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DYNAMICS OF AN ORBITING SCROLL WI'TH AXIAL COMPLIANCE
PART 1 - SIMULATION OF ORBITER AXIAL MOTION

H.T. Shu and A.A. Peracchin
United Technologies Research Clenter
Silver Lane . M.§. 19
East Hartford, C'T 06108

ABSTRACT

A dynamic model was developed for investigating the axial motion of an orbiting scroll design which
incorporates passive axial and radial compliance mechanisms. The madel nses three degrees of freedom
to describe the orbiting scroll axial motion, It also includes contact constraints for the thrust surface, the
wrap tip and flanks, the crank case, and the hub bearing. The equations of motion were derived using
the Lagrangian formulation, The system natural frequencies were predicted, and forced response analyses
were performed. Results of the orbiting scroll dynamies analysis not only show good agreement with the
experimental data, but also highlight the importance of the constrainta,

1. INTRODUCTION

A comprehensive research program has been undertaken by the United ‘Technologies Research Center
(UTRQC) to develop improved understanding of scroll compressor performance and dynamics in support of
Carrier’s product applications, This research program consists of nol only extengive analytical modeling
but also experimental investigation of system perfermance, pressures, temperatures, vibrations, and dy-
narmic characteristics using instrumented compressors (Ref. 1). In this paper, a simulation of the orbiting
scroll axial motion 1s presented,

Several investigations of scroll compressor dynamic behavior involving orbiter motion have been ra.
ported (Refs. 2 to 4). These studies {which usually include an nrhiter, an Oldham coupling ring, an axial
and radial compliance mechanism, and a crank shaft) have heen developed using D’Alembert’s principle
to model the orbiter inertial effects. These studies assumed that the orbiter motion was constrainted to
be in a plane perpendicular to the shaft centerline and within fhat plane, o execute a circular orbiting
motion. Some have allowed for variations in shaft speed (Ref.3). The effect of damping and stiffness of
the backchamber seal mechanism on the axial motion were nat considered  These studies have served as
first generation scroll compressor design tools. However, in order to {urther improve understanding of com-
pression efficiency, component reliability and compressor noise, the development of a more eophisticated
dynamic model js required to account for additional degrees of freedom of motion and backchamber sea]
effects.

2. DYNAMIC MODFELING

The dynamic mode] developed for investigating the scroll orbiter axial motion is described in this
section. The model consists of three degrees of freedom represenied by three generalized coordinates. It
also accounts for motion conatraints that might occur due to wrap Ltip contact with the mating baseplate,
wrap flank contact with that of the fixed scrall at other than fhe ideal contact line, the thrust surface
contact, motion constrained by the mechanical limits of the compression of the backchamber seals. and
finally, contact of the orbiter hub with the drive shaft mechanism.

2.1 Equations of Motion

The schematic diagram of an orbiting scroll model is shown in Fig. 1, where F,, M, and M, represent
the axial component of the time varying load and the z and ¥ components of the time varying moments
acting on the orbiter during comperssor operations. (Further deseriptions of these three parameters will
be given in the Case-Study Section.) The orbiter is supported by two ur three backchamber seals with
radii 7, r3, and ry respectively,

Let 1) (Xy, 1y, Zy) be the inertial coordinate system with origin (), fixed at the shaft center, 2) (z,y, z)
be the moving coordinate system with origin O, fixed at the center of the baseplate bottem surface of
orbiting seroll and always parallel to the inertial coordinate system throughout the entire compressor
operation, 3) (r,, 2) be the radius of orhiting circle and shaft speed, and 4) (2, 4y, fc) be the generalized
coordinates describing the orbiter axial translation and rotations of 7 and y axes. If z,,0,, and 8, are
small, the displacement and velocity vectors of a small element of the orbiter at point P(z,y,2) can be



expressed in terms of these parameters sa follows.
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Fig. 1 Schematic Diagram of Orbiting Seroll Dynamica Model
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The system kinetic energy (T') and potential energy (V) can be approximated by the following two

equations.
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where M, ez, €cy, Jzzy Lyus Izy 21 the orbiter mass, center of gravily, and moruents and products o

and k,,i=1,2,3, are the backchamber seal stiffnesses per unit length.
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The system generalized forces @, can be derived in terms of the axial load, Fz, moments, M. and My,

body force, mge, and seal damping values, 6,1 = 1,2,3, using the following virtual work concept.
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By comparing the coeffieients of the virtual displacements of the three generalized coordinates, we have
Fy—mg. -2 3 e,
Q={Q}=1{ M- MGeCey ~ W‘x‘ C‘Ti'ﬂ_,. (5)
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Finally, the equations of motion can be derived from the following Lagrange's equation.

d dL aL
a(a_q, - 5q—‘ = Q. (6)
where L = T - V and ¢ and ¢, are the generalized coordinates (20102, 8y) and their time derivatives.

By carrying out the differentiations of the Lagrange’s equation and with the help of Eqs. (3), (4) and (5)
we have three equations of motion for the orbiter axial motion, expressed in a matrix form as follows.

m —eqm em %
€y Izz _Isv e: +
eem Iz, I, 4,

2r ¥, am 0 0 %
0 T an 0 0, ¢+ ]
0 0 EDINE S 9,,

2r 3 ke, 0 0 z, F. mg,
0 Ty kr? 0 bz p =0 M:-mge, — emr, sinflt
(1] 0 w3, kird 8, My + mgceer + e mQ?r cosit

The orbiting scroll system natural frequencies and mode shapes can be computed using Eq. (7) by
dropping both the damping and external load terms. However, because the orbiter is placed in a confined
compartment, the forced response dynamics analysis must account for all possible constraints on the orbiter
axial motion due to the fixed scroll, Oldham coupling ring, slider block, and crank case. Eight possible
motion constraints are depicted in Fig. 2, and are indicated by the Ayyi=1,2,..8. It should be noted Lhat
A1 can ocenr at the wrap tip of either the orbiting or fixed seroll as shown in Fig. 2 and to be described
further in Section 2.3.

(A2 )uw
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Fig. 2 Constraints of Orbiter Axial Motion
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2.2 Equations of Motion Constraints

Figure 3 shows the details of five possible constraint points at the orbiting scroll wrap tips for any given
0. and 8,, where the dotted lines represent the wrap profiles of the fixed seroll, the solid lines represent
those of the orbiting scroll, point #1 is possible axial contact puint, and points #2 to 5 are the possible
radial contact points. The geometric locations of these contact points at any given instant (or crank angle)
are analytically defined. In other words, the gap between the two scroll wraps for any given &z, 6, are
analytically determined. Neglecting the film effects due to orhiter relarive motions, the following constraint
equations can be easily derived. Fig. 3 illustrates these contact puints Nole that the scroll is oriented so
that the rotation of the orbiter is along the line A-A.

()ep €08(01 = 8u) = (21)up = 20 2 (Azi)up  Jor A\
(r2)ep — (P2)ep 2in(@2 — Bw) S (BT2)up  for Az
(73)eup — (Pa)up Sin(03 = Bu) < (OTadrp  for o (8)
(p1)ep 1n(pa + 8w) — (radup S (BTa)uy  for Aa

(ps)ep sin(ips + 0u) — (Ts)up < (Ars)up  for s

(rdup = /(22 + 3])ew

(0Jup = flF + 3 F iy [+ TE L ®)

where

= sin” () up/ (o dup)

8, = sin~(—cos ¢ sin 8,4 sin g s 8.) . (10)

b tan='(—0;/6y) (11)

and (Az )up represents the axial clearance between the tip of the orbiting scroll and the root of the fixed
aeroll at point #1, and (Ar2)up,— (ATs)up 21€ the radial gaps (or clearances) between points 2 and 2',...,
5 and 5’ respectively.

!
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Fig. 3 Configuration of Constraint Models
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By refering to Fig. 2, the constraint equations for the thrust surface, hub bearing, and crank case can
also be derived as follows.

prs 3Pty =~ Ou) = 2op — 20 £ Dizes __fur Ae
2o+ T sin by < Az for Ar (12)

Tor = Pbr 31 (g — Buw) < Ay, for s
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(13)

P = 2y + Th O

It should be noted that the eight constraint equations shown in Eqs. (8) and (12) are nonlinear
conditional holonomic constraints, and they must be checked al every inlegration step to see il Lhey are
violated. Once one or more constraints are violated, the motion of the orbiter is defined in part by
the constraint condition, in which case the equal sign in the appropriate constraint equation defines the
relationship that must geomelrically exist during the time that the constraint condition is in place. During
those time intervals, the constraint equations must be solved with the equations of motion, as described
below. It is also important to note that 8, 8y, and 8, are always small (i.e. less than 0.1 degrees, or 0.002
radiang), and Eq. (L1) can be approximated by the following relation.

8, ~ (sin ¢.) 0 — (cos &) 9, (14)

After some mathematical manipulations, the eight constraint equalions can be simplified to the following
form.

=1 (m1)up 90 B —(T1)up €O e (B21)up

0 (22)up 9 b —(22)0p cos ¢ (Bra)up

0 (’G)hv nn b _(zﬂ)hp cos ¢ z (AT'!)up

0 (zl)hp sine ¢ _(34)tlp cos ¢, go < (Arﬂ )lll or

0 (25)tp 9im P —(25)up cO2 Pe 0= (Ars)up [ (15)
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1 Tec SiTL e —Tep €O b Azye

0 2 N P - 2py £OS P ATy,

Qege < Aby, j=1,..,8 k=123

2.3 Clearances of Motijon Constraints

The instantaneous clearances of the orbiter motion constraints for the right-hand side of Eqs. (15)
must be specified. The instantaneous wrap tip clearances, (Ar2)up, .., (O75)up can be computed from the
geometric locations of the scroll profiles. The hub bearing clearance, Ary,, can be obtained from the design
geometry. However, because the heights of the scroll wraps are usually contoured to accommodate the
expected thermal expansions, the three axial clearances, (Az) )Jup, A2y, and Az, are related to the wrap
heights of the fixed and orbiting scrolls at the contact points and the static axial clearance between the
fixed scroll and the crank case, Az,. as shown in Fig. 2. ([ finite element sttuctural analysis results are
available, the wrap deflection data can also be incorporated into Lhis analysis. Assuming the heights of
the fixed and orbiting scroll wraps at the axial contact point are zp; and za1, the height of the fixed scroll
wrap at the thrust surface is hy,p,, then we have the following relationships.

(Azri)p = hup M AX (201 )eipr (211)tep)
If hpnp 2 25y and hup > Zo1, then Azy = 0
Azyg = Zae - Az, - Zhp
(Az1)p = 0
[f Zoy > 2 and 7o, > hhm then Az, = (Zul)hp - hhp (16)

D2y = Zae = Dy ~ Zgp
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(Aziloy = 0
If Zfy 2 % and Zf1 > h'hp; then Az, = (zfl)hp hhp
Bz = 290 — Azyy - Ztm

Equation (16) defines which of the axial clearance constraints are activated. It should be noted that
the wrap tip and thrust surface constraints can be activated simultanecusly or one at a time.

2.4 Equations of Motion with Constraints

It is obvious that if any conditional holonomic constraints are vinlaled, there will be reaction forces
exerted on the orbiter at the contacl points as shown in Fig. 2. These conlact {orces can be represented
by Lagrange multiplier \,. The equations of motion with two constraints, as an example, are given below.

[ m —egm e.m 0 0 b 2r 3, e i} 0 [t )] EA
—egm Iz Iy 0 0 8, 0 7%, cr? 0 00 0,
exm Iy Iy 00 6, ¢+ 0 0 3?00 4, 1+

0 0 0 00 1] 0 ] 0 00 0
| o 0 0 00 0 0 0 0 00 0
( 2y, kb 0 0 ~ay -an z, F, —mg.
0 3 kol 0 -0 —ay (A M.  mgeeqy — e, mS¥3r,2inflt
0 0 T kel —aa —dj 0, =4 M, +mg.e. + ecomfPrcosflt
24 az 2,3 0 0 A Ab,

L ay ajz @3 0 0 A; Ab;

(17)

where a,1, a.2, .3, a1, 852, 4,3, Ob,, and Ab; are the coefficients and constan! clearances of the violated ith
and j** constraint equations.

3. METHOD OF SOLUTION

Because the coefficients of the equations of matinn contain material and inertia properties of the orbiting
scroll and backchamber seals, the numerical values of the matrix elements vary greatly in magnitude. To
avoid any truncation errors in the numerical integration, all dependent and independent variables are
normalized to have numerical values in the order of one. The referenced parameters chosen for this
normalization process are

z, = A3, b = Atz/ﬂ,p, In=m T'Ep,
(18)
Cn = m/(7 Top AL), ky = mf(7 rep AL?)

where At is the integration time step and ry, is the radius of the baseplate. The normalized dependent
and independent parameters for the equations of motion and constraints are listed below.

%o = 2o/ 2n, 6, = 0z /0n, g_y =04/,

fo= i[Ot zn,  0n=0:/(At8), 8, =6,/(AL6,),

fo = 5./(O8 2,), 8. =8./(08 6,), 8, =08,/(AF 6,),

fo = "'v/rbp: &i=¢/en, E‘ = ky/ky,
(19)
izz = Leg/In, fyy = Iw/fm izu = Izv/lm
€z = !:z/rbpy Eey = ﬂcu/'bp: &er = eez/"'hn Fo = rv/"bpr
i=t/At, Tea = Tea/Thps For = Tor [ Ttps & = g!/rh”
Fo = 70/ Topy AZ = 0% 2, A7, = Ar,/zn, F. = F./m
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The normalized equations of motion become

1 -, & £, 2Y &R, 0 0 %
&y L. -IL, 6 3+ 0 T.afr o 0 3+
e ~Ly I, ||, 0 0 xand ]|
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25 k7, 0 0 z, i P -,
0 Yok 0 g, 3 = My~ g &y - E.0%F0in (1t
0 0 Y &P é, My + 4o 8oz | 2. 00%F cos Q1
and the normalized constraint equations are
-1 (7-'1 )hp sin P, —(i"l )hp €08 g (Az_l)hp
0 (Z2)up sin ¢, ~(Z2)ugp cos ¢, (AR
0 (Z)up $11 e (21)up o0 ¢, i, (AF3)up
0 (Ed)hp sin g _(E‘i)hp cos @, 50 < (A’:d)hp (21)
0 (Zs5)ep sin &, —(Z)up cos ¢, 9} ) (Afs)uy
-1 Ty S0 G, ~Tey cOS @, ¥ Az,
1 Fec Ain ¢ —Fee cos ¢, Az,
0 Zor SR B —Zbr cO8 @, Afy,

4. CASE STUDY

The present study is based on design data for an experimental scroll tompressor tested in the UTRC
compressor laboratory described in @ companion paper (Ref. 1).

4.1 Results of Undamged Free Vibration Analysis

The undamped free vibration analysis wag Performed to identify the system natural frequencies, and the
first three harmonic values are 265.68 Hz, 201.04 Hz, and 192.02 Hz respectively, These results indicated
that this compressor would not have any resonant problem during steady-state 60 Hz operation,

4.2 Results of Forced Res onse Analysis
————— ~TFEC Tesponse Analysis

As shown in Eq. (7). the equations of motions require three inpyt forcing functions, Fo(t), Mc(t) and
M,(t). These data were provided by a UTR( quasi-static simulation code. This simulation code ig actually
the first generation of the UTRC scroll compressor design code, which has been extensively used by Clarrier

1. The orbiter undergoes a circular orbiting motion around the fixed scroll only in the (X, ¥)-plane.

2. The gas pressures surrounding the orbiter are analytically determined at any crank angle for a given
steady-state operating condition,

3. The body force and all external loads (including contact forces belween the scroll flanks, between
the orbiter baseplate and Oldham coupling ring, between the hub bearing and slider block) are in
equilibrium with the linear inertia forces in the axial, radial and tangential directions.

4. Summations of alt moments in the axial, radial and tangential directions for each hardware component
are zero.

5. The inertia effects are considered in every time step, but not carried over to the Tollowing step (i.e.
quasi-static assumption).



With these assumptions, both the axial component of the reaction force from fixed scroll and the force
center required for preventing the orbiter from undergoing axial motion were computed. These data were
converted into F.(t), Mx(t) and M,(t) for the present study. However, in order to accept the experimental
presstre data from any steady-state or transient operations, purtions of the original simulation code were
modified and integrated with the present model for use in predicting the {ransient dynamics for any given
orbiting scroll design.

A set of the computed and measured pressures for the entire conmpression process for the same steady-
state condition is shown in Fig. 4. Good agreement between the two are indicaled. The pressures for all
compression pockets and backchamber at any given crank angle, for one revalution, can be easily derived
{rom these data, and results are shown in 5. These data are used for compnting the three forcing functions
and the results are shown in Fig. 6.

The effects of thermal and pressure loads on the axial growlh of urbiting and fized scroll wraps for
various compressor operating conditions are under continuing stndy. Preliminary results of 2 finite element
structural analysis indicated that the maximum axial growth always occurred at the inner tip of the scroll
wrap and the predicted numerical value was approximately 0.0014 in for the test condition (Ref. 5).
Based on this preliminary result and the design contours of the twa seroll wrap heights, the axial contact
constraint point {i.e. corresponding to A in Fig. 2) would accur near the inner tip of the scroll wrap
and cause the orbiter to undergo small wobbles. The predicted orbiting scroll wobble characteristics baszed
on this wrap tip constraint for two high pressure, high load, steady-slate aperating conditions are shown
in Fig. Ta, and those obtained from the experimental study are shown in Fig. 7b. Good agreement
between the two is indicated. Both the analytical and experimental resulls have indicated that the orbiter
wobble motions are quite small, and the experimental results showed no impact on the operation of this
experimental compressor.

5. CONCLUSIONS

Results of this study indicated that the wrap height contours of both the nrhiting and fixed scrolls, which
vary with compressor operating conditions, play an important role in the study of orbiter dynamics. The
importance of constraints in the dynamic analysis of a given arbiter design is shown The model presented
is capable of predicting the orbiter dynamics of axial motion for steady-stale or start-up operation if the
wrap heights of both the fixed and orbiting scrolls, the thrust surace, beaning and seal clearences, and the
pressure data surrounding the orbiting scroll are prescribed.
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