, 21.

Several experiments are performed to obtain the structure of the covariance kernel,

which would give the lowest value of MLE objective function, while satisfying the

constraints. If θn is the hyperparameter for sector n, the structure of the Gaussian

covariance kernel that gives us the best result is given by, Σij(θ
n) = αθn, with θn > 0,

i, j = 1, . . . , Jtr ×M while training and i, j = 1, . . . , Jt ×M when test sets are used and

n = 1, . . . ,M is the hyperparameter number. The parameter α = 1, for i = j and α = 0.1,

for i 6= j. Hence, the total number of parameters to be estimated is 111.

The constraint matrix A for the MLE of TRANUS Grenoble model mainly consists of

bounds on the cost elasticity parameters, δmn. The total number of constraints on the

elasticity parameters are 16. They are given in (17a) to (17g). The superscripts here refer

to sector numbering as given in Table 1.

δ6,11 ≤ δ7,11, δ7,11 ≤ δ8,11, (17a)

δ6,12 ≤ δ7,12, δ7,12 ≤ δ8,12, δ8,12 ≤ δ9,12, (17b)

δ8,16 ≤ δ9,16, (17c)

δ20,11 ≤ δ21,11, δ20,12 ≤ δ21,12, (17d)

δ6,11 ≤ δ6,12, δ7,11 ≤ δ7,12, (17e)

δ8,16 ≤ δ8,11, δ8,11 ≤ δ8,12, δ9,16 ≤ δ9,12, (17f)

δ20,11 ≤ δ20,12, δ21,16 ≤ δ21,11, δ21,11 ≤ δ21,12 (17g)

The constraints come directly from the TRANUS mathematical description in Ref. [31],

and expert opinion about elasticity parameters of the Grenoble model.

4.3.1 Computational Aspects

The Monte Carlo simulations to generate the initial guess sets, were done in Grid5000

which has around 7000 active cores, equipped with Intel Xeon and AMD Operaton

processors [35]. The time taken to run one simulation of TRANUS Grenoble model

is 10 minutes. 2000 Monte Carlo sets are generated to get the best initial guess, with

batches of 80 sets generated in parallel. Figure 2 shows how the total computational
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time varies with number of cores used, for one batch of 80 Monte Carlo sets. Ideally

the scaling should be linear. However the graph here takes into account delays due

job scheduling in Grid5000, message passing and other network based delays, which

explains the nonlinear behavior of the graph.
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Fig. 2. Computational time comparison to run 80 Monte Carlo sets for TRANUS Grenoble

model. We can see that the computational time taken (dashed line) almost scales linearly

with number of processors (cores) used.

Large scale NLP solvers were used to solve the optimization problem. The software

used here is OpenOpt, which is written in Python programming language [36]. The

NLP solver uses line search methods based on sequential quadratic programming. The

optimization problem has not been scaled here. It is our future goal to develop a scalable

algorithm for calibrating land use and transportation models.

4.3.2 Comparison to Traditionally Calibrated Model of Grenoble

In this work we compare the calibrated model of Grenoble using the proposed algorithm

and one calibrated traditionally. The description of the traditionally calibrated model of
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Grenoble is not discussed here and can be found in Ref. [28] and in some parts of Ref.

[6].

First we show that the calibration algorithm proposed here is consistent. As the ML

estimator is asymptotically efficient, the estimate is expected to be closer to the true

solution as the number of training sets are increased. Hence the QoI value for the test

sets should decrease. Figure 3 shows plot of the QoI for the test cases w.r.t increase in

number of training zones. It is observed that QoI decreases as number of training sets

are increased. Hence, we can say that the proposed algorithm is able to consistently

estimate the land use parameters.
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Fig. 3. Figure showing the plot of the quantity of interest (for the test cases) vs. the

number of training zones. It can be seen that the quantity of interest decreases as number

of training cases increase.

The traditional calibration technique yielded a QoI value of 9.42, which is almost 70

times more than the worst QoI value obtained using the proposed algorithm. Hence,

it can be said than the proposed calibration algorithm outperforms the traditional

calibration technique, when compares using the QoI in (16).
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4.3.3 Likelihood Ratio Test

Due to Gaussian process approximation, the proposed calibration methodology has

more parameters to be calibrated than the traditional approach. The additional parame-

ters are the hyperparameters of the Gaussian covariance kernel. The proposed method,

is expected to perform better than the traditional technique as it has more “degrees of

freedom”. The extra degrees of freedom are supposed to help in yielding a better ap-

proximation of the true land use and transportation scenario. So, for proper comparison,

we have performed a likelihood ratio test between the traditional and proposed models.

Detailed discussion on likelihood ratio test can be found in Ref. [37].

For the likelihood ratio test we consider all the 225 zones as training zones. The null

hypothesis H0, is that the traditionally calibrated model is better than the one calibrated

using proposed method and is accepted at a significance level α = 0.05. The degrees of

freedom for the test is 21. Let the traditionally calibrated parameters be ϕ̌ and the ones

obtained using the proposed method be ϕ̂. The test statistic is obtained as,

X2 = −2 log

[
L(ϕ̌|Xn

oj; y)

L(ϕ̂|Xn
oj; y)

]
= 18.5597 > X 2

0.95,21 = 11.591, j ∈ N[1, 225], n ∈ N[1, 21].

Hence, the null hypothesis is rejected. In other words, this means that for the current

application, chance of the traditionally calibrated model being better than the proposed

model is less than 5%.

4.3.4 10-fold Cross Validation

In this section, we use 10-fold cross validation technique to verify if the MLE based cal-

ibration algorithm is consistent and is able to reduce the variance in mean square error.

Interested readers are directed to Ref. [38] for a detailed treatise on cross validation.

For the validation experiment, observation replicates are chosen assuming a similar

independence structure amongst sectors and zones as described in Section 3.3. In this

work, the number of observation replicates is M , which is the number of sectors. Folds

are chosen from the available replicates, hence each fold has a size of M
10

approximately.

Furthermore, we vary the number of zones in a single fold. We investigate if proposed

calibration methodology is able to reduce the mean squared error variance for the test fold,

as the number of zones is increased. Given a fold, the zones are chosen randomly from
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the available J zones. For the kth fold, if the set of zones is represented by Jf (k) ⊂ N[1, J ],

and the observation replicates are Mf (k) ⊂ N[0,M ], then the mean squared error is given

by,

MSE(k) =

∑
n∈Mf (k)

∑
j∈Jf (k)

(Xn
j −Xn

oj)
2

#Jf ×#Mf

, (18)

where #S refers to the number of elements in set S. Rest of the symbols have their

usual meaning.

In Fig. 4 we have plotted the variation of the mean square error as the number of zones

in a fold (#Jf in (18)) is varied. We select ten folds from the available 21 observations

sectors with #Mf fixed to 2. The fold for which MSE is calculated is the test fold. We

can see that as the number of zones increase the proposed technique is able to reduce

the mean as well as converge the ±3σ limits of MSE for the test fold. It can be said that

as the number of zones in a fold is increased, the confidence in the parameter estimates

obtained by the proposed methodology increases.

An important point to note is that for the same number of zones the results in Fig. 4

is worse than that in Fig. 3. This happens because for the cross validation we use only

#Mf = 2 replicates per fold, however for the algorithm presented in Algorithm 1 all

the 21 replicates are considered.

4.3.5 Confidence Intervals of Estimation

Figure 5 shows plots for confidence interval of the estimate obtained by solving the

MLE optimization problem. The confidence intervals are computed using the normal

approximation of the estimation error, where the standard error is the square root of the

inverse of the Fisher information matrix [39]. The parameters Xmn and Xmn
, have the

units of Xn
j , which in the present case is the unit of population or real estate depending

upon the sector. However δmn, βn and ϑn are dimensionless. An important point to note

here is that, similar to Section 4.3.3, all the 225 zones are used for training in this case.

The red lines represent 95% confidence intervals and the green lines represent range

of initial uncertainty in the parameters. It can be seen the 95% confidence intervals are

more localized than the initial uncertainty for most of the parameters. Hence, it can be

said that, MLE is able to reduce the dispersion of uncertainty effectively for majority
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Fig. 4. Figure showing the plot of mean (blue line) and ±3σ limits (red bars) for MSE

of the test fold. It can be seen that as the number of zones in a fold increases the mean

decreases and ±3σ limits converge.
of the parameter space. In other words, the proposed estimation methodology could

capture the localization of uncertainty effectively.

Comparison to the confidence intervals of the traditionally calibrated model could

not be done for the Grenoble model, as it was not possible to obtain such an opinion,

and is a subject of future research.

5 CONCLUSION AND FUTURE RESEARCH DIRECTION

In this work we present an algorithm to calibrate the land use module of an integrated

land use and transportation model. The algorithm developed solves an optimization

problem based on maximum likelihood estimation to get the calibrated parameters,

and approximates the error in the observed data to follow a Gaussian process.

The proposed algorithm is then applied to calibrate the parameters of the Grenoble

model of TRANUS, which is an integrated land use and transportation model. The
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(d) Dispersion parameter (βn).
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Fig. 5. Plot of the parameters estimates obtained using MLE and 95% confidence intervals

(red lines) and initial uncertainty (green lines). Xmn and Xmn
have the same units as Xn

j .

Rest of the parameters are dimensionless.
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performance of the algorithm is then compared to the traditional calibration technique,

which is based on expert opinion; against a prespecified quantity of interest. It was found

that the proposed calibration methodology outperforms the traditional method.

In future, our first aim is develop a generic way of solving the MLE optimization

problem for the TRANUS Grenoble model. The current method uses one data set

to create observation replicates and also assumes an independence structure between

economic sectors. Our goal is to obtain replicates such that the independence assumption

can be relaxed. Also in future, we will like to calibrate the model using Bayesian

estimation. Prior PDFs of the land use parameters, can be obtained using expert opinion

and the data. Moreover, we expect to calibrate the transportation and land use model

together, using techniques of maximum likelihood estimation as well as in Bayesian

framework. Validation over time is also important to evaluate the prediction capabilities

of the calibrated model using data from future, which is one of our future goals too.
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S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: A large scale and highly recon-

figurable experimental grid testbed,” International Journal of High Performance

Computing Applications, vol. 20, no. 4, pp. 481–494, 2006.

[36] D. Kroshko, “Openopt,” Software package downloadable from http://openopt.org,

2007.

[37] L. Crocker and J. Algina, Introduction to classical and modern test theory. ERIC,

May 3, 2013 DRAFT

http://openopt.org


29

1986.

[38] P. A. Devijver and J. Kittler, Pattern recognition: A statistical approach. Pren-

tice/Hall International Englewood Cliffs, NJ, 1982.

[39] R. Fisher, “On the mathematical foundations of theoretical statistics,” Philosophical

Transactions of the Royal Society of London. Series A, Containing Papers of a

Mathematical or Physical Character, vol. 222, no. 594-604, pp. 309–368, 1922.

Parikshit Dutta Parikshit Dutta is a postdoctoral associate in Department of Civil and Environ-

mental Engineering at Duke University. Prior to joining Duke he was a part of STEEP research
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