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EFFECTS OF PORT GEOMETRY. DU(ENSIONS AND POSITION ON THE PERFORMANCE OF A ROTARY COMPRESSOR. 

Dr A.B. Tramschek, or K.T. Ool Senior Lecturer & Dean. of, Engineedng University of Strathclyde, 
school of Mechanical and Production Engineering, Glasgow. Scotland. Nanyang Technological University, 
Singapore 

ABSTRACT 

Rotary slldlng vane compressors are positive displacement compressors with built-In volume ratios. Their suction and discharge processes are continuous and thus they are normally valveless machines. The suction and discharge port dimensions and positions thus critically affect the performance of the machine. The paper first presents the effects or the suction port geometry on the performance or the machine. It then follows by examining the infiuence or both suction and discharge port positions on the machine performance. The analysis was carried out using a theoretical model describing a circular rotor-stator configuration with radially disposed vanes, where the working tluid is air. The resulting effects on the pressure volume diagram and the instantaneous mass-angle or rotation history are shown. 

INTRODUCTION 

Rotary sliding vane compressors are machines with built-in volume compression ratios. Hence tor given machine dimensions. the value ot the pressure at the end or the compression process Is predetermined bY the suction pressure and the actual volume compression ratio. Matching the suction and discharge port positions with the built-in volume ratio is lmporu.nt In order to optimise machine performance. An e.llperimental Investigation by Kruse Ill suggested that this matching Is the key to Improving the machine performance. The analysts that follows examines the effects of suction port geometry and/or port positioning on the machine performance using a theoretical model [21 (31. 

PORT DESIGN CONSIDERATIONS 

The appropriate choice or the suction and the discharge port positions tor compressors with built-in volume ratios depends very much on the variation of the cell volume. Figure 1 shows schematically a typical rotary compressor with eight vanes and table 1 shows Its nominal operation conditions and its capacity. The variation of an tnd!vtduai cell volume is shown in Figure 2 trom which it may be seen that the maotimum cell volume occurs at a leading vane angular position of about 200 degrees· whilst the minimum cell volume occurs at 18 degrees. These positions correspond to mid-cell angles ot 177.5 degrees and 355.5 degrees respectively. Although a s.Ymmetrtcal rotor-stator arrangement Is being considered, deviations of the above angular positions from mid-cell angles of 180 degrees and 360 degrees are caused by the Inclusion or the leading vane and its slot as part of the cell volume. 

For a correct port design, the ma.llimum cell volume position should correspond to the suction port closing angle whereas the minimum volume position should correspond to the dischatge port closing angle. The opening of the suction port is based on the value ot the suction pressure. It is best located at the angular position where the cell pressure immediately before the suction port opens is just below the nominal suction pressure. The discharge port opening angle should correspond to the position where the cell pressure reaches a value just above the nolllinal discharge pre11sure. The latter position Is always delayed tor a rew degrees 1t the operational discharge pressure ot the compressor Is to be varied (especially above the design pressure) as over compression losses are generally smaller than the under-compression losses tn terms ot their contribution to the Indicated po•er. 
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EFFECTS OP SUCTION PORT CONFIGURATION 

This section discusses the effects of the suction port configuration on the 

performance of a given compressor. Two different suction port geometries. termed 

the 'old' port configuration (see Figure 3(a)) and the 'new' port configuration ·(Figure 

3(b)) were Investigated, and their infiuence on the performance or the compressor 

were compared. 

The 'old' suction port (Figure 3(a)) was sited on the end face of the rotor 

and was located between the crescent shaped gap formed between the rotor and 

stator. The size or the suction port is thus restricted by the dimensions of the 

rotor. stator and the offset between the two centres. This particular shape of 

the suction port produces a particular variation In the port area with respect to 

the variation of cell volume and influences the breathing characteristic of the 

compressor. Figure 3(cl shows variation or the active port areas with leading vane 

angular pOSition. This shape or suction port was found to have certain disadvantages 

as follows:-

1. The port cross sectional area Is small in the region close to the suction port 

opening position and hence causes a slow recovery in cell pressure during 

the initial suction stage. This contributes to power losses as may be seen 

from the pressure volume diagram In Figure 4(e). 

2. The maximum width of the suction port area Is limited by the dimensions of 

the rotor, the stator and the offset between their centres. 

a. In the simulation study, it was assumed that the cell pressure Is uniformly 

distributed throughout the whole volume of the cell. This assumption may 

be questionable during the suction process because air needs to flow axially 

through the end race of the compressor where the suction port Is sited and 

pass along the whole length of the cell before filling the cell volume. During 

this process some form of axial pressure distribution would be expected and 

the situation would be exaggerated by a long axial flow path. A simplified 

simulation ot the suction process may be Inaccurate. 

In an attempt to overcome all these problems a new port configuration was 

Introduced. The change envisaged rectangular-like holes distributed along the 

stator wall. see Figure 3(b). Predicted results for the two different suction port 

geometries are shown in Figures 4(a) to 4(!). Figure 4(a) shows the variation or 

the active suction port area for the old and the new suction ports. It also shows 

the effects or dltterent axial port leneth on the variation or the port area for the 

new port when axial port length varies from 6 mm to 30 mm. It may be seen 

that the suction port area Increases directly as the axial length of the port 

Increases. The extra port area during· the initial suction stage causes the ceil 

air mass to increase rapidly (see Figure 4(b) during the initial suction process. 

This effect results in rapid pressure recovery as shown in Figure 4(c) and hence 

improves the breathing characteristics or the compressor as reflected In 

pressure-volume diagram in Figure 4(e). The resulting variation on cell air 

temperature is also shown, Figure 4(d). Figures 4(c), 4(e) show that a further 

reduction In the suction loss Is achieved by having a longer aJtlal port length. 

Figure 4(!) compares the ettects of the old and new suction port configuration on 

the performance of the compressor. Some Increase In the free air delivery is 

achieved by using a new port configuration. The Indicated and shaft Input power 

decrease sllghtly as the axial length or the new port Increases and as a result, 

the specific tree air delivery (Utre/kWs) increases. However, the benefits diminish' 

when the axial length of the new port exceeded 25 mm. The overall advantages 

and the 1mprovements stemming from the modified suction port may be summarised 

as follows:-

a) The machine shows a better breathing characteristic:- rapid pressure recovery 

during the suction process. A reduction in the indicated power was predicted. 

b) The size or the suction port is no longer limited by the radll of the rotor 

and stator as it was before. Speaking In terms of suction port design, this 

feature provides greater tlextblllty in the selection of dimensions. 
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c) In pn.~•lce, a shorter tlow path for the air induced during the suction process should result In less suction heating and hence Improve the volumetric errlclency of a machine. This effects was not included however in the theoretical model. 

d) This port configuration suits better the assumption made In the simulation model that the cell pressure Is always distributed uniformly In a ceiL Cells may be tilled quickly by the air induced because or the axially distributed and shorter flow path. 

EFFECTS OF PORT POSITIONING 

The streets of the suction and discharge port positions on the pressure volume diagram and the cell air mass versus leading vane angle diagram are illustrated in Figures 5 to 12. Figures 5(a) and 5(b) show the pressure volume diagram and the air mass versus leading vane angle diagram under the correct port positioning. Correct port positioning means that the suction port opens at the position where the cell pressure equals the nominal suction pressure (In reality however, a modest level of partial vacuum must exist inside the cell, to promote air flow Into the cell from the suction chamber). the suction port closes as soon as the cell volume attains its maximum value. The discharge port opens as soon as the cell pressure reaches the nominal discharge pressure and closes at the position when the cell volume attains the minimum volume. 

In the discussion that follows various symbols are defined: 

P. nominal suction pressure 
P• nominal discharge pressure 
M, normal residual air mass level before suction process M2 normal air mass level at the end of suction process 

The Influence or each port-position is Ulustrated as follows:-

Suction port openlpg ancle (@ ,) 

al. If the suction port Is opened before the cell pressure reaches the nominal· suction pressure, under-expansion results. This is illustrated In Figure 6(a). Losses due to this street are shown by the shaded area in the Figure. The air mass in the cell Increases gradually shortly after the commencement or the suction process. See Figure 6(b). 

b) If the port it; opened after the cell pressure reaches the nominal suction pressure, over e)lpanslon occurs. The cell air mass increases very rapidly in the early stage or the suction process, because or a high pressure dlCCerential across the suction port during this period. The etrect Is shown in Figures 7(a) and 7(b). 

SUctlpn pprt clpslng angle !B,J 

a) If the suction port is closed before the cell volume reaches the maximum cell volume position, a reduction In the cell pressure to a level below that of the nominal suction pressure occurs as the cell volume Is stU! increasing. This premature suction port closing results In a situation where less air is induced into the machine. These etrects are illustrated in Figures 8(a) and B(b). Premature closure of the suction port results In cell pressures less than the nominal discharge pressure when the discharge port opens and backflow occurs through discharge port. 

b) It the suction port is closed after the cell reaches the maximum cell volume position, air Inside the cell flows out or the cell through the suction port. This etrect is caused by the reduction In the cell volume after the maximum volume position attempting to produce a rise in the cell pressure. This 
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pressul'e rise is small and air flows out through the suction port at a constant 

nominal suction pressure. A delay In port closure results in an under 

compression condition and may be explained as follows. 

consider ( v ) • 
P,- V~ P, 

where P, is the nominal suction pressure and n is a compression index. As 

Vt reduces. and since Vz Is fixed for a given discharge port location the value 

of Po reduces to a value less than the nominal discharge pressure. P•; under 

compression occurs. The effects are shown in Figures 9(a) and 9(b). 

Discharge port opening angle (B.) 

a) It the discharge port is opened before the pressure in the cell reaches the 

nominal discharge· pressure, under compression results. Reverse flow occurs 

in the initial stage of the discharge process. This Is shown in figures lO(a) 

and lO(b). 

b) rr the discharge port ls opened after the cell pressure reaches the nominal 

discharge pressure. over compression results. Air flows out of the cell during 

the Initial stage or disch!ll"ge process with a higher velocity than that or the 

nonnal condition. This Is shown by the steep slope of the cell air mass-angle 

curve during that period. It Is Illustrated In Figures ll(a) and ll!bl. 

PlKharge nort closing angle !B .) 

a) If the discharge port Is closed prematurely, more residual air stays in the 

cell at the end or discharge process. At the same time since the cell volume 

is st111 decreasing, the cell pressure rises. Less air wlll be delivered and 

less air will be induced following the re-expansion to the suction pressure. 

This is shown in figures 12(a) and 12(b). 

b) If the discharge port is closed after the cell in question reaches the minimum 

cell volume position and if the cell is within the sealing arc region then this 

•ill . not alter either the pressure volume diagram or ,the cell mass-angle 

diagram. 

CONCLUSION 

The effect of the port geometry and port positioning on the perronnance of 

a machine is significant. The analysis shows that, to optimise the machine 

perfonnance, It is important to match the built-in volume ratio with the operational 

pressure ratio. rr a machine has to operate under a wide range of operating 

pressure ratios, it Is suggested that the discharge valve should be used, as mentioned 

In (11. 

FAD (1/s) 
Pt(kW) 
Pt(kW) 
Rr(m) 
Ra(m) 

TDC 
e(mm) 

~,(•) 

~.<·> 
~:t·> 
13 .<·> 

Free air delivery 
Indicated power 
Shaft power 
Rotor radius 
Stator radius 

NOJIENCLATURE 

Top dead centre (angular reference position, o•) 

Eccentricity between stator and rotor centres 

Suction port opening angle w.r.t. TDC 

Suction port closing angle w.r.t. TDC 

Discharge port opening angle w.r.t. TDC 

Discharge port closing angle w.r. t. TDC 
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Operating speed rev/min 
bar Atmospheric pressure 

Atmospheric temperature 
Nominal suction pressure 
Nominal discharge pressure 
Capacity 

K 
bar (ABS) 
bar (ABS) 
1/s 

1450 
1.013 
293 
1.013 
7.91 
14.9 

Table Operating conditions and capacitY or the compressor 
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FIGURE 1. SCHEMATIC ARRANGEMENT OF A ROTARY 
SLIDING VANE COMPRESSOR 
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