Some Aspects of Describing Processes in Sliding Vane Rotary Machines

Z. Gnutek
Technical University of Wroclaw; Poland
E. Kalinowski
Technical University of Wroclaw; Poland

Follow this and additional works at: https://docs.lib.purdue.edu/icec

[^0]
SOHE ASPECTS OF DESCRIBING PROCESSES
 IN SLIDING-VANE RDTARY MACHINES

Zbigniew Gnutek, Eugeniusz Kalinowski
Institute of Heat Enginesping and Fluid Mechanics
Technical University of UrocYan, Uroclaw, Poland

Abstract

In the paper, various aethode of geometrical description of sliding-vane rotational eachines, as found in publications, are considered. Choice and modification of one of then has bean proposed. With regard to precise analysis, formulae have been obtained to calculate the morking chanber volung for any chamber position and for any type of sliding-vane rotational nachine.

Komenclature:
A - crosesectional area
b - vane thickness
e - eccentricity
L - length of working chanber
r - rotor radius
$R=$ cylinder radius
$V \rightarrow$ volume
y $=$ radial clearance
λ - angle between successive vanes
$\rho=$ radius vector
$\varphi=$ applitude; angular coprdinate
$\psi=$ vane/rotor radius inelination angle

1. Introduction

Many publications appeared in recent years discussing theoretical and erperiaental results of tests on sliding-vane rotary achines (see for example [1, 2, 3,4$]$). A number of ethods have been used in them to describe mechanical, thermodynanic and flow processes and to carry out the geometric, kineatic and dynaaic analysis of sliding-vane aachines; various caordinate systens are therein applied, This eakes it difficult to compare the results abtained and leads often to eisunderstandings. Besides, it aakes superfluous variables apprar sometioes in the mathematical model.

Geometric fore of sliding-vane rotational aachines implies, that values required to describe the achine operation (like cross-sectional area of the morking chaber, working chanber volupe, lengths of linear and circular segeents) are calculated approxiaately, approxination degrepe being different for particular authors. With powerful microconputers beconing widespread, design offices and research centres are looking for precise numeric algorithef, which do not necessarily assume the form of a sieple equation.

With regard to the statement aade above, the authors mould like to put formard a convention concerning geometric description systematization of aultimiding-vane rotational achines, In the opinion of the authors, this all provide a are readable description of geametric values, as well as of phenomena and processes relevant to these machines. We also intend to point out someproperties of the $Z(\varphi)$ function, particularly its ability to evaluate working chapber volute at any chamber position and for various types of aultisliding-vane mehints.

2. Coordinate System

In almost all publications, cylindrical coordinate systes is maployed for describing aultisliding-vane rotary nachines (Fig. 1a). The systen converts into polar coordinate systea (Fig- 1b) when things are baing considered within the plane perpendicular to the Z axis. The choice of the Z axis is still undeterained.

Fig. 1. Coordinate systeps employed to describe aultisliding-vane rotary aachines a - cylindricel; b - polar.

In some eases this is the cylinder axis [1, 2], in other the rotor ayis [2]. For further analysis, the authors have adopted basically a coordinate systen with the Z axis running through the rotor axis and the polar plane deternined by the azis and its nearest cylinder generatrix. The $z=0$ plane runs through the chacber side cover surface.
3. Arrangenent of Points, Vanes and the Working Chamber
in Multislidinq-yane Rotary Machines
Uith the coordinate systen adoptad, the mehines can be described fron the geoperical point of view, i.e. position of arbitrary point, segnent and tigurt, as woll as that of the working chabber; length of a segaent and arc, area of a figure and volume of a solid (working chanber, e.g.) can all be described. Alsa processes to which parts of the nachine are exposed (novement, friction) can be specified in that way. This applies still more to the description of the thermadynamic state (P_{g} t, i) and representation of processes, which the gas contained in the working chaober undergoes (i.e. heat exchange, flows, compression and decoapression).

Fig. 2 outlines the cross-section of a altisliding-vane rotary machine. In
the the

this is the working chamber the position of which is described by zagle φ

Fig. 2. Cross-atection outline of a ultisliding-vane rotary eachine
cylinder surface) is determined by two coprdinates ρ_{c} and φ_{c}. The vane position is given by specifying coordinates of either two points situated on the vane; or of vane axis/rotor surface intersection point and vane/rotor radius inclination angle. Coordinates of the (1) vane (Fig - 2) are equal $\rho=\rho_{A}=\mathrm{r}_{\mathrm{F}} \varphi=\varphi_{\mathrm{A}}$ and ψ. when considering a machine with constant F and ψ, then the only variable, which describes position of the vane is the vane anplitude φ. Values relating to the vane, which vary with the rotor rotation, will be thus functions of $\varphi\left(e_{0} \rho, X(\varphi), P_{i}(\varphi)\right)$.

Position of the working chamber is usually deterained in publications [1, 2] by specifying position of the bisector of the angle λ contained between vanes liaiting the chasber (angle φ_{F} in Fig. 2). This however ioplies certain inconveniences, consisting in principle in necessity of two at least (sometimes three) position coordinates for one given chaaber (i-e. position coordinates for the vanes and for the chanber itself). In order to avoid this coaplication, the author's proposal is to deteraine the working chabber position by eeans of coordinates of one af its liaiting vanes and to adopt the convention that the vane in question will be thevane which "closes" the chabber in the sense of chanber eovesent direction (vane (2) in Fig- 2). Then the angle o becoene the coordinate of the working chabber position and all quantities relating to the chamber and chapber eedius. This convention is also useful for one- and two-gliding vane eachines.

4. Worting Chamher Voluee

Mindful of the siaplifications generally applied to calculate volute of the morking chanber being in arbitrary position, the authors reconsidered the above relations. With no simplifications assueds they derived formulae, whose applicability excaeds multisliding-vanø rotary machines.

Fig. 3 shows schenatically a morking chanber in position characterized by angle φ and specifies its dieensions necessary to calculate the chamber volune.

The working chanber voluee equals to:

$$
\begin{equation*}
V(\phi)=A(\varphi) \cdot L \tag{1}
\end{equation*}
$$

where $A(\varphi)=$ cross-sectional area of the chanber,
According to designations of Fig. 3 :

$$
\begin{equation*}
A(\varphi)=A_{A E H B}+A_{\text {BNG }}-A_{A E G}-A_{A G H F}=A_{\text {BONL }}-A_{H K P N} \tag{2}
\end{equation*}
$$

In the above fornula the following aebbers can be distinguished:
$A_{\text {AEMD }}(\varphi)$ - cross-sectional area of the working chanber for achine with $\psi=0$; $y=0 ; b=0$.

$$
\begin{align*}
& A_{\text {AEHE }}=R_{1}^{2} \cdot Z_{1}(\varphi) \tag{3}\\
& Z_{1}(\varphi)=\frac{e}{R_{1}}\left\{\lambda-\frac{1}{2}\left[\sin (\varphi+\lambda) \sqrt{1-\left(\frac{e}{R_{1}}\right)^{2} \sin ^{2}(\varphi+\lambda)}+\right.\right. \\
& +\frac{1}{\frac{e}{R_{1}}} \cdot \arcsin \frac{\theta}{R_{1}} \sin (\varphi+\lambda)-\sin \varphi \cdot \sqrt{1-\left(\frac{e}{R_{1}}\right)^{2} \sin ^{2} \varphi}+ \\
& \left.=\frac{1}{\frac{\square}{R_{1}}} \cdot \arcsin \frac{\varphi}{R_{1}} \sin \varphi\right] * \\
& \left.=\frac{1}{2}\left[\frac{\varphi}{R_{1}}\right][\lambda-\sin (\varphi+\lambda) \cos (\phi+\lambda)+\sin \varphi \cos \varphi]\right\} \tag{4}
\end{align*}
$$

$A_{B H D}(\varphi): A_{A E B}(\varphi)$ - areac of figures arising by inclining the vanes by an angle of ρ towards the rotor radius.

$$
\begin{equation*}
A_{A E G}=R_{1}^{2} * P_{1}(p) \tag{5}
\end{equation*}
$$

The $P_{1}(\phi)$ function is represented by the following foraula:

$$
\begin{equation*}
P_{I}(\varphi)=\int_{0}^{\psi} \frac{1}{2}\left\{\sqrt{1-\left[\frac{R_{A}(\varphi)}{R_{1}}\right]^{2} \sin ^{2}\left[\psi+\gamma_{A}(\varphi)\right]}-\cos \left[\psi+\gamma_{A}(\varphi)\right]\right\} d \varphi \tag{6}
\end{equation*}
$$

Functions $\omega_{A}(\varphi)$ and $\gamma_{A}(\varphi)$ in the above formula are defined as follows:

$$
\begin{gather*}
A_{A}(\varphi)=R_{1} \sqrt{1-2\left[\frac{R_{1}}{R_{1}}\right]\left[1-\frac{e}{R_{1}}\right](1-\cos \varphi)} \tag{7}\\
\gamma_{A}(\varphi)=\arcsin \frac{\rho_{1}}{R_{1}} \frac{R_{1} \sin \varphi}{\rho_{A}(\varphi)} \tag{8}
\end{gather*}
$$

Value of $A_{\text {gHin }}(p)$ can be evaluated fron equation (4) for a vane in a position described by the angle of $\varphi+\lambda$,

$$
\begin{equation*}
A_{B M Q}=R_{1}^{2} \cdot P_{1}(\varphi+\lambda) \tag{9}
\end{equation*}
$$

Vane thickness is allowed for in the formulae for $A_{A G H F}(\rho)$ and $A_{\text {BONL }}(\varphi)$. The sus of
the areas is equal to:

$$
\begin{equation*}
A_{\mathrm{AGHF}}(\varphi)+A_{\mathrm{BDNL}}(\varphi)=R_{1}^{2} \cdot P_{2}(\varphi) \tag{10}
\end{equation*}
$$

where the $P_{2}(p)$ function is given by:

$$
\begin{align*}
P_{z}(\varphi)= & \frac{1}{2}-\frac{b}{R_{1}}\left\{\sqrt{1-\left[\frac{M_{A}(\varphi)}{R_{1}}\right]^{2} \sin ^{2}\left[\psi+\gamma_{A}(\varphi)\right]}+\right. \\
& +\sqrt{1-\left[\frac{R_{A}(\varphi+\lambda)}{R_{1}}\right]_{\operatorname{sia}^{2}}^{2}\left[\psi+\gamma_{A}(\varphi+\lambda)\right]+} \\
& \left.=\cos \left[\psi+\gamma_{A}(\varphi)\right]-\cos \left[\psi+\gamma_{A}(\varphi+\lambda)\right]\right\} \tag{11}
\end{align*}
$$

If the rotor does not adhere closely to the cylinder, i.e. if $y \neq 0$, then the chamber cross-sectional area should be increased by $A_{\text {HKPN }}(\varphi)$.

$$
\begin{equation*}
\mathbf{A}_{\mathrm{HKPN}}=\mathbf{R}_{1}^{2} \cdot \mathbf{P}_{3}(\varphi) \tag{12}
\end{equation*}
$$

where $P_{3}(\varphi)$ is given by the formula:

$$
F_{3}(\varphi)=\left\{\lambda=2 \frac{e}{R_{1}} \cos \frac{2 \varphi+\lambda}{2} \sin \frac{\lambda}{2}+2 \frac{e}{R_{1}} \operatorname{tg} \psi \sin \frac{2 \varphi+\lambda}{2} \sin \frac{\lambda}{2}+\right.
$$

$$
\left.-\operatorname{tg} \psi\left[\sqrt{1}=\left[\frac{e}{R_{1}}\right)^{2} \sin ^{2} \varphi-\sqrt{1-\left[\frac{1}{R_{1}}\right]^{2} \sin ^{2}(\varphi+\lambda)}\right]\right\} \frac{y}{R_{1}}+
$$

$$
\begin{equation*}
-\frac{y}{R_{1}} \frac{b}{R_{1}} \tag{13}
\end{equation*}
$$

Having allowed for (2), (4), (6), (11) and (13), equation (1) assuces the following
forms

$$
\begin{gather*}
V(\varphi)=R^{2} L \cdot\left(1-\frac{\gamma}{R}\right)^{2}\left[Z_{1}(\varphi)-P_{1}(\varphi)+P_{1}(\varphi+\lambda)-P_{2}(\varphi)+P_{3}(\varphi)\right]= \\
\cdot R^{2} L \cdot Z(\varphi) \tag{14}
\end{gather*}
$$

whare:

$$
\begin{equation*}
Z(\varphi)=\left[1-\frac{\gamma}{R}\right]^{2}\left[Z_{1}(\varphi)=P_{1}(\varphi)+P_{1}(\varphi+\lambda)-P_{2}(\varphi)+P_{3}(\phi)\right] \tag{15}
\end{equation*}
$$

In the above foraula, $z(\rho)$ represents relative cross-sectional area of the working chanber of an expansion-type eachine (motor, coppressor). The fore of the equation (15) eaphasizes the fact that variables $\lambda, ~ e / R, y / R ; b / R$ and ψ are regarded as parameters, and the variable o as an argument.

Evaluation of the working chanber volues in an arbitrary chatber position is thus reduced to determining the $Z(\varphi)$ value for a given angle φ from formula (15). The chaeber position, when the chaeber voluen is already known, it found by solving proceduras nonlinear equation, whith can be done masily by using standard nueprical procedures and aicrocomputers.

The $\mathbf{Z}(p)$ function can be useful when evaluating other types of achines. For comprestion multisliding-vane rotary achines (compressors, vacuue puaps), the polar coordinate systea is produced froa the systea presented in paragraph 2 by rotating the polar axis by an angle of $\Delta \varphi=\pi$. The $Z(\varphi)$ function can then be employed, if the exprostion $\varphi+\pi$ is assumed as an argument.

$$
\begin{equation*}
\mathbf{V}_{K}(\varphi)=R^{2} L \cdot Z_{k}(\varphi) \tag{16}
\end{equation*}
$$

wheres $U_{K}(\varphi)$ - the working chanber volump of that conpression-type vane rotary aachine; wherein the angle φ is used to describe the chasber position. $Z_{k}(\varphi)$ - relative cross-sectional area of the working chasber for this alachine.

$$
\begin{equation*}
\mathbf{Z}_{k}(\varphi)=\mathbf{Z}(\varphi+\pi) \tag{17}
\end{equation*}
$$

Solving nueerous technical problemp requires evaluation of area for a segment of a figure foraed by two non-concentric circles (Fig. 4). If figure ABCD is assumed to be the segaent in question, then its arga equals to the working chasber area in the chanber position of $\varphi^{\prime} ; \lambda$ anounts then

Fig. 4. Areas of figures contained between nan-concentric circles
chamber cross-section is represented by figur ABCD.
To evaluate area of the figure, no

Fig. 5. Area of the figure which the forms in a rotary-piston achine. to $\Delta \varphi^{\circ}$. Then

$$
\begin{equation*}
A_{A B C D}=R^{2} \cdot Z\left(\varphi^{\prime}\right) \tag{18}
\end{equation*}
$$

The value of $Z\left(\varphi^{*}\right)$ has been determined for a aachine of a conventional number of vanes $z=2 \pi / \Delta \phi^{\prime}$. The nuaber can ascuer values froe within the range of $2 \geq 2$.

The $Z(\varphi)$ function can also be used for rotary piston eachines (onesliding vane rotational eachines). To describe these aechiness a polar coordinate systen is usually used related to the cylinder centre (Fig-
5). If the rotor position is determined by the coordinate φ in this coordinate systew, then the working tere than a conventional compression machine should be analyzed with the aonentary rotation axis in point Ou. The point acts also as a montary pole, the conventional polar axis being the half-line $0_{\mu} 0$. Then position of the conventional working chanber is described by the angle $\varphi_{4} s \pi=\varphi$. The vane is inclined to the rotor radius at the angle ψ_{u}. The other vane is aleast completely interted into the groove (point c). The angle betwen the vanes equals $\lambda_{u}=\varphi$. The following
is true for such a chasber:

$$
\begin{equation*}
A_{A D C D}=A(\phi)=R^{2} \tag{18}
\end{equation*}
$$

$$
+z_{k}\left(\varphi_{u}, \psi_{u}, \lambda_{u}, \Phi / R, b / R, y / R\right)
$$

whert $Z_{k}\left(\varphi_{u}, \psi_{u}, \lambda_{u}, e / R, b / R, y / R\right)$ is relative cross-sectional area of the working chaober of a conventional
vane rotational achine. Parameters φ_{u}, ψ_{u} and λ_{u} are functionally dependent on p.
The $Z(\varphi)$ function would also appear in those thernodynanic relations for vane rotary machines, where working chaber volune or volues ratio is involved.

6. Final Remarks

The presented efthods of deseribing wane rotational machines and evaluating working thasber voluar have been applied by the authors in design and research studies over the eachines. The aicrocomputer software package worked out for the purpose and the $Z(\phi)$ function tables are intended for universal and extensive application by engineers working in the area of vane rotational machines.

7. References

[1]. Fischer R.D. FFeasibility study and hardware design of a pivoting-tip rotary-vane compressor and expander applied to a solar-driven hast puap". Proc. of the 1978 Purdue Coapressor Technol. Conf. Uest Lafayette 1978.
[2]. Golovincou A.G. "Rotacjonnyje kompressory". Masinostrojenie, Moskva 1964r.
[3]. Gnutek Z. Analiza procesom teraodynadicznych - fopatowych easzynach rotacyjnych", Raport Polit. Ur. I-20, SPR 24/91; 29/91; 31/91; Wrockaw 1991.
[4]. Gnutek Z. "Geometryczny opis i analiza procesow tarcia, przeplywowi spremania w jedno- i dulufopatkowych mazynach rotacyjnych* . Raport Polit. Ur. I-20, SPR 3/92. Urockaw 1992 r.

[^0]: Gnutek, Z. and Kalinowski, E., "Some Aspects of Describing Processes in Sliding Vane Rotary Machines" (1992). International Compressor Engineering Conference. Paper 914.
 https://docs.lib.purdue.edu/icec/914

 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
 Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html

