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Abstract

The Abella interactive theorem prover is based on an intuitionistic logic that allows for inductive and
co-inductive reasoning over relations. Abella supports the λ-tree approach to treating syntax containing
binders: it allows simply typed λ-terms to be used to represent such syntax and it provides higher-order
(pattern) unification, the ∇ quantifier, and nominal constants for reasoning about these representations. As
such, it is a suitable vehicle for formalizing the meta-theory of formal systems such as logics and programming
languages. This tutorial exposes Abella incrementally, starting with its capabilities at a first-order logic level
and gradually presenting more sophisticated features, ending with the support it offers to the two-level logic

approach to meta-theoretic reasoning. Along the way, we show how Abella can be used prove theorems
involving natural numbers, lists, and automata, as well as involving typed and untyped λ-calculi and the
π-calculus.
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1 Introduction

Abella is an interactive proof assistant designed to reason about relational inductive and co-inductive specifi-
cations, with a particular emphasis on reasoning about relations between terms containing bindings. Abella is
available for download from http://abella-prover.org.

1.1 A bit of history

The first version of the Abella theorem prover was developed by Andrew Gacek as part of his doctoral work
carried out at the University of Minnesota [19]. Kaustuv Chaudhuri and Yuting Wang have subsequently
designed and implemented extensions to the system, resulting in an updated release. The various authors of
this tutorial and several of their colleagues have been involved in developing the theoretical underpinnings of
this system, providing input on its structure and fleshing out examples of its applications.

The Abella prover was originally designed to illustrate the possibility of reasoning directly over the relational
judgments that can be constructed in λProlog [39] and in LF [29]. Even back in the 1990’s, it was clear that
such relational specifications could be extremely useful in a wide range of formalization efforts in the areas of
proof systems [3, 15, 49], type systems [2, 14], and programming language semantics [26, 27, 28]. Of course,
relational specifications have often been used in a number of other domains such as relational databases and
model checking as well.

Reasoning directly with judgments about higher-order objects, examples of which we shall first encounter
in Section 6, presents a number of challenges to conventional theorem provers. One of those challenges is
providing an abstract and flexible treatment of bindings within syntax. The logic G is the result of a decade
long effort [5, 22, 34, 35, 43, 63, 64, 69] to design an increasingly more flexible and powerful logic that would
provide such a treatment of binding. The Abella prover has allowed this work on proof theory to be validated
and exploited within an interactive theorem proving setting.

1.2 Abstractions of syntax

Computation and reasoning on linguistic structures goes back at least to Gödel and Church. For them, syntax
was encoded as a string of symbols: we usually refer to that approach to syntax as concrete syntax. While con-
crete syntax has the advantage of being readable and writable by humans, it has many disadvantages. Concrete
syntax contains too much information that is not important for many manipulations, such as white space, in-
fix/prefix notation, and keywords; and important computational information is not represented explicitly, such
as recursive structure, function–argument relationship, and the term–subterm relationship. The field of parsing
was developed in part to translate concrete syntax into more meaningful tree structures, often called parse trees.
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In such tree structures, much semantically meaningless information is discarded and the recursive structure is
made central.

For those attempting to reason about meta-theoretic properties of programs, type checkers, compilers, the-
orem provers, etc., it has become clear that parse trees are not abstract enough. In particular, the way that
parse trees encode binding structures (e.g., quantifiers, formal parameters, and lexical scopes) is too concrete.
Treating binding using named variables (despite the fact that α-conversion makes the choice of actual names
that are used unimportant) or as De Bruijn-style offset counters is complex and adds many details to programs
and specifications that are, in the end, orthogonal to real semantic content. As evidence of that problem, the
POPLMark challenge [4] attempted to raise interest in the theorem proving community to make better tools
for dealing with bindings in syntax so that formalized meta-theory could be made manageable.

There have been various attempts to treat bindings in syntax in a more abstract fashion. For example, one
of the applications of nominal logic [53] has been to provide a new approach to representing binders [18]. In this
tutorial we will focus on using λ-tree syntax [41], a third approach to syntactic representation. This approach,
which is closely related to the higher-order abstract syntax approach [48], is directly supported in λProlog. As
we shall see in Section 6, one of the characteristics of Abella is that it make it possible to reason on encodings
of syntax at this level of abstraction.

1.3 The organization of this tutorial

Abella is based on the logic G [21, 22] that contains several features that may appear novel to the uninitiated
reader. This tutorial is organized to introduce these features in an incremental fashion.

• At a propositional level, G makes use of the usual intuitionistic logical constants: true, false, conjunction,
disjunction, and implication. In addition G possesses the typed quantifiers ∀τ and ∃τ for all simple types
τ that do not contain the type of formulas; these quantifiers are drawn from Church’s Simple Theory of
Types [12]. In Section 2, we present the basic structure of Abella that is built around these connectives
and quantifiers.

• Equality at all simple types τ is treated as a logical connective in G. While the proof theory underlying
this treatment is natural, it is not well-known in the theorem proving community. We describe reasoning
based on this connective in Section 3.

• Relational specifications are introduced into G via fixed point definitions. Section 4 considers the treatment
of such definitions in Abella.

• Inductive and co-inductive definitions of relations are supported in G by giving definitions a least or greatest
fixed point reading. The treatment of induction and co-induction in Abella is presented in Section 5.

• Support for λ-tree syntax in G is dependent significantly on the ∇ (nabla) quantifier [6, 21, 42, 43] and the
closely associated notion of nominal constants [22]. Section 6 introduces these notions and demonstrates
how they can be used to treat binding in syntax.

Once the logical features underlying Abella have been presented, we turn to showing how they can be used
in practical reasoning tasks. In Section 7 we illustrate how some of the meta-theory of logics and formalisms
such as the π-calculus and the (untyped) λ-calculus can be captured in Abella. In Section 8, we finally consider
how Abella can be used to reason about relational specifications written in λProlog. We describe here the two
level logic approach that allows such reasoning to be carried out through an encoding of the derivability relation
of the logic underlying λProlog in an Abella definition.

At the outset of this tutorial, we shall assume that the reader is familiar with the natural deduction or
sequent calculus style of proof presentation of intuitionistic logic. We shall also assume familiarity with the
treatment of the standard logical connectives and quantifiers in such a proof-theoretic setting. Prior exposure
to concepts such as λ-tree syntax and the ∇ quantifier can be useful but is not assumed. A reader familiar with
the Coq system [9] will also find many points of similarity in the development of proofs in Abella, although we
caution that there are significant differences as well.

Before commencing on the tutorial, we comment on the use of the term higher-order ; see also [39, Section
I.3] for a related discussion. This term may or may not apply to the logic G, depending on what exactly is
meant by it. A type τ is considered to be higher-order if it has an arrow type to the left of another arrow type.
A minimum requirement for a logic to be higher-order is that it permit quantification over higher-order types.
The logic G allows such quantification and may therefore be considered higher-order. However, many people
would require a further property for the use of this adjective: quantification must be permitted over types that
contain the type of formulas. Such quantification is not permitted in G and hence it does not pass this test.
Given the ambiguity in the term higher-order when applied to G, we eschew its use in this tutorial.
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Abstract Concrete Precedence/
Associativity

Types (τ)
Atomic types prop, nat, list, . . .
Arrow types τ1 → τ2 T1 -> T2 right

Terms (m,n)
Variables x, y, . . . x, y, . . .
Constants c, d, . . . c, d, . . .
Nominal constants n1, n2, . . . n1, n2, . . .

(n followed by at least one digit)
Abstractions λx.m x\ M 0, right

λx:τ.m x:T\ M 0, right
Applications m n M N 5, left

Formulas (A,B)
Logical constants ⊤,⊥ true, false

m = n M = N 4, none
Atomic formulas p m1 · · · mn p M1 ... Mn 5, left
Connectives A ∧B A /\ B 3, left

A ∨B A \/ B 2, left
A ⊃ B A -> B 1, right

Quantifiers ∀x. ∀y:τ. . . . A forall x (y:T) ..., A 0
∃x. ∃y:τ. . . . A exists x (y:T) ..., A 0
∇x.∇y:τ. . . . A nabla x (y:T) ..., A 0

(parentheses required for type-annotations)
The Abella user manual [71] gives details on the lexical structure of identifiers. Parentheses may be used to
explicitly indicate groupings, which is otherwise inferred using the precedence and associativity rules in the
fourth column.

Figure 1: Concrete Syntax for G in Abella.

2 The top-level structure of Abella

This section gives an overview of the concrete syntax and command-level interaction with Abella. Keeping to
the spirit of a tutorial, we are not concerned here with presenting all details necessary for successfully using
Abella: for that, the interested reader can find a user manual at http://abella-prover.org

2.1 Types, terms, and formulas

The concrete syntax of Abella is presented in this document using a monospaced font: in addition, keywords
are depicted in blue. The types, terms, and formulas used by Abella are described briefly below as well as in
the table in Figure 1.

Types in Abella are the simple types ; such types are either primitive types or built from two types using
the arrow type constructor →. The type constructor → associates to the right, so every type in Abella can be
written in the form τ1 → · · · → τn → b (for n ≥ 0) where b is an atomic type that is called its target type, and
each τi itself has this structure. User-defined atomic types are introduced by means of Kind declarations that
we shall describe presently.

Terms in Abella are simply typed λ-terms built from variables, constants, λ-abstractions, and applications.
Constants are introduced into Abella using the Type declarations explained below. A λ-abstraction is written
using an infix backslash (\). The scope of a λ-abstraction extends as far to the right as possible while remaining
in the syntactic class of terms; thus, x\ f x stands for λx. (f x). Note that the left operand of \ must be
a bound variable, possibly with a type ascription, so, even though \ has lower precedence than application,
x\ f y\ y x is unambiguously parsed as λx. (f (λy. (y x))). Types for λ-bound variables may be omitted if
they can be inferred; type-inference must be be able to fill in all such missing types for the term to be deemed
well-formed.

Formulas in Abella are written using the standard syntax as shown in Figure 1. Formulas are actually
terms of type prop. Atomic formulas are formulas whose top-level constructor is not a logical symbol (i.e.,
a logical constant, connective, or quantifier). In other words, the top-level constructor of an atomic formula
must be a user defined constant with the target type prop. Such a constant is called a predicate or relational
symbol. Predicate symbols can be introduced through Type declarations or through the Define or CoDefine
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commands explained in Sections 4.1 and 5. The scoping rules for the quantifiers of G are similar to those
for λ-abstractions, and the types of such quantified variables may also be omitted when they can be inferred
uniquely. Note that Abella does not allow quantification over variables whose types contain the type prop. In
particular, quantification is not permitted over predicate variables, i.e., variables that have prop as their target
type.

In the next several sections, we will not make explicit use of λ-abstractions in terms: as a result, these sections
will view Abella as being based on a fairly standard first-order logic. Starting in Section 6, the treatment of
λ-bindings will play an important role in our examples. It is also from that section on that we will allow formulas
to contain the ∇ quantifier and terms and formulas to contain nominal constants.

2.2 Some top-level commands

Interacting with Abella involves issuing a sequence of commands : such commands declare kinds and types,
introduce definitions, state theorems and develop their proofs. All such commands end with a full-stop. We
can also intersperse commands with comments. Comments take the form of line-comments that begin with the
character % that causes the rest of the line to be ignored, or with arbitrary text delimited by a balanced pair of
/* and */ (supporting nesting).

Declarations come in two varieties: declarations of new atomic types, and declarations of new constants. To
declare a new atomic type, one uses a Kind declaration that has the general form:

Kind b1 , ..., bn type.

where the b1, . . . , bn are pairwise distinct valid identifiers that are not already atomic types declared earlier.
Each of b1, . . . , bn is then added to the collection of atomic types that may be used to form other types. The
final keyword type is used to indicate that these atomic types have kind type; this is somewhat redundant for
the simple type system of Abella, but allows for future extensions to the type system with higher kinded atomic
types.

To declare a collection of constants c1, . . . , cn of a particular type T, one uses a Type declaration that has
the general form:

Type c1 , ..., cn T.

The type T must be formed out of atomic types that have been declared earlier by means of Kind declarations.
Further, the constants c1, . . . , cn must be pairwise distinct valid identifiers that are not already declared using
Type or defined using the Define or CoDefine commands that we discuss later. Every Abella development begins
with a standard collection of type and constant declarations preloaded, shown in Figure 9 in the appendix.

As an example, here is how we would define a new atomic type nat of natural numbers, constants z and s

to construct such numbers, and a type list of natural numbers with constants empty and cons to construct
them.

Kind nat type.

Type z nat.

Type s nat -> nat.

Kind list type.

Type empty list.

Type cons nat -> list -> list.

It is important to note that the collection of constants of any type may be extended at any time with new
declarations. Thus, there is no guarantee that all terms of type nat, for instance, are constructed using just z
and s.

Another command in Abella is the one that proposes a formula to be considered for proof. This command
has the following general form:

Theorem thm_name : A.

where thm_name is any valid identifier that is distinct from other constants declared or defined earlier, and A is
a formula. Abella uses the same keyword Theorem for all flavors of provable formulas – lemmas, propositions,
corollaries, etc. Every theorem must be followed by its proof, which is a series of tactics: we start introducing
tactics in Section 2.3. Interactions with Abella are often called developments. Such developments can be entered
either interactively or via batch files: in the latter case, the files are given names with the suffix .thm. Such
files can be piped directly to the abella program or can be given as the first command line argument to the
program. Abella processes the file and outputs its interaction history to standard output until it encounters
an error (which causes an immediate abort of the program except in the interactive top-level) or it finishes
processing all the commands in the file. In the interactive top-level, Abella uses the prompt

Abella <

to indicate that it is ready for top-level commands, and prompts of the form

5



thm_name <

to indicate that it is expecting tactics to prove the theorem named thm_name.

2.3 Interactive tactical theorem proving

So far, we have seen a few top-level commands of Abella—namely, Kind, Type, and Theorem. In order to prove
a theorem in Abella, we use tactic commands instead of top-level commands, which are depicted in brown text.
The set of tactics in Abella is small and fairly close to the inference rules of G. These tactics will be introduced
gradually in this document, and each theorem name will be linked to a website where the effects of the tactics
can be browsed without needing to run Abella separately. Nevertheless, the reader is encouraged to follow along
by copying the proofs that are presented in this document directly into the Abella top-level, or using one of the
provided source files for the accompanying on-line materials with this tutorial.

When proving a theorem, Abella maintains a stack of subgoals, with the topmost subgoal of the stack selected
as the current goal. Initially, there is only a single subgoal which is the theorem itself, but certain tactics may
create additional subgoals that are pushed on to the subgoal stack. The current subgoal is presented in the
interaction history of Abella in the following general form:

Variables : x1 ... xm

H1 : A1

...

Hn : An

============================

C

where x1, . . . , xm are universally quantified variables, H1, . . . , Hn are hypothesis labels that are each associated
with a unique hypothesis formula drawn from A1, . . . , An and C is a formula called the conclusion of the goal.
The collection of variables and hypotheses is called the context of the goal. If there are no universally quantified
variables, the Variables line is omitted entirely. Note also that each of the variables that are shown has a
type associated with it, even though this type is not explicitly presented. At each intermediate stage in the
development of a proof, only the current goal is shown in full; only the conclusion is shown for the remaining
subgoals.

Whenever a tactic is processed by Abella, it transforms the current goal as relevant and then displays the
new proof state. As an illustration, suppose that we provide the following declarations

Kind i type.

Type p prop.

Type q i -> prop.

and then try to prove the following theorem.

Theorem extr : forall y, (p -> forall x, q x) -> p -> q y.

Abella displays the initial proof state as follows:

============================

forall y, (p -> (forall x, q x)) -> p -> q y

extr <

We can use the intros tactic to introduce all the antecedents, which yields:

extr < intros .

Variables : y

H1 : p -> (forall x, q x)

H2 : p

============================

q y

Now we can use the apply tactic that takes two hypotheses and uses implication-elimination (modus ponens)
on them to get a new hypothesis.

extr < apply H1 to H2.

Variables : y

H1 : p -> (forall x, q x)

H2 : p

H3 : forall x, q x

============================

q y

Finally, we can use the backchain tactic to match the conclusion of a goal against the head of a hypothesis: if
that match works, then the body of that hypothesis becomes the conclusion of the new goal.
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extr < backchain H3.

Proof completed .

Abella <

Abella re-enters the top-level command processing state when a proof is complete.
For another example of proving a theorem, consider the following.

Kind nat type.

Type z nat.

Type s nat -> nat.

Type p nat -> prop.

Theorem four : (forall x, p x -> p (s x)) ->

p z -> p (s (s (s (s z)))).

intros .

At this point, there is one current goal:

H1 : forall x, p x -> p (s x)

H2 : p z

============================

p (s (s (s (s z))))

We could use backchain H1 four times to complete this proof. An alternative is to use the assert tactic to
introduce a local lemma. The tactic invocation assert A causes the current goal to be split into two subgoals:
one where the conclusion is changed to A and the other that is identical to the current goal except that A is
added to the hypotheses. For the above subgoal, this would look as follows:

four < assert (forall x, p x -> p (s (s x))).

Subgoal 1:

H1 : forall x, p x -> p (s x)

H2 : p z

============================

forall x, p x -> p (s (s x))

Subgoal is:

p (s (s (s (s z))))

four <

Observe that there are now two subgoals to prove. The first, which is displayed in full detail, can be proved by
two applications of the backchain H1 tactic.

four < intros .

Subgoal 1:

Variables : x

H1 : forall x, p x -> p (s x)

H2 : p z

H3 : p x

============================

p (s (s x))

Subgoal is:

p (s (s (s (s z))))

four < backchain H1.

Subgoal 1:

Variables : x

H1 : forall x, p x -> p (s x)

H2 : p z

H3 : p x

============================

p (s x)

Subgoal is:

p (s (s (s (s z))))

four < backchain H1.

H1 : forall x, p x -> p (s x)

H2 : p z

H3 : forall x, p x -> p (s (s x))
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============================

p (s (s (s (s z))))

four <

Now, having successfully proved that formula, it is available as a hypothesis and we can return to proving
our original goal. This proof can be completed by two uses of the backchain tactic, but this time using the
hypothesis H3.

We shall continue to introduce tactics one-by-one as we have occasion to use them in example proofs. The
Abella tactics used in this tutorial are briefly described in Figure 7 of the appendix; the full list, including
precise documentation of their semantics, can be found in the Abella manual [71].

3 Equality

The most basic relation in Abella, as it is in many theorem provers, is term equality. A distinguishing character-
istic of G, the logic underlying Abella, is that equality is treated as a logical connective with its own introduction
rules and a role in cut elimination [22, 25, 34, 60]. In order to understand the treatment of equality, one must
understand the nature of terms: Abella employs the free term algebra, which means that terms are finitely
constructed from term constructors that are injective and distinct. Thus, the only way to prove an equality
conclusion t = s is for t and s to be syntactically identical.1 Conversely, an equality hypothesis t = s can
be analyzed by considering all the ways in which t and s can be made identical. Unification is useful for this
purpose. If t and s fail to unify, then the equality hypothesis is absurd and the goal is immediately proved.
Otherwise, we can transform the entire goal into a set of other goals where, first, the hypothesis t = s is removed
and, second, a unifier of t and s is applied to all the remaining hypotheses and conclusion formula. The unifiers
that are considered in such a transformation must cover all possible unifiers of t and s. In this section, where we
restrict our attention to only first-order terms, we use the most general unifiers that are known to exist for this
purpose. Later, when we work with arbitrary simply typed λ-terms, we use the generalization of this notion to
complete sets of unifiers [31]. In practice, Abella restricts attention to unification problems to the higher-order
pattern fragment [37, 47] where, once again, most general unifiers are guaranteed to exist.

3.1 Basic examples

To illustrate the basic rules of equality, consider the following script where we declare a type i, equip it with a
few term constructors, and set out to prove a few results about terms at type i.

Kind i type.

Type a, b, c i.

Type g i -> i.

Type f i -> i -> i.

Theorem ex1 : exists x, x = a.

witness a. search .

In the proof of ex1, we choose a as a witness for the existentially quantified variable x. This yields a subgoal
with a trivial equality as conclusion, and we discharge it using the search tactic.

As another example, consider the following script.

Theorem ex2 : forall x y z,

f x (g y) = f (g y) z -> x = z.

intros . case H1. search .

In this example, after introducing the three eigenvariables and the equality hypothesis under the name H1, we
eliminate the hypothesis using case. As a result, Abella computes the most general unifier for the two terms
in hypothesis H1, namely the substitution θ = [x 7→ (g y), z 7→ (g y)], and then applies that substitution to all
formulas in the full goal. This then gives rise to the trivial conclusion formula g y = g y and the search tactic
is able to complete the proof.

As we have observed above, unification may not always succeed. This is the case in the following example.

Theorem ex3 : a = b -> false .

intros . case H1.

Here, the application of the case tactic to H1 results in an attempt to unify a and b. This attempt fails and
thereby the proof is trivially completed.

As a slightly more elaborate example of equality reasoning, consider proving that the set {a, c} is included in
{a, b, c}. Although Abella does not have a built-in notion of sets2, we can represent them by their membership

1The logic assumes the λ-conversion rules so in fact we mean identical with respect to these rules.
2 The curly brackets {, } will be used in Section 8 but not to denote sets.
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predicates, that is λx. (x = a ∨ x = c) and λx. (x = a ∨ x = b ∨ x = c). (We will discover a nicer way to encode
such sets in the next section.) Using this idea, we can express our set inclusion, and prove it as follows.

Theorem ex4 : forall x,

x = a \/ x = c -> x = a \/ x = b \/ x = c.

intros . case H1. search . search .

In this instance, the case tactic deals with the disjunction and its two equality disjuncts. This tactic generates
two subgoals, in which x has been unified with a and b respectively, resulting in the conclusion formulas
a = a ∨ a = b ∨ a = c and c = a ∨ c = b ∨ c = c. Each subgoal is immediately proved using search, since its
conclusion formula contains a trivial equality as a disjunct.

3.2 Proving that equality is a congruence

Although equality is not directly defined as a congruence, it is easy to show that it is one. First, we show that
it is an equivalence.

Theorem eq-ref : forall (x : i), x = x.

intros . search .

Theorem eq-sym : forall (x : i) y, x = y -> y = x.

intros . case H1. search .

Theorem eq-trans : forall (x : i) y z,

x = y -> y = z -> x = z.

intros . case H1. case H2. search .

These three theorems are simple consequences of the way equality is treated in Abella. Now, one way to
establish the congruence property for equality is to do it one constructor at a time. For example, the fact that
the constructor f yields equal terms when applied to equal arguments can be stated and proved as follows.

Theorem f-eq-cong :

forall x y u v, x = y -> u = v -> f x u = f y v.

intros . case H1. case H2. search .

Having to organize the proof of congruence this way can be tedious: there can be many constructors to consider.
Fortunately, the ability to quantify at higher-order types allows us to formulate a general theorem that is
surprisingly easy to prove.

Theorem eq-cong :

forall (F : i -> i) x y, x = y -> (F x) = (F y).

intros . case H1. search .

Finally, we can show for any given predicate that it behaves the same on equal terms.3

Type p i -> prop.

Theorem p-eq-cong : forall x y, x = y -> p x -> p y.

intros . case H1. search .

3.3 Peano axioms and the open-world assumption

Given the nature of constructors and their treatment by equality, it is possible to prove two of Peano’s axioms
for describing the natural numbers. In the following development, the type of natural numbers is introduced
as are the constructors for zero and successor. The injectivity of successor and the difference between zero and
successor are simple to state and prove.

Kind nat type.

Type z nat.

Type s nat -> nat.

Theorem succ-inj : forall x y, (s x) = (s y) -> x = y.

intros . case H1. search .

Theorem zero-succ : forall x, (s x) = z -> false .

intros . case H1.

In addition, we have a simple proof of the fact that no number is its own successor.

Theorem finiteness : forall x, x = (s x) -> false.

intros . case H1.

3 We can actually prove any instance of the substitutivity principle.
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This theorem holds because x is quantified over finite terms, a fact reflected in the proof through the failure of
unification. It is important to note that we did not and could not use an induction on x here. In fact, Abella
does not allow case analysis directly on terms—as a result, it is not possible to prove forall (x : nat), x

= z \/ exists y, x = s y. This goes with another key principle of Abella: we do not assume the signature
to be closed, and so all reasoning should remain valid if the signature is extended later. Of course, closedness
assumptions are often necessary; they shall be expressed by means of user-defined relations, a topic we discuss
in the next section.

4 Relational specifications

There are two basic approaches to defining operations such as addition on the terms built from the constructors
z and s declared in the previous section; these approaches can be seen as answers, respectively, to the questions
of “how” and “what.” The first is the functional approach—a response to the “how” question—where a
computation sum explicitly builds the sum of a pair of nats by analyzing the structure of its inputs. The
inputs and outputs of the function are fixed; one cannot use the same function to compute the difference of two
numbers. Moreover, the computations interact with the notion of equality on terms; for instance, it must be
the case that:

sum (s z) (s (s z)) = s (s (s z))

It would be incorrect here to observe that the topmost “function” symbol of the two terms being compared are
different and therefore that the terms must be different. To compare terms with such embedded computations
for equality, we must, therefore, extend the equational theory of terms to account for such computations.

The alternative is the relational approach—a response to the “what” question—where we define a relation
plus between three nats that asserts that the third nat is the sum of the first two. In other words, plus is
not a way to construct new nats from old, but is an assertion about nats that are constructed with just z and
s, with no change to their equational theory. Indeed, the plus predicate can be defined in terms of a simple
inference system with the following inference rules.

plus z N N
plus M N K

plus (s M) N (s K)

To establish that m and n sum to k, it suffices to find a derivation of plus m n k using the inference system
above. The plus inference system can, moreover, be used just as easily for subtraction: the same derivation
establishes that n is the difference ofm and k. Finally, if k is not the sum of m and n, then there is no derivation
of plus m n k, so the inference system is a complete characterization of addition.

4.1 Defining relations as fixed points

Abella directly realizes the relational approach by means of relational fixed point definitions often just called
fixed points. To illustrate, the inference system for plus above is represented in Abella using the following
definition.

Define plus : nat -> nat -> nat -> prop by

plus z N N ;

plus (s M) N (s K) := plus M N K.

The target type of the plus predicate is the type prop of formulas of G; every such definition must have the
target type prop. Each inference rule above is captured as a definitional clause for the plus predicate, with all
the clauses separated by semi-colons. The head of each clause is the atomic formula that occurs to the left of
:=, while the formula to the right of := is the body. (If there is no := in a clause, the body is implicitly set to
true.) In each clause, the capitalized identifiers—the M, N, K, etc.—are assumed to be universally quantified, so
the clause stands for every instance of these identifiers.

This fixed point definition has the same properties as the plus inference system. It can establish true facts
such as:

Theorem plus_two_two :

plus (s (s z)) (s (s z)) (s (s (s (s z)))).

unfold 2. unfold 2. unfold 1. search .

We could have proved this with just search, but we have used explicit unfolds to show which definitional
clause of plus was used to unfold the conclusion; see Figure 7 for the semantics of unfold. More importantly,
the plus definition can also be used to show the negation of incorrect summations.

Theorem plus_bad : plus (s (s z)) (s z) (s (s z)) -> false.

intros . case H1. case H2. case H3.
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Note that in the uses of unfold or case above, the goal or the hypothesis is of the form plus M N K which
is matched against one of the heads of the definitional clauses of plus, and the corresponding body is used to
replace the goal or the hypothesis. It is possible to view each definition as implicitly constructing a disjunction
of all its definitional clauses, with the variables explicitly quantified. Thus, an explicit version of the plus

relation may be written as follows.

Define plus_ex : nat -> nat -> nat -> prop by

plus_ex M N K :=

(M = z /\ K = N)

\/ (exists M’ K’, M = s M’ /\ K = s K’ /\ plus M’ N K’).

The two relations plus and plus_ex are equivalent, but plus is easier to use because the disjunctions are left
implicit both in its definition and in proofs involving plus.

These implicit disjunctions can also be used to enumerate the elements of a finite relation explicitly. For
example, the sets {a, b} and {a, b, c}, defined using disjunction and equality in Section 3, can equivalently be
defined as relations:

Define ab : i -> prop by

ab a ; ab b.

Define abc : i -> prop by

abc a ; abc b ; abc c.

Theorem ex4_defs : forall x, ab x -> abc x.

intros . case H1. search . search .

The ex4_defs theorem, which is the version of ex4 from Section 3 using definitions, has an identical proof. We
will revisit such explicit enumerations when discussing inductive invariants in the next section.

To give a logical meaning to relational fixed point definitions, we have to ensure that the fixed point being
declared to exist actually does exist. To see the danger, consider a putative definition such as:

Define p : prop by

p := p -> false.

We can prove both p and p -> false by simply unfolding and case-analysis of p:4

Theorem p_true : p.

unfold . intros . case H1 (keep). apply H2 to H1.

Theorem notp_true : p -> false .

intros . case H1 (keep). apply H2 to H1.

Abella complains about such a definition by emitting a warning that the definition fails the stratification condi-
tion, which is a sufficient condition to ensure that the fixed point exists [34, 63]. A definition for a predicate p

is stratified if in its definitional clauses there are no occurrences of p in subformulas to the left of an implication
and only those predicates that have previously been defined are used. Note that this condition is per definition;
any definition that follows the definition of p can use p without restrictions, just as the definition of p can freely
use any predicate that has been defined earlier.

The stratification condition used by Abella is conservative. For example, the following two definitions fail
this condition.

Define q : prop by

q := (q -> false ) -> false .

Define r : nat -> prop by

r z ;

r (s N) := r N -> false .

Recent results [8, 69] suggest that definitions of the first kind may be permitted without loss of consistency. Sim-
ilarly, a weakened version of stratification has been identified that renders the second definition acceptable [66].
An alternative development permits definitions of the second kind in a form that does not allow case analysis
to be done on them, treating them instead as recursive definitions in the style of Coq [8]. A further discussion
of this matter is beyond the scope of this tutorial. Suffice it to say that any warnings of the violation of the
stratification condition emitted by Abella must be given serious consideration for fear of permitting definitions
that introduce inconsistencies.

4 The default behavior for the case tactic is to remove the hypothesis that has just been analyzed by it. Sometimes, however,
it convenient or necessary to keep that hypothesis since it will be used another time. In such cases, we use the expression (keep)

with the tactic as we have done here. Interestingly, it has been shown in [25, 60] that producing contradictions such as the one
under discussion using fixed points requires using a hypothesis more than once.
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4.2 Some recursive definitions involving lists

Consider the example of lists of natural numbers below:

Kind list type.

Type empty list.

Type cons nat -> list -> list.

Define memb : nat -> list -> prop by

memb N (cons N L) ;

memb N (cons M L) := memb N L.

We can then directly define the standard set inclusion and equality.

Define set_incl : list -> list -> prop by

set_incl S T :=

forall E, memb E S -> memb E T.

Define set_eq : list -> list -> prop by

set_eq S T := set_incl S T

/\ set_incl T S.

Once we have defined the memb relation in this way, we can use it in the form exists E, memb E S /\

pred E, where it is serves to check membership in a set (encoded as the list S), and in the form forall E,

memb E S -> pred E, where it is used to define the range of such a set. Observe that if there are repetitions
of elements in the list representing a set, then the memb relation may enumerate that element more than once.

The sets ab and abc that we constructed above as definitions can instead be built explicitly as lists and the
inclusion can be shown using set_incl.

Type u,v,w nat.

Theorem ex4_lists :

set_incl (cons u (cons v empty))

(cons u (cons v (cons w empty ))).

unfold . intros .

case H1. /* case of u */ search .

case H2. /* case of v */ search .

case H3. /* no more cases */

4.3 Finite success and finite failure

Definitions can be used directly to reason about finite computations using the case and unfold tactics. This is
achieved by specifying the computations as a definition where each clause is, in essence, in the Horn fragment
of logic programs [39, chapter 2]. As an example, consider the following definitions of append and reverse of
lists.

Define append : list -> list -> list -> prop by

append empty L L ;

append (cons N L1) L2 (cons N L3) :=

append L1 L2 L3.

Define reverse : list -> list -> prop by

reverse empty empty ;

reverse (cons N L1) L2 :=

exists L3, reverse L1 L3

/\ append L3 (cons N empty) L2.

Here are two simple proofs for finite lists, where we have used only unfold for the computations and limited
search to subgoals with the conclusion true.

Theorem append_1 :

append (cons u empty) (cons v (cons w empty ))

(cons u (cons v (cons w empty))).

unfold . unfold . search .

Theorem reverse_1 :

reverse (cons u (cons w (cons v empty )))

(cons v (cons w (cons u empty ))).

unfold . witness cons v (cons w empty). split .

unfold . witness cons v empty. split .

unfold . witness empty . split. unfold . search .

unfold . search .

unfold . unfold . search .

unfold . unfold . search .
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Both of these proofs could have been reduced to just search.
As a dual to the examples above, the negation of a relation A can often be proved by showing exhaustively

that there is no proof of A; this is a technique that is also referred to as negation by finite failure. In particular,
if the case tactic cannot find a way to match a hypothesis that is an instance of a defined relation with the
head of any defitional clause, then assuming that the hypothesis is provable is absurd. As a result, the entire
goal can succeed. An example that brings out this style of reasoning is the following.

Theorem append_finite_failure :

append (cons u empty ) (cons v (cons w empty))

(cons u (cons w (cons v empty))) -> false .

intros . case H1. case H2.

In this example, the proof state that the tactic case H2 is applied to is the following.

H2 : append empty (cons v (cons w empty))

(cons w (cons v empty))

============================

false

The tactic application finishes the proof because H2 does not match with the head of any of the clauses for
append.

It is important to note that changing u, v, and w from signature constants to universally quantified variables
changes the formula from a theorem to a non-theorem.

Theorem append_not_failure : forall u v w,

append (cons u empty ) (cons v (cons w empty))

(cons u (cons w (cons v empty))) -> false .

intros .

The goal we have at this point is the following.

Variables : u, v, w

H1 : append (cons u empty) (cons v (cons w empty))

(cons u (cons w (cons v empty )))

============================

false

Let us now use the case tactic twice as before, but with the (keep) option that instructs Abella not to delete
the hypothesis after case-analysis, so that we can observe its effect:

append_not_failure < case H1 (keep).

Variables : u, v, w

H1 : append (cons u empty) (cons v (cons w empty))

(cons u (cons w (cons v empty )))

H2 : append empty (cons v (cons w empty))

(cons w (cons v empty))

============================

false

append_not_failure < case H2 (keep).

Variables : u, w

H1 : append (cons u empty) (cons w (cons w empty))

(cons u (cons w (cons w empty )))

H2 : append empty (cons w (cons w empty))

(cons w (cons w empty))

============================

false

Here, the head of the first clause of append does match H2 in the case that v and w are equal. The subgoal
therefore explores this possibility by instantiating v to w, which leaves us in a state from which we cannot
complete the proof.

5 Induction and co-induction

Simply unfolding definitions (whether in hypotheses or conclusions of goals) has its limitations. For instance,
consider the following definitions of even and odd natural numbers.

Define even : nat -> prop by

even z ;

even (s (s N)) := even N.

Define odd : nat -> prop by

odd (s z) ;

odd (s (s N)) := odd N.
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It is clearly the case that even x -> odd (s x) holds, but this cannot be shown just by using the case and
unfold tactics:

Theorem even_odd : forall x, even x -> odd (s x).

intros . case H1.

search .

unfold .

The result of the second unfold is this subgoal:

Variables : N

H2 : even N

============================

odd (s N)

which is the same as the even/odd theorem itself, and therefore cannot be established by finite unfolding.
The above example indicates that to prove interesting properties of types such as natural numbers it is

necessary to reason by induction. Elementary presentations of natural number induction typically take the form
of a base case, where a property is shown for 0, and an inductive step, where the property is assumed for n
and then shown for n + 1. If the base case and inductive step are proven, then the property is true for all
natural numbers. This reasoning is justified by the well-foundedness of the natural numbers: for any particular
natural number n, the property could be shown to hold without induction simply by performing the base case
and then applying the inductive step n times. In this way, induction allows for guarded cyclic reasoning and
avoids unsound circular reasoning.

To introduce induction in the context of Abella, we refine the notion of an arbitrary fixed point definition
to that of a least fixed point definition. Any predicate introduced via the Define command is treated as a least
fixed point and is called an inductively defined predicate or simply an inductive predicate. Roughly, the least
fixed point semantics of inductive predicates means that the only instances of the predicate that hold are those
which can be obtained by iterating the definition principle a (trans)finite number of times. Thus, we can induct
over the number of iterations of the definition for such predicates. Note that induction is applied in Abella to
inductively defined predicates : there is no direct support for inductively defined types. Of course, since types
can generally be encoded as predicates, one can get the effect of an induction on the type by first defining a
predicate that identifies the members of the type.

The actual process of inductive reasoning in Abella relies on using the induction tactic. This tactic applies
when the conclusion has the form of an implication possibly nested under universal quantifiers. The target of
the induction tactic, called the inductive argument, is one of the hypotheses of the implication which must be
an inductively defined predicate applied to some arguments. The tactic takes the conclusion as an inductive
hypothesis while adding a restriction that the inductive argument must be reduced, measured in terms of
unfoldings of the definition, before the inductive hypothesis may be applied.

We illustrate these ideas by considering how they may be used to realize induction over natural numbers.
Towards this end, we first provide an inductive definition of the natural numbers.

Define is_nat : nat -> prop by

is_nat z ;

is_nat (s N) := is_nat N.

Let p be a term of type nat -> prop representing a property of interest over the natural numbers. To show
that p holds for all natural numbers, we would have to prove the following.

Theorem p_universal : forall n, is_nat n -> p n.

At this stage, we can invoke the tactic induction on 1, which specifies that we should try induction with the
first hypothesis in the conclusion as the inductive argument. This transforms the proof state to

IH : forall n, is_nat n * -> p n

============================

forall n, is_nat n @ -> p n

in which the inductive hypothesis is marked as IH. Two size restriction annotations, * and @, are used to track
the relative sizes of the inductive argument. The restriction * is fixed and requires that the inductive hypothesis
only applies to arguments which are smaller than the term annotated with @. In order to obtain a smaller
argument, we first apply intros to reach:

Variables : n

IH : forall n, is_nat n * -> p n

H1 : is_nat n @

============================

p n

We then proceed with case H1 which results in two subgoals:
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Variables : n

IH : forall n, is_nat n * -> p n

============================

p z

and

Variables : n, N

IH : forall n, is_nat n * -> p n

H2 : is_nat N *

============================

p (s N)

The first goal corresponds to the base case in traditional natural number induction. In the second goal, we have
a hypothesis is_nat N which is a candidate for the inductive hypothesis. Using the inductive hypothesis via
the tactic apply IH to H2 produces a state corresponding to the inductive step of traditional natural number
induction:

Variables : n, N

IH : forall n, is_nat n * -> p n

H2 : is_nat N *

H3 : p N

============================

p (s N)

Thus the notion of induction in Abella subsumes natural number induction.
As a concrete example, let us prove the even_odd theorem that we considered in Section 4.3.

Theorem even_odd : forall n, even n -> odd (s n).

induction on 1. intros . case H1.

search .

apply IH to H2. search .

Using induction on 1 here yields the proof state

IH : forall n, even n * -> odd (s n)

============================

forall n, even n @ -> odd (s n)

As before, we must turn the size restricted formula even n @ into a formula involving * before we can apply the
inductive hypothesis. This is done by bringing even n @ into the context using the intros tactic. Following
this with case H1, leaves us with the two subgoals

IH : forall n, even n * -> odd (s n)

============================

odd (s z)

and

Variables : N

IH : forall n, even n * -> odd (s n)

H2 : even N *

============================

odd (s (s (s N)))

These goals arise from the two ways that even n can be proved: the first clause of even can be used if the
variable n is set equal to z, while the second clause can be used if n is set to (s (s N)) for some new variable N.
In this latter case, we can appeal to the IH because the annotations match. In particular, if we apply IH to H2

on this goal, it will add odd (s N) to the hypothesis set. The goal follows from this by a simple unfolding that
can, in fact, be performed automatically by using the search tactic.

The reader is encouraged to try to prove the following theorems at this point, to get a feel for the induction
tactic.

Theorem even_nat : forall n, even n -> is_nat n.

Theorem odd_nat : forall n, odd n -> is_nat n.

Theorem nat_part : forall n, is_nat n -> even n \/ odd n.

Theorem even_odd_split : forall n, even n -> odd n -> false .

5.1 Inductive hypotheses vs. inductive invariants

Using inductive hypotheses with size restriction annotations is a more general mechanism than reasoning with
explicit invariants. On the other hand, the soundness argument for induction based on annotated inductive
hypotheses is harder to justify in terms of invariants, although this can be done formally as well [19].

Despite Abella’s commitment to guarded cyclic proofs via the induction tactic, the invariants can be
explicitly constructed if needed. As a prototypical example, consider the problem of reachability in finite
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directed graphs, represented here with a type node of nodes and a finitely enumerated edge relation between
the nodes. Let us use the following illustrative example.

Kind node type.

Type a,b,c,d,e node.

Define edge : node -> node -> prop by

edge a b ; edge b c ; edge c a ; edge a d.

This relation corresponds to the following graph.

a

b

c

d

e

For any such graph, the reachability relation reach, which is the reflexive-transitive closure of edge, is easily
defined:

Define reach : node -> node -> prop by

reach N N ;

reach N1 N3 := exists N2 , reach N1 N2 /\ edge N2 N3.

Let us try to show that the node e is not reachable from a. After traversing three edges from a, we would
be back to a, so the graph cannot be finitely explored by simply unfolding the edge and reach definitions.
However, we can finitely enumerate all nodes reachable from a.

Define a_can_reach : node -> prop by

a_can_reach a ; a_can_reach b ;

a_can_reach c ; a_can_reach d.

Assuming we show that whenever reach a x also a_can_reach x (which requires induction, of course), it is
then a simple matter to observe that e is not in this enumeration and is therefore not reachable.

Theorem inv : forall x, reach a x -> a_can_reach x.

induction on 1. intros . case H1.

search .

apply IH to H2. case H3. search . search . search . search .

Theorem a_cannot_reach_e : reach a e -> false .

intros . apply inv to H1. case H2.

Note that the proof inv is entirely straightforward and can be efficiently computed by a model checker [7].

5.2 Kinds of induction

5.2.1 Simple induction

As should be expected, many properties of inductively defined relations such as append and reverse from
Section 4.3 are proved using the induction tactic. Here, for instance, are two examples showing that append
is deterministic and associative.

Theorem append_det : forall I1 I2 O1 O2,

append I1 I2 O1 -> append I1 I2 O2 -> O1 = O2.

induction on 1. intros . case H1.

case H2. search .

case H2. apply IH to H3 H4. search .

Theorem append_assoc : forall A B C AB ABC ,

append A B AB -> append AB C ABC ->

exists BC , append B C BC /\ append A BC ABC.

induction on 1. intros . case H1.

search .

case H2. apply IH to H3 H4. search .

We can also show that append is total, i.e., for any ground lists in the first two arguments, append establishes
their concatenation in its third argument. To prove this theorem, we need to induct on the structure of the
input lists. In Abella this is achieved by means of a separate definition is_list that specifies the recursive
structure of the list and can be used to drive the induction.
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Define is_list : list -> prop by

is_list empty ;

is_list (cons N L) := is_list L.

Theorem append_total : forall A B,

is_list A -> exists C, append A B C.

induction on 1. intros . case H1.

search .

apply IH to H2 with B = B. search .

Note, however, that the following theorem is not provable in Abella

forall (A:list) (B:list), exists (C:list), append A B C.

because the typing assertion A:list does not have an associated induction principle. This is an intentional
omission, because Abella allows extensions of the type signature. For example, a new kind of list constructor
can be defined:

Type cons2 nat -> nat -> list -> list.

which the append relation does not know how to process. Still, append_total would continue to hold, because
the is_list relation filters out such lists. All inductive theorems in Abella are proved by induction on an
explicit inductive definition.

While the induction tactic can prove some theorems directly, some theorems cannot use that tactic until
after other lemmas have been proved. For instance, to show that plus on natural numbers is commutative
requires two lemmas that are proved separately.

Theorem plus_zero : forall N, is_nat N -> plus N z N.

induction on 1. intros . case H1.

search .

apply IH to H2. search .

Theorem plus_succ : forall M N K,

plus M N K -> plus M (s N) (s K).

induction on 1. intros . case H1.

search .

apply IH to H2. search .

Theorem plus_comm : forall M N K,

is_nat K -> plus M N K -> plus N M K.

induction on 2. intros . case H2.

apply plus_zero to H1. search .

case H1. apply IH to H4 H3.

apply plus_succ to H5. search .

5.2.2 Mutual induction

It is common to define a related family of inductive definitions that are mutually recursive in the form of a
definition block. For example, the odd and even relations from Section 4.3 can be defined more perspicuously
by mutual induction as follows.

Define even : nat -> prop ,

odd : nat -> prop by

even z ;

even (s N) := odd N ;

odd (s N) := even N.

With such a definition, it becomes natural to write the proofs of the even_nat and odd_nat theorems earlier by
mutual induction. In Abella, this is achieved by first writing the statements of both theorems as a conjunction.

Theorem even_odd_nat :

(forall N, even N -> is_nat N)

/\ (forall N, odd N -> is_nat N).

To prove this we need two inductive hypotheses, one for each conjunct, that may be appealed to whenever we
have either a strictly smaller even N or a strictly smaller odd N. The induction tactic in its general form takes
a (non-empty) list of antecedent numbers as arguments, one number per conjunct of the theorem.

even_odd_nat < induction on 1 1.

IH : forall N, even N * -> is_nat N

IH1 : forall N, odd N * -> is_nat N

============================

(forall N, even N @ -> is_nat N) /\

(forall N, odd N @ -> is_nat N)
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We can now split the conjunctive goal into two subgoals and use either IH or IH1 (or both) in each subgoal as
appropriate. The full proof looks as follows.

Theorem even_odd_nat :

(forall N, even N -> is_nat N)

/\ (forall N, odd N -> is_nat N).

induction on 1 1. split.

intros . case H1. search . apply IH1 to H2. search .

intros . case H1. apply IH to H2. search .

Given such a theorem, the top-level command Split extracts each conjunct as a separately named theorem to
be used in the rest of the development.

Split even_odd_nat as even_nat , odd_nat .

5.2.3 Nested and lexicographic induction

For more complicated inductive definitions, it is sometimes necessary to reason by induction on more than
one relation at the same time, with a lexicographic order between the decreasing measures. In Abella, this is
achieved by means of nested induction, where the nesting expresses the lexicographic ordering.

As an illustration, take the following definition ack that computes the Ackermann relation on natural
numbers, i.e., ack M N K if and only if K = A(M, N).

Define ack : nat -> nat -> nat -> prop by

ack z N (s N) ;

ack (s M) z K := ack M (s z) K ;

ack (s M) (s N) K :=

exists J, ack (s M) N J /\ ack M J K.

Consider the theorem that the relation is total: for any natural numbers as input (the first two arguments to
ack), there is a natural number as output (the third argument of ack).

Theorem ack_total : forall M N,

is_nat M -> is_nat N ->

exists K, is_nat K /\ ack M N K.

The inductive argument proceeds as follows: either M decreases in a recursive call to ack (in which case N

can grow), or M stays the same and N decreases strictly. We write this using the following nesting.

ack_total < induction on 1. induction on 2.

IH : forall M N, is_nat M * -> is_nat N ->

(exists K, is_nat K /\ ack M N K)

IH1 : forall M N, is_nat M @ -> is_nat N ** ->

(exists K, is_nat K /\ ack M N K)

============================

forall M N, is_nat M @ -> is_nat N @@ ->

(exists K, is_nat K /\ ack M N K)

The first inductive hypothesis, IH, handles the case where M decreases strictly—that is, deriving is_nat M

requires strictly fewer unfoldings—indicated with *. The second hypothesis, IH1, handles the case where M

stays exactly the same (indicated with @) while N shrinks strictly. The doubled annotation (** or @@) on
is_nat N indicates that this annotation is with respect to an enclosing inductive restriction, in this case for
is_nat M. The proof of ack_total is then straightforward.

Theorem ack_total : forall M N,

is_nat M -> is_nat N ->

exists K, is_nat K /\ ack M N K.

induction on 1. induction on 2.

intros . case H1 (keep).

search .

case H2.

apply IH to H3 _ with N = s z. search .

apply IH1 to H1 H4. apply IH to H3 H5. search .

There are standard approaches to realizing strong induction or well founded induction given the induction
principles we have illustrated here. Examples illustrating such induction principles can be found on the Abella
website.

5.3 Co-induction

We have thus far seen only recursive definitions and cyclic proofs that were given least fixed point and inductive
semantics, respectively. Abella also supports their dual notions: greatest fixed point semantics and co-inductive
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proofs. Many behavioral properties, most importantly (bi)simulation, are co-inductively defined. Unlike induc-
tion, which deals with the structure of relations, co-induction reasons about their behavior, i.e., the trace of
observations that can be made about a co-inductively defined relation as it is iteratively unfolded.

In this subsection we will introduce co-inductive definitions and the coinduction tactic and apply them
in the domain of finite automata. Co-induction will be used more heavily in later sections, particularly in
Section 7.3, to reason about more sophisticated computational systems such as the π-calculus. In this section,
we present a simple example of reasoning co-inductively on a finite automata simulation.

Consider finite automata with labeled transitions, represented with a type st of states and lab of labels, each
of which will have only a finite number of constant constructors. On this basis we define a finitely enumerated
step relation that will stand for the labeled transitions between states. For illustration purposes, we use the
following two automata that have a disjoint set of states but a common set of labels.

p0 p1 q0 q1

a

b
a

a

Here is their encoding in Abella:

Kind st,lab type.

Type p0,p1,q0,q1 st.

Type a,b lab.

Define step : st -> lab -> st -> prop by

step p0 a p0 ; step p0 b p1 ;

step q0 a q1 ; step q1 a q0.

Two states are said to be in a simulation relation if every labeled transition from the first state is matched by
an identically labeled transition from the other state and the end points of both transitions are in the simulation
as well. For instance, in the above pair of automata, the states q0 and p0 are in a simulation, since every trace
starting from q0 is a repetition of the label a, which can be matched by the self-transition labeled a from p0.
The similarity relation is the greatest relation on pairs of states that is a simulation; equivalently, it is the union
of all simulation relations. It coincides with the greatest fixed point of the recursive definition of a simulation,
and is written using a CoDefine declaration.

CoDefine sim : st -> st -> prop by

sim P Q :=

forall L Pn , step P L Pn ->

exists Qn , step Q L Qn /\ sim Pn Qn.

Take the problem of showing that q0 and p0 are in a simulation, i.e., that sim q0 p0 is derivable. The proof
that would result with just the unfolding tactics unfold and case is as follows.

Theorem q0_sim_p0 : sim q0 p0.

unfold . intros .

case H1. witness p0. split. search .

unfold . intros .

case H2. witness p0. split. search .

/* back to the first case */

abort .

Once again, we have a circularity in the proof, but, unlike in the case of induction, there is no measure on the
proof state that has strictly decreased. However, there is a measure that has increased, viz., the number of times
the co-inductive definition sim has been unfolded. The coinduction tactic of Abella, like for induction, adds
a co-inductive hypothesis with size restriction annotations that enforce this increasing measure. In particular,
the proof state changes as follows.

q0_sim_p0 < coinduction .

CH : sim q0 p0 +

============================

sim q0 p0 #

The + annotation in the co-inductive hypothesis CH asserts that sim has been unfolded at least once. It therefore
cannot be used to match the # annotation in the conclusion, that asserts that sim has not been unfolded. To
turn the # to a +, therefore, we have to use the unfold tactic.

q0_sim_p0 < unfold .

CH : sim q0 p0 +
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============================

forall L Pn , step q0 L Pn ->

exists Qn , step p0 L Qn /\ sim Pn Qn +

Observe that the annotation on sim Pn Qn in the conclusion has changed. We can now introduce the antecedents
and reason by cases on step q0 L Pn. The full proof then looks nearly the same as the attempted proof above:

Theorem q0_sim_p0 : sim q0 p0.

coinduction . unfold . intros .

case H1. witness p0. split. search .

unfold . intros .

case H2. witness p0. split. search .

search .

The sole difference is that before the final search, the proof state is:

CH : sim q0 p0 +

============================

sim q0 p0 +

The annotations match, so the proof can finish by appealing to the CH.
Just as with induction in Section 5.1, it is possible to build the co-inductive invariant set explicitly. In this

case, the invariant will be a simulation, i.e., a set of all pairs of states that contains at least the pair (q0, p0)
and progresses5 to itself. For this simple example, we can construct such a simulation for (q0, p0) with a finite
number of elements:

Define sim_ex : st -> st -> prop by

sim_ex q0 p0 ; sim_ex q1 p0.

Note that sim_ex is inductively defined. Nevertheless, we can show that it is included in the similarity relation.

Theorem sim_ex_incl : forall P Q,

sim_ex P Q -> sim P Q.

coinduction . intros . unfold . intros . case H1.

case H2. witness p0. split. search .

assert sim_ex q1 p0. backchain CH.

case H2. witness p0. split. search .

assert sim_ex q0 p0. backchain CH.

Thus, to show sim P Q, it suffices to show sim_ex P Q, which can be done more simply than showing sim P Q

directly. Yet, except for trivial examples such as this one, such co-inductive invariants are infinite sets with an
intricate recursive structure that makes them hard to define, reason about, and maintain.

6 Reasoning about objects with bound variables

Many formal systems whose meta-theory we want to mechanize treat objects whose structures incorporate
binding notions. Thus, logical systems often concern formulas with quantifiers, expressions in the λ-calculus
include ones that contain abstractions, functional structure is important to capture in programming language
syntax, and names that have a scope (and additional relevant properties) are central to the π-calculus; the list
goes on. Although the various binding constructs each have their own specific semantics, they also possess a
common core of properties, such as equality under renaming and a notion of substitution that avoids inadvertent
capture of variables free in a local structure. A proper treatment of such notions is recognized to be both non-
trivial and also critical to the correct formalization of the different systems of interest. Considerable research
effort has therefore been devoted to developing systematic ways to encode binding constructs within proof
assistants and automated theorem provers.

Two common approaches in the computer-based treatment of binding are to use the nameless dummies
framework of De Bruijn [13] and the nominal logic framework of Pitts [53]. Abella is based on a third approach
that uses the abstraction operator in a typed λ-calculus to encode the binding effect of constructs such as
quantifiers in logical formulas and formal parameters in programs. This style of encoding was introduced by
Church already in 1940 in his paper formalizing higher-order logic [12], but the potential for Church’s idea
in a computational setting was not realized until about four decades later [32, 38]. Eventually, this style was
elaborated into what is now called λ-tree syntax [39].6

The realization of λ-tree syntax in Abella is based on two key aspects. First, the λ-calculus that is used
to represent syntax is deliberately chosen to be weak, so that it encompasses only the basic notions related
to bound variables and substitution. Under this choice, equality and the associated unification computation
provide meaningful tools for analyzing syntactic structure. Second, the logic underlying Abella complements

5A relation R progresses to R′ if for every (x, y) ∈ R, if x
a

−→ x′ then y
a

−→ y′ and (x′, y′) ∈ R′.
6Gacek [20] has shown that aspects of nominal logic and of λ-tree syntax can be made to coincide in a significantly weakened

subset of G.
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the term-level representation of binding with binding notions at the formula and proof-level. Here, the famous
slogan of Alan Perlis that “there is no such thing as a free variable” is followed. Rather than converting bound
variables in the analysis of syntax into arbitrary structures that correspond to free variables, Abella treats them
via a mobility of binders: a term-level binder is transformed into a formula-level binder which in turn becomes
a proof-level binder.

In this section, we expose the reader to the way the Abella style of treating binding constructs is used
in practice. A special role is played in such formalizations by a generic quantifier that is written as ∇ and
pronounced nabla and by nominal constants that are a proof-level correlate of such quantifiers. We introduce
these notions in the course of our discussion.

6.1 Representing constructs with bound variables

The λ-tree syntax approach identifies types with syntactic categories. Primitive types usually denote basic
syntactic classes such as those for terms, formulas, proofs, contexts, etc. Although it is possible to use more
sophisticated types that express dependencies such as “the type of all proofs of formula B” [29], Abella limits
itself to simple types. In λ-tree syntax, an arrow type denotes just another syntactic class. For example, when
encoding first-order logic, one would introduce the primitive types, say, tm and fm, to denote the syntactic class
of (first-order) terms and (first-order) formulas. The arrow type tm -> fm would then denote the syntactic
category of formulas in which one term variable is abstracted.

Syntactic categories denoted by arrow types play an important role in representing binding constructs in
Abella. Consider, for example, the task of encoding the terms of the pure, untyped λ-calculus. We can make
use of the type and the constants identified by the following declarations for this purpose:

Kind tm type.

Type abs (tm -> tm) -> tm.

Type app tm -> tm -> tm.

Note that the constant abs that is intended for encoding abstractions takes an argument of arrow type. The
intention here is to capture the binding effect of this construct in the language being represented—the untyped
λ-calculus—by translating it into an abstraction in the term language of Abella. This is one of the hallmarks of
the λ-tree syntax approach. We list below several examples of untyped λ-terms and their representation using
the above constants that demonstrate this structure.

λx. x (abs x\ x)

λx. x x (abs x\ app x x)

λx. λy. x (abs x\ abs y\ x)

λx. λy. y (abs x\ abs y\ y)

λx. λy. y x (abs x\ abs y\ app y x)

λx. λy. λz. x z (y z) (abs x\ abs y\ abs z\ app (app x z) (app y z))

(λx. x x) (λx. x x) (app (abs x\ app x x) (abs x\ app x x))

Equality between terms in Abella is given by α, β, and η conversion. Noting this fact, it is easy to show
that closed terms of type tm over the chosen signature correspond directly to the closed terms of the untyped
λ-calculus. More precisely, the αβη-equivalence classes of closed terms of type tm are in a bijection with α-
equivalence classes of closed untyped λ-terms. Later, when we introduce nominal constants, this bijection will
extend (under a permutation of names) to open untyped λ-terms.

The preferred representation approach in Abella, then, is to encode binding-related aspects of constructs
in an object language by using abstraction in the simply typed λ-terms of Abella. The primary virtue of this
approach is that it obviates explicit reasoning about binding in the object language: this is accounted for, once
and for all, in the logical foundations of Abella. To understand this concretely, let us return to the representation
of untyped λ-terms. The equivalence of two such terms under renaming of bound variables can be important to
reasoning about them. This equivalence is actually built into the fact that α-conversion holds for Abella terms.
Similarly, consider the contraction of a β-redex of the form ((λx. P ) Q). To formalize this notion, we need a
substitution operation that is capable of replacing free occurrences of x in P with Q while ensuring that no
free variables occurring in Q are inadvertently captured by intervening abstractions. Under our representation,
the term in question is encoded by an expression of the form (app (abs P) Q) and its contraction is given
simply by the expression (P Q); the proper realization of substitution is immediate from the understanding of
β-convertibility in Abella. Finally, the embedding of simply typed λ-terms within the logic of Abella makes it
possible to analyze binding structure in meaningful ways. As a simple example, consider the following definition:

Define vac_abs : tm -> prop by

vac_abs (abs (x\P)).

The predicate vac_abs that is so defined is capable of recognizing encodings of vacuous abstractions: because P
is bound outside of x, the argument to vac_abs can only be made equal to an abstraction whose bound variable
does not occur in its body. Using it, we can construct proofs such as the following in Abella:
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Theorem is_vac :

vac_abs (abs x\ (app (abs y\ y) (abs z\ z))).

search .

Theorem is_not_vac :

vac_abs (abs x\ (app (abs y\ y) x)) -> false .

intros . case H1.

The use of λ-tree syntax that we have illustrated above depends critically on the ability to think of arrow
types as corresponding to syntactic categories. It is important to emphasize that this is possible only because
of the special properties of the logic underlying Abella. In particular, the term language has limited expressive
power so that equality between terms is decidable and unification can be used meaningfully to analyze syntax.
Further, although unification in this setting is undecidable in general, the analysis of λ-terms used in syntax
representations usually requires a restricted form of unification called (higher-order) pattern unification [37].
This unification computation is decidable and constitutes a minimal extension to first-order unification that
also treats expressions with bound variables modulo the equality theory of αβη-conversions. Many of these
properties are lost if the logic is extended to encompass a richer, more mathematical, notion of equality between
functions such as that used, for example, in Church’s original formulation of higher-order logic [12].

6.2 The ∇ quantifier and nominal constants

The definition of relations over objects that contain binding often involves a recursion that results in a need to
examine open terms. For example, consider the relation between (untyped) λ-terms and types. This relation is
usually defined by rules such as the following:

Γ ⊢ t1 : α → β Γ ⊢ t2 : α
Γ ⊢ (t1 t2) : β

Γ, x:α ⊢ t : β
Γ ⊢ (λx. t) : α → β

x /∈ dom(Γ)

Observe here that in assigning a type to an expression of the form (λx. t) it is necessary to analyze the term t in
which x may appear free. To deal with this requirement, the typing relation is generalized to include a context
in addition to a term and a type: the context constitutes the place to look up the types of the free variables
in the term. Notice also that the rule for typing abstractions implicitly assumes a renaming to ensure that the
names chosen for the free variables are kept distinct.

Abella provides a logic-based means for treating such relations. A key component of this approach is the
∇ quantifier first introduced by Miller and Tiu [42, 43]. More precisely, the logic underlying Abella includes
formulas of the form ∇x. F , where x is a variable of some type that appears in F and F is itself a well-typed
formula. The logical meaning of such a formula can be understood intuitively as follows: to construct a proof
of ∇x. F , we need to pick a new constant that does not appear in F and then prove the formula that results
from instantiating x in F with this constant. The constants that are to be used in this way are called nominal
constants and they are depicted in Abella proofs by tokens that consist of the letter n followed by digits, i.e.,
by tokens such as n1, n2, n3, etc. These constants have special properties that we shall discuss presently. One
property that is of immediate importance is that each of them has a distinct identity within a formula, and the
logic cements their inequality to any other nominal constant appearing in that formula. Such nominal constants
are, therefore, different from eigenvariables since they are maintained as distinct by the logic. In particular,
both n1 6= n2 and ∇x∇y. x 6= y are provable in Abella while ∀x∀y. x 6= y is not a theorem in Abella.

Using the ∇ quantifier, it is possible to translate the typing relation shown above into an Abella definition.
For concreteness, let us assume that the permitted types are those formed by the arrow type constructor from
a single base type a. The following declarations then provide an encoding of these types and culminate in a
definition of the predicate of that formalizes the typing judgment in Abella:

Kind ty type.

Type a ty.

Type arr ty -> ty -> ty.

Kind vty type.

Type vty tm -> ty -> vty.

Kind assignment type.

Type vtynil assignment .

Type vtycons vty -> assignment -> assignment .

Define varof : tm -> ty -> assignment -> prop by

varof X Ty (vtycons (vty X Ty) Ass);

varof X Ty (vtycons VT Ass ) := varof X Ty Ass.

Define of : assignment -> tm -> ty -> prop by

of Gamma X Ty := varof X Ty Gamma;

of Gamma (app T1 T2) Ty :=
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exists Ty’, of Gamma T1 (arr Ty ’ Ty) /\ of Gamma T2 Ty ’;

of Gamma (abs T) (arr Ty1 Ty2 ) :=

nabla x, of (vtycons (vty x Ty1) Gamma) (T x) Ty2.

The clause to focus on in the definition of of is the one for typing abstractions. The body of this clause uses
a ∇ quantified formula: an expression of the form (∇x.E) is written as (nabla x, E) in Abella. Viewed
procedurally, this clause states that to type an abstraction it is necessary to introduce a new nominal constant
that is by design distinct from all others appearing in the formula at that point, to assign it the argument
type and, finally, to type the (open) body of the abstraction using the new constant as the name for the
abstracted variable. This example vividly illustrates the paradigm of mobility of binders that is used in Abella
in formalizing properties of binding constructs in an object language: to type an abstraction in the encoded
λ-calculus, we move the λ-binder corresponding to it first into a ∇ quantifier and then into a proof level nominal
constant.

It is useful to keep in mind some properties of nominal constants in understanding proofs in Abella that
involve such constants. One property that we have already mentioned is that distinct nominal constants in a
formula are considered unequal. This property is embodied in the fact that the formula (∇x.∇y. x 6= y) is a
theorem in the G logic underlying Abella. Another property is that the scope of these constants is limited to
particular formulas. More precisely, two formulas are considered equal if they can be made identical by applying
a permutation of nominal constants to one of them. This property is a consequence of three facts about the ∇
quantifier in Abella. First, it admits a strengthening principle: (∇x. P ) is equivalent to P if x does not appear
free in P . Second, it admits an interchange principle: (∇x.∇y. P ) is equivalent to (∇y.∇x. P ). Finally, the ∇
quantifier distributes over all the propositional connectives. These facts actually underlie the depiction of goals
in Abella in the form

Variables: x1 . . . xm

H1 : B1
...

Hn : Bn

============================

B0

Nominal constants may appear in the formulas B1, . . . , Bn and their scopes are then local to each of them but,
unlike for the eigenvariables x1, . . . , xn that are scoped over the entire goal, no explicit binder is shown for
these constants. Note also that the narrower scope means that if a particular nominal constant, say n1, appears
in more than one hypothesis and/or the conclusion, then it may be selectively renamed in any one of these
formulas in the course of constructing a proof.

The properties we have described for the ∇ quantifier lead to some theorems concerning it that may seem
surprising at first. For example, consider proving the following in Abella:

Theorem nabla-drop : (nabla x y, (p x -> q y)) ->

(nabla x, p x) -> (nabla y, q y).

After the application of the tactics

intros . case H1. case H2. apply H3 to H4.

the prover will be in a state given by the following:

nabla-drop <

H3 : p n1 -> q n2

H4 : p n1

H5 : q n2

============================

q n1

nabla-drop <

The search command will now complete the proof since the conclusion of the goal is equal, modulo the re-
naming of nominal constants, to hypothesis H5. The proof we have presented also makes it clear why the
theorem in question holds: the distributivity property allows ∇x.∇y. ((p x) ⊃ (p y)) to be transformed into
(∇x.∇y. (p x)) ⊃ (∇x.∇y. (p y)) which, using the strengthening property, can be simplified to (∇x. (p x)) ⊃
(∇y. (p y)).

The strengthening property for ∇ leads naturally to the conclusion that there is a denumerably infinite
collection of nominal constants at any type. A consequence of this is that it is possible to prove that any given
type is inhabited and that there are a particular number of distinct inhabitants at that type. For example,
assuming i to be a primitive type, the following are theorems: the proofs indicate how the existence of an
infinite number of nominal constants plays into the derivability of these assertions.
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Theorem non-empty : exists (x : i), true.

witness n1. search .

Theorem at-least-3 : exists (x : i) y z,

((x = y) -> false) /\ ((x = z) -> false ) /\

((y = z) -> false).

witness n1. witness n2. witness n3. split.

intros . case H1. intros . case H1. intros . case H1.

At this point, we can make some (rather advanced) considerations regarding extensionality. We claim that
∀x. (λw. x) 6= (λw.w) is a theorem in G, for x of any type that makes the formula well-formed. This might be
surprising, because that statement is invalid when considered over the singleton domain, where there is only
one function. However, we have just seen that any type in G is inhabited by infinitely many nominal constants.
In effect, this allows the logic to treat λ-abstraction just as a syntactic constructor, and use unification on
abstraction terms just like on any other term. As a result, we easily prove the theorem in Abella by introducing
x and the equality assumption (λw. x) = (λw.w) and eliminating that assumption: we obtain a contradiction
because no unifier can instantiate the universally quantified variable x in such a way that the λ-term λw. x is
turned into the identity function λw.w, variable capture not being allowed.

Theorem ex1 : forall (x : i), w\x = w\w -> false .

intros . case H1.

Although the previous example illustrates an intensional treatment of λ-terms, we observe next that exten-
sionality is actually provable in G. More precisely, we show in Abella that, when M and N have an arrow type,
M = N is equivalent to ∀x. (M x = N x).

Theorem ex2 : forall M (N : i -> i),

(M = N -> forall x, (M x) = (N x)) /\

(( forall x, (M x) = (N x)) -> M = N).

intros . split . intros . case H1. search .

intros . apply H1 with x = n1. search .

The key step in the above proof is when the universally quantified variable x is instantiated by a fresh name
n1. In fact, the above proof can be seen as reducing the extensionality principle to its variant expressed with
∇ instead of universal quantification, which is also provable in Abella.

Theorem ex3 : forall M (N : i -> i),

(M = N -> nabla x, (M x) = (N x)) /\

(( nabla x, (M x) = (N x)) -> M = N).

intros . split . intros . case H1. search .

intros . case H1. search .

As another property of Abella, observe that ∀x.∇w. x 6= w is provable as also is ∇x.∇w. x 6= w, as we have
already observed.

Theorem ex4 : forall (x : i), nabla w, x = w -> false .

intros . case H1.

Theorem ex5 : nabla (x : i), nabla w, x = w -> false.

intros . case H1.

Notice also that the formula (∇x.∇y. p x y) ⊃ (∇z. p z z) is not provable in general. If it were provable, then
replacing the predicate p with the expression λx. λy. x 6= y would lead to a contradiction. However, if the three
occurrences of ∇ in this formula are replaced by ∀, then the resulting formula is a theorem of Abella.

6.3 Induction in the presence of the ∇ quantifier

The style of inductive proofs that is based on using annotations can be used also when formulas contain the ∇
quantifier. As an illustration of this, let us consider proving the following formula, assuming the definition of
the varof predicate seen in the previous subsection.

Theorem varof_inst : forall Gamma T Ty N, nabla (x:tm),

varof (Gamma x) (T x) (Ty x) -> varof (Gamma N) (T N) (Ty N).

Note that the ordering of the quantifiers means that, in generating instances of the formula, Gamma, T and Ty

must be substituted for by terms that do not contain the nominal constant that is substituted for x. Thus,
the property that the formula states can be understood as the following: if a varof formula containing the
∇-quantified variable x is provable, then the formula that results from it by replacing x uniformly by any term
is also provable. This kind of instantiation lemma for ∇ does not hold in general. However, we can prove it in
this case using an argument that is inductive on the definition of varof.

To spell the proof out in detail, it begins with the application of the following tactic commands.

induction on 1. intros .
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The proof state that this results in is the following.

Variables : Gamma , T, Ty , N

IH : forall Gamma T Ty N, nabla x,

varof (Gamma x) (T x) (Ty x) * ->

varof (Gamma N) (T N) (Ty N)

H1 : varof (Gamma n1) (T n1) (Ty n1) @

============================

varof (Gamma N) (T N) (Ty N)

If we perform a case analysis on H1 at this stage, we will get two subgoals. The first of these subgoals, which
results from using the first clause in the definition of varof, has an obvious proof. The second subgoal is the
following.

Variables : Gamma , T, N, Ass , VT

IH : forall Gamma T Ty N, nabla x,

varof (Gamma x) (T x) (Ty x) * ->

varof (Gamma N) (T N) (Ty N)

H2 : varof (Gamma n1) (T n1) (Ass n1) *

============================

varof (Gamma N) (T N) (vtycons (VT N) (Ass N))

We can apply the induction hypothesis IH to H2 if we can instantiate the quantifiers over Gamma, T, Ty, and N

in it with the eigenvariables with the same names in the proof state and we instantiate the ∇ quantifier over x
with the nominal constant n1. The quantifier ordering in IH requires that Gamma, T and Ty not depend on n1,
but the structure of H2 already imposes this requirement. Thus, the instantiation is acceptable. Once IH has
been applied to H2, the proof can be completed using the search command. The full proof script for proving
the formula is the following.

induction on 1. intros . case H1.

search . apply IH to H2 with N = N. search .

In the example above, we considered using induction to prove a formula that contained the ∇ quantifier
in it. An inductive argument can also be used when ∇ quantifiers appear in the bodies of definitions. For an
example of such a proof, consider the following instantiation property for the typing judgment of seen in the
previous subsection.

Theorem of_inst : forall Gamma T Ty N, nabla (x:tm),

of (Gamma x) (T x) (Ty x) -> of (Gamma N) (T N) (Ty N).

induction on 1. intros . case H1.

apply varof_inst to H2 with N = N. search .

apply IH to H2 with N = N. apply IH to H3 with N = N. search .

apply IH to H2 with x = n1 , N = N. search .

The proof is by induction on the first typing judgment. Performing a case analysis on this judgment after using
an intros tactic command gives rise to three subgoals. The first subgoal, which pertains to typing a variable,
is dealt with by using the varof_inst theorem. The second subgoal, which pertains to typing an application,
is also easily dealt with. The interesting case is that of typing an abstraction. The proof state at the start of
this case has the following form:

Variables : Gamma , N, Ty2 , Ty1 , T1

IH : forall Gamma T Ty N, nabla x,

of (Gamma x) (T x) (Ty x) * ->

of (Gamma N) (T N) (Ty N)

H2 : of (vtycons (vty n2 (Ty1 n1)) (Gamma n1))

(T1 n1 n2) (Ty2 n1) *

============================

of (Gamma N) (abs (Ty1 N) (T1 N))

(arr (Ty1 N) (Ty2 N))

The hypothesis H2 has a new nominal constant n2 in it; this nominal constant arises from the ∇ quantifier in the
body of the clause for of for the case of abstractions. In order to apply IH to H2, we would need to instantiate
the quantifiers in it so that its antecedent matches H2. The substitutions needed for this are the following.

Gamma = x\ vtycons (vty n2 (Ty1 x)) (Gamma x)

T = x\ T1 x n2

Ty = x\ Ty2 x

x = n1

Note that the substitutions for Gamma and T are terms that contain a nominal constant, namely n2. However, this
is not a problem. The only requirement arising from the order of the quantifiers in IH is that these substitution
terms must not contain n1, the nominal constant instantiating the nabla quantifier in the formula. Since this
requirement is met, the substitutions can be used and the proof can be completed as shown.

We have shown here how the form of induction that uses annotations works in an enriched setting where
we have ∇ quantifiers and nominal constants. The other forms of induction, i.e., the strong induction, mutual
induction and nested induction that were discussed in Section 5, follow a similar pattern.
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6.4 An enhancement to definitions

Our encoding of the typing relation for λ-terms is parameterized by a context. Each such context has the
property that it assigns types only to nominal constants and also that it makes at most one assignment to each
such constant. These properties may be needed in certain reasoning tasks. For example, suppose that we change
our task to formalizing the typing relation for simply typed λ-terms. This relation can be encoded with a few
small changes to the declarations shown earlier. In particular, all we need to do is modify the representation of
an abstraction so that it takes a type as an additional argument and adapt the definition of the predicate of to
this new form:

Type abs ty -> (tm -> tm) -> tm.

Define of : assignment -> tm -> ty -> prop by

of Gamma X Ty := varof X Ty Gamma;

of Gamma (app T1 T2) Ty :=

exists Ty’, of Gamma T1 (arr Ty ’ Ty) /\ of Gamma T2 Ty ’;

of Gamma (abs Ty1 T) (arr Ty1 Ty2) :=

nabla x, of (vtycons (vty x Ty1) Gamma) (T x) Ty2.

The typing relation that is so defined has the property that it associates a unique type with each (well-formed)
λ-term. However, to prove a theorem to this effect in Abella, it is necessary to make explicit the properties of
contexts that we have just described.

It is possible to capture these properties in Abella but to do so we need to deploy an enhanced form of
definitions that is based on using the ∇ quantifier. In the form for definitions we have seen up to this point,
the head of a clause may contain variables that are interpreted as being universally quantified over the entire
clause. Thus, the clause defines a relation that holds for any instantiation of those variables. In the enhanced
form, it is also possible to ∇-quantify variables over the head of the clause. There are two components to the
interpretation of these quantifiers. First, they can be instantiated only by distinct nominal constants. Second,
the instantiations of the outer universal quantifiers must satisfy scope restrictions: they must not contain the
nominal constants used in instantiating the enclosed ∇ quantifiers.

Perhaps the simplest examples of definitions that use ∇ quantifiers in the head of a clause are the following:

Define name : tm -> prop by

nabla x, name x.

Define fresh : tm -> tm -> prop by

nabla x, fresh x T.

The intention here is that name holds exactly of the nominal constant of type tm and that fresh holds of a
nominal constant of type tm and a term also of type tm exactly when the nominal constant does not appear
in the term, i.e., it is fresh to the term. The following theorems and their associated proofs show that these
requirements are in fact encoded by the shown definitions:

Theorem nameex1 : name n4.

unfold . search .

Theorem nameex2 : nabla x, name (app x x) -> false .

intros . case H1.

Theorem freshex1 : nabla x y, fresh x (app y y).

intros . unfold . search .

Theorem freshex2 : nabla y,

fresh y (app (abs x\ app x x) y) -> false .

intros . case H1.

Returning to the problem of establishing the uniqueness of type assignments, we can characterize contexts
using the extended form of definitions as follows:

Define ctx : assignment -> prop by

ctx vtynil ;

nabla x, ctx (vtycons (vty x Ty) L) := ctx L.

In fact, we can prove formulas in Abella that make the desired properties explicit for any L of which ctx holds.
For example, the following theorem establishes the fact that L assigns types only to nominal constants:

Theorem ctx_assigns_to_var :

forall L T Ty , ctx L -> varof T Ty L -> name T.

induction on 2. intros . case H2.

case H1. search .

case H1. apply IH to H4 H3. search .

Towards showing that such assignments are unique, we first prove that a context assign types to only the
variables that appear in it:
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Theorem must_appear_for_assignment :

forall L Ty, nabla x,

varof x (Ty x) L -> false .

induction on 1. intros . case H1. apply IH to H2.

Notice how the non-appearance of a variable in a context is captured in this theorem by the order in which the
quantifiers over L and x appear: scoping rules prohibit the nominal constant that instantiates x to appear in
any term that instantiates L. Using this theorem, it is easy to show that the type that a context assigns to a
variable is unique:

Theorem assignment_is_unique :

forall L T Ty1 Ty2 , ctx L -> varof T Ty1 L ->

varof T Ty2 L -> Ty1 = Ty2.

induction on 2. intros . case H2.

case H3. search .

case H1. apply must_appear_for_assignment to H4.

case H3.

case H1. apply must_appear_for_assignment to H4.

case H1. apply IH to H6 H4 H5. search .

Having established the described properties of typing contexts, we can proceed to prove the uniqueness of
type assignment for arbitrary terms. A natural way to organize this proof is to use induction on the definition
of the typing relation which effectively evolves into an induction on the structure of terms. The base case in this
proof relies on the uniqueness property that we have just established for the assignments made by a context.
When treating the case of an abstraction, it is necessary to consider the extension that is made to a context. In
particular, we must show that the addition of a type assignment for the bound variable produces a structure
that continues to satisfy the properties defined by ctx. However, this turns out to be easy to do: the use of a
∇ quantifier in the clause that defines of in this case blends into the definition of ctx in just the expected way.
The actual proof is shown below.

Theorem type_uniqueness :

forall L T Ty1 Ty2 , ctx L ->

of L T Ty1 -> of L T Ty2 -> Ty1 = Ty2.

induction on 2. intros . case H2.

apply ctx_assigns_to_var to H1 H4. case H5.

case H3. apply assignment_is_unique to H1 H4 H6. search .

case H3.

apply ctx_assigns_to_var to H1 H6. case H7.

apply IH to H1 H4 H6. search .

case H3.

apply ctx_assigns_to_var to H1 H5. case H6.

assert (ctx (vtycons (vty n1 Ty3) L)). apply IH to H6 H4 H5.

search .

This theorem can be specialized to a closed term by picking the (initial) context to be the empty assignment.
All the definitions in the examples we have considered here have had exactly one ∇ quantifier in the head of

the clause. It is, of course, possible for there to be several such quantifiers in the head. In this case there may be
more than one way to match the variables bound by these quantifiers with the nominal constants that appear
in a given atomic formula and we must consider all of them in constructing a proof. More formally, we must
use equivariant unification [11] to decide all the possible premises to generate when case-analyzing a hypothesis,
and equivariant matching to decide all the possible unfoldings of its conclusion. Such unification/matching can
be costly. It is therefore important to think carefully about the structure of definitions so that these quantifiers
are kept to a minimum. As a practical matter, we have not found it necessary to use more than one or two such
quantifiers in the head in all the (meaningful) proofs we have considered.

7 Extended examples

We have at this point described all the features of the logic underlying Abella. We now consider a few examples
to bring out the use of this logic and its realization in Abella in practical reasoning tasks. One of the strengths
of Abella is that it can be used to transparently encode formal systems and to provide succinct proofs of their
meta-theoretic properties. We illustrate this aspect here by considering the formalization of three different
systems that are of wider interest: the untyped λ-calculus, a sequent calculus and the π-calculus.

7.1 The untyped λ-calculus

The encoding of the untyped λ-calculus introduced in Section 6.1 uses two constructors, app and abs, to build
λ-terms. One often needs to reason by induction on the syntactic structure of λ-terms. The type system of
Abella has no built-in induction principles, so such inductive arguments must be mediated by an inductive
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definition is_tm of the structure of λ-terms, just as we did with natural numbers (is_nat) and lists (is_list)
earlier.

One difficulty with describing the inductive structure of λ-terms, that was not present in the context of
natural numbers and lists, is that we have to contend with syntax that involves a binding construct. Given the
λ-tree representation that we are using, the particular requirement that we need to capture is the following: an
expression of the form (abs R) must be recognized as a well-formed term provided R has the structure x\ R’

where R’ itself is a well-formed term under the relaxed assumption that x may appear at places within it. The
nabla quantifier provides a critical part of the machinery needed for expressing such analysis. In particular, it
allows for the replacement of the meta-level bound variable with a nominal constant. Such a replacement then
yields a simpler syntactic structure over which the needed recursive analysis can be done.

There are two ways to realize the idea described above and to thereby define an is_tm predicate. In the
first way, we generalize the relation we want into a binary relation, is_tm’ : tmlist -> tm -> prop, where
the first argument tracks the nominal constants allowed to appear in the second argument. Each time a λ-
abstraction is encountered, a new nominal constant is chosen, it is used to replace the bound variable in the
body of the abstraction and also added to the list before we descend into analyzing the body. If a nominal
constant is encountered, it is considered a legitimate term only if it also appears in the list. Finally, a term is
well-formed and closed only if it can be recognized to be well-formed relative to an empty list.

Kind tmlist type.

Type tmnil tmlist .

Type tmcons tm -> tmlist -> tmlist .

Define tmmemb : tm -> tmlist -> prop by

tmmemb X (tmcons X G) ;

tmmemb X (tmcons Y G) := tmmemb X G.

Define is_tm ’ : tmlist -> tm -> prop by

is_tm ’ G X := tmmemb X G ;

is_tm ’ G (app M N) := is_tm ’ G M /\ is_tm ’ G N ;

is_tm ’ G (abs R) := nabla x, is_tm ’ (tmcons x G) (R x).

Define is_tm : tm -> prop by

is_tm T := is_tm ’ tmnil T.

This kind of definition is similar to the typing relation of from Section 6.4. However, it tends to be rather
heavyweight for the simple case of untyped λ-terms, where nothing needs to be assumed about the bound vari-
ables besides that they exist. Informal (“pen-and-paper”) descriptions of the simply typed λ-calculus therefore
dispense with such variable lists entirely and use open λ-terms.

Fortunately, since Abella already has an infinite set of nominal constants at any type, we can use them to
encode open λ-terms as well. To be precise, we do not add a new constructor for λ-terms for every nominal
constant of type tm; we merely extend the is_tm definition with an additional clause that declares all nominal
constants of type tm to be λ-terms.

Define is_otm : tm -> prop by

nabla x, is_otm x ;

is_otm (app M N) := is_otm M /\ is_otm N ;

is_otm (abs R) := nabla x, is_otm (R x).

This kind of definition avoids the problem of proliferating variable lists while still being stratified. As an
illustration, to show is_otm (abs x\ x), we unfold the third clause to change the goal to is_otm n1, which
then matches the head of the first clause. Note that because the first clause requires the argument to the
predicate to be a nominal constant, we rule out possibilities such as showing forall (f:nat -> tm), is_otm

(f z).
It is important to note that the definition of is_otm is compatible with the representation of substitution

by application in λ-tree syntax. The following theorem establishes the substitution lemma.

Theorem is_otm_subst : forall M N, nabla x,

is_otm (M x) -> is_otm N -> is_otm (M N).

induction on 1. intros . case H1.

search . search .

apply IH to H3 H2. apply IH to H4 H2. search .

apply IH to H3 H2. search .

A more interesting illustration of structural induction on this encoding of λ-terms is the proof that the space
of λ-terms can be partitioned into normal and non-normal terms. Non-normal terms are easily defined to be
those terms that contain a β-redex.

Define non_normal : tm -> prop by

non_normal (app (abs R) M) ;

non_normal (app M N) := non_normal M \/ non_normal N ;

non_normal (abs R) := nabla x, non_normal (R x).
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Goal reduction rules

A,Γ ⊢B
Γ ⊢A ⇒ B

x /∈ fv(Γ) Γ ⊢ A
Γ ⊢Πx.A

Γ ⊢ A Γ ⊢B
Γ ⊢ A&B Γ ⊢ tt

A ∈ Γ Γ, [A] ⊢ c
Γ ⊢ c

bch

Backchaining rules

Γ, [a] ⊢ a

Γ ⊢A Γ, [B] ⊢ c

Γ, [A ⇒ B] ⊢ c

Γ, [[t/x]A] ⊢ c

Γ, [Πx.A] ⊢ c

Γ, [Ai] ⊢ c

Γ, [A1 &A2] ⊢ c
no rule for [tt]

Figure 2: The Inference System M

Normal terms, on the other hand, have the form λx1. . . . λxn. x t1 · · · tm where x is either a bound or a free
variable and each of the tj are themselves normal. Such terms can be characterized by means of a pair of
mutually inductive relations, normal and neutral, where the latter is used to define the structure of the body
of the term after an initial λ-prefix.

Define normal : tm -> prop ,

neutral : tm -> prop by

normal M := neutral M ;

normal (abs R) := nabla x, normal (R x) ;

nabla x, neutral x ;

neutral (app M N) := neutral M /\ normal N.

We can then show by induction on the structure of open terms that every such term is either normal or non-
normal, and that no term can be both normal and non-normal.

Theorem tm_split : forall M,

is_otm M -> normal M \/ non_normal M.

Theorem tm_disjoint : forall M,

normal M -> non_normal M -> false.

The easy proofs are left as an exercise.

7.2 Meta-theory of minimal intuitionistic logic

As we shall show in this section, the reasoning logic G can be used to capture provability of a first-order (object)
logic as an inductive definition and then to prove properties of provability using induction over such definitions.
To illustrate how this is possible, we will encode a first-order (minimal) intuitionistic logic consisting of formulas
(written A,B,C, . . . ) constructed from atomic formulas (written a, b, . . . ) using the connectives Π, ⇒, &, and
tt. To specify object-level formulas, we use the two basic types, tm and fm, to represent terms and arbitrary
formulas respectively. The tm type is kept abstract and the proof system is complete with respect to any
signature extension with new constants of target type tm: object-level predicates and function systems will
both be seen as being constructors of this one type. The fm type, on the other hand, has a finite number of
constructors. The definition is_fm will enable proofs by induction on the structure of formulas.

Kind tm, fm type.

Type atm tm -> fm.

Type imp fm -> fm -> fm.

Type fall (tm -> fm) -> fm.

Type and fm -> fm -> fm.

Type top fm.

Define is_fm : fm -> prop by

is_fm (atm P) ;

is_fm (imp A B) := is_fm A /\ is_fm B ;

is_fm (fall A) := forall x, is_fm (A x) ;

is_fm (and A B) := is_fm A /\ is_fm B ;

is_fm top .

The proof system we use for this logic is derived from uniform proofs [40], which corresponds to a focused
sequent calculus [1] where all atoms and all connectives have a negative polarity [10, 33]. (Note that the formulas
we are encoding comprise that subset of hereditary Harrop formulas that can also be used as goal formulas [40].)
This proof system, which we call M, uses two kinds of sequents :

Γ ⊢ C (goal reduction sequents)
Γ, [A] ⊢ c (backchaining sequents)
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where, in each case, Γ is a multiset of formulas, and A and C are arbitrary formulas, and c is an atomic formula.
Observe that the conclusions of backchaining sequents are always atomic. The inference rules of the system are
depicted in Figure 2. This system is sound and complete with respect to the ordinary LJ sequent calculus [33].

The first step we take to encode the inference rules of M as an inductive definition in Abella involves
encoding the contexts that are used on the left-hand side of sequents. Such contexts Γ are encoded using the
following type ctx and a membership relation mem:

Kind ctx type.

Type emp ctx.

Type add fm -> ctx -> ctx.

Define mem : fm -> ctx -> prop by

mem A (add A G) ;

mem A (add B G) := mem A G.

Sequents are represented with the inductively defined relations red and bch, for goal reduction and backchaining
sequents, respectively. To anticipate the later meta-theoretic development, we use an additional nat argument
to these relations to denote their height, i.e., the number of iterated unfoldings of red or bch used to derive that
sequent.7

Define red : nat -> ctx -> fm -> prop ,

bch : nat -> ctx -> fm -> tm -> prop

by

red (s N) G (imp A B) := red N (add A G) B ;

red (s N) G (fall A) := nabla x, red N G (A x) ;

red (s N) G (and A B) := red N G A /\ red N G B ;

red N G top := is_nat N ;

red (s N) G (atm P) := exists A, mem A G /\ bch N G A P ;

bch N G (atm P) P := is_nat N ;

bch (s N) G (imp A B) P := red N G A /\ bch N G B P ;

bch (s N) G (fall A) P := exists t, bch N G (A t) P ;

bch (s N) G (and A B) P := bch N G A P \/ bch N G B P.

It is fairly straightforward to see that the sequent Γ ⊢ B is provable if and only if there is a natural number n
such that red n Γ B is true. Similarly, the sequent Γ, [A] ⊢ B is provable if and only if there is a nat n such
that bch n Γ A B is true.

An importaint point to note regarding the definition of goal-reduction is that the clause for the universal
quantifier fall (the second clause of red) uses the ∇ quantifier and not the universal quantifier of G. Using ∇
in this way corresponds directly to the use of eigenvariables in proof systems originating with Gentzen [24] and
it makes it possible to prove that certain sequents are not provable. For example, the following theorem states
that the formula Πx.Πy. p x ⇒ p y is not provable.

Type p tm -> tm.

Theorem not_provable : forall N,

red N emp (fall x\ fall y\

imp (atm (p x)) (atm (p y))) -> false .

intros . case H1. case H2. case H3. case H4.

case H5. case H6. case H7.

Indeed, there is no proof of the formula Πx.Πy. p x ⇒ p y in the sequent calculus. If the ∇ quantifier in the
definition of red were to be replaced by the universal quantifier, then this theorem would only be provable if
more information about the type tm were to be known. For instance, if tm had only zero or one inhabitant, then
the theorem would be true, but it would not be true otherwise. The proof using ∇ is much closer to the spirit
of how sequent calculus proofs are specified.

A consequence of this complete specification of provability rather than truth is that we we can analyze the
derivations to derive consequences. As an example, suppose the tm type had the following constructors.

Type a,b tm.

Type f tm -> tm -> tm.

Type q tm -> tm -> tm -> tm.

Consider the following clauses for q:

Πx.Πy. q x x y
︸ ︷︷ ︸

P1

, Πx.Πy. q x y x
︸ ︷︷ ︸

P2

, and Πx.Πy. q y x x
︸ ︷︷ ︸

P3

,

7Instead of decrementing this count on every clause, we can also decrement it only on the final clause for red, in which case it
would denote the backchaining height ; it turns out that this coarser count would have been sufficient as well for all the meta-theory
of M, but we intentionally choose the finer measure here.
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and the derivability of the following formula from these three clauses:

Πu.Πw. q (f t1 u) (f t2 w) (f t3 w)
︸ ︷︷ ︸

G

for some arbitrary terms t1, t2, and t3. If P1, P2, P3 ⊢ G is provable in the sequent calculus of Figure 2, then
it must be because P3 and not P1 or P2 was used to derive G, which must mean that t2 = t3. This is readily
shown in Abella.

Theorem two_out_of_three : forall P1 P2 P3 Gam T1 T2 T3 G,

(P1 = fall x\ fall y\ atm (q x x y)) ->

(P2 = fall x\ fall y\ atm (q x y x)) ->

(P3 = fall x\ fall y\ atm (q y x x)) ->

(Gam = add P1 (add P2 (add P3 emp))) ->

(G = fall u\ fall w\

atm (q (f T1 u) (f T2 w) (f T3 w))) ->

(exists N, red N Gam G) -> T2 = T3.

The proof is left as an exercise; besides intros, it only requires case and search.
More generally, we can establish several key meta-theoretic properties of the M proof system by induction

on the red and bch definitions. The first of these are the theorems that together establish that weakening,
contraction, exchange, and instantiation of eigenvariables are admissible for M sequents and that they do not
change the heights of proofs.

Theorem monotone :

(forall N G D C, (forall A, mem A G -> mem A D) ->

red N G C -> red N D C)

/\ (forall N G D F P, (forall A, mem A G -> mem A D) ->

bch N G F P -> bch N D F P).

Theorem inst :

(forall N G C, nabla (x:tm), red N (G x) (C x) ->

forall t, red N (G t) (C t))

/\ (forall N G A P, nabla (x:tm), bch N (G x) (A x) (P x) ->

forall t, bch N (G t) (A t) (P t)).

We can also establish cut-admissibility for this inference system. To state the theorem, we need to define a
context that consists of an extension of another context with a single formula. We write this using the extend

relation defined as follows:

Define extend : ctx -> ctx -> fm -> prop by

extend (add A G) G A ;

extend (add A G) (add A D) B := extend G D B.

Thus, if extend G D A, then G stands for D extended with A. The statement of cut-admissibility uses extend
for the cut formulas.

Theorem cut :

(forall G D A C N1 N2, is_fm A -> extend G D A ->

red N1 D A -> red N2 G C ->

exists N3 , red N3 D C)

/\ (forall G D A F P N1 N2 , is_fm A -> extend G D A ->

red N1 D A -> bch N2 G F P ->

exists N3 , bch N3 D F P)

/\ (forall G A P N1 N2 , is_fm A ->

red N1 G A -> bch N2 G A P ->

exists N3 , red N3 G (atm P)).

The proof of this theorem is lengthy, requiring both mutual and nested induction, but surprisingly straightfor-
ward. The outer induction is on is_fm A in each case, while the inner induction is on the hypothesis with the
cut-formula as an assumption.

The theorems inst and cut provide powerful ways to reason about object-level provability. In Section 8,
we will describe a feature of Abella—its support for the two-level logic approach—which directly implements a
proof system for the logic and inference rules in this section. As we shall see there, the inst and cut theorems
will give rise to two important and powerful tactics of the same names.

7.3 The π-calculus

We now consider an encoding of the π-calculus [45, 46], covering its operational semantics and some of its
meta-theory. We assume that the reader is familiar with the syntax of the π-calculus and its operational
semantics, so we shall not describe these in detail. An important feature of the π-calculus is that it allows
communication channels to be created and communicated among processes. This enables one to model the
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notion of link mobility [45]. More specifically, communication channels are modelled as names and link mobility
is modelled via the scoping of names and scope extrusion. The role of names is more apparent when considering
the behavioral equivalence of processes, formulated in terms of bisimulation relations. Unlike the case with
CCS [44], there is not a canonical notion of bisimulation in the π-calculus; rather, we have different notions
arising from the different treatment of the quantification of names and their relative scoping. We show here
how these different notions of bisimulations can be captured with ease in Abella. We illustrate this by encoding
two different notions of bisimulation: the late [46] and the open bisimulation [57]. Milner et.al. also considered
another bisimulation called early bisimulation [46]. We do not explicitly discuss early bisimulation here, but
the interested reader will find both its definition and a development of some of its meta-theory in the Abella
repository. The proofs of some of the theorems here are rather lengthy so, in most cases, we shall present only the
theorems and then discuss some intermediate steps of the proof in order to illustrate the correspondences with
informal proof steps found in the literature. The complete proof scripts are available in the Abella repository.
The correctness proof of the encoding of bisimulation presented here can be found in [65].

Encoding channel names A first step to encoding the π-calculus is to decide on how to encode names. Any
satisfactory encoding would need to capture the notion of freshness: given any finite set of names, it is always
possible to choose a fresh name that is not in that set. This suggests that names should be encoded as nominal
constants. Another important aspect of names, as they are used in the definitions of bisimulation, is that of
the identity of names. In late bisimulation, free names in processes are treated as constants: their identity
and their relationships to other names are fixed throughout the bisimulation game. This entails, among other
things, that given any two free names x and y occurring in a late bisimulation, one can always decide whether
they are equal or distinct names. In open bisimulation, the role of names is somewhat more ambiguous, as they
can vary between variables and constants, depending on the context of their use. The latter is formalized as a
notion of distinction of names, i.e., an irreflexive finite binary relation on names. Essentially, a pair (x, y) in a
distinction specifies that x and y must stay distinct throughout the bisimulation game. Thus given two names
x and y occurring in an open bisimulation, we may not always be able to conclude that they are distinct or not,
since that would depend on the context in which those names occur, i.e., whether the two names are specifically
declared as distinct. As we shall see in an example that follows, the ability to decide the equality (or dually,
the distinction) between two names separates open and late bisimulation.

To differentiate the uses of names in late and open bisimulations, we explicitly introduce a unary predicate
name that essentially enforces that its argument is a nominal constant. We have seen this definition before in
Section 6.4, which we repeat here for a different type.

Kind nm type.

Define name : nm -> prop by

nabla x, name x.

It is easy to prove that equality is decidable for elements of this predicate:

Theorem eq_nm: forall x y, name x -> name y ->

x = y \/ (x = y -> false ).

intros . case H1. case H2.

right . intros . case H3.

left. search .

One can think of the predicate name as specifying a closed data type for names, and the above theorem gives
a complete case analysis on this data type. As we shall see later, names occurring in late bisimulation will be
explicitly typed, i.e., their occurrences will be guarded by the predicate name.

Syntax of processes We consider only finite processes in this setting: such processes contain neither recursion
nor the ! operator. Processes are built from names and some basic constructors, such as, action prefixes, parallel
composition and the non-deterministic choice operator. The action prefix in the π-calculus allows one to specify
a process that sends a name or receives a name on a communication channel. The prefixed processes in the
π-calculus can be a free-action prefixed process, e.g., āb.P (output of name b on channel a), or an input-prefixed
process, e.g., a(x).P (input a name on channel x and binds it to x). For convenience, we also include a τ -action
prefix, to denote internal transition. This is strictly speaking not necessary, but it simplifies the discussions on
some examples below. An input-prefixed process can be seen as a λ-abstraction and is thus encoded using the
same technique as we have seen in the λ-calculus example, i.e., by using the λ-tree syntax. The signature of the
process constructors is given below.

Kind proc type.

Type null proc.

Type taup proc -> proc.

Type plus , par proc -> proc -> proc.

Type match , out nm -> nm -> proc -> proc.

Type in nm -> (nm -> proc) -> proc.

Type nu (nm -> proc) -> proc.
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The constructor null represents the ‘zero’ (or deadlocked) process, which does nothing. Action prefixes are
encoded using three constructors: taup for the τ -prefix, out for the (free) output prefix, and in for the input
prefix. The constructors match, plus, par and nu represent, respectively, the match prefix, the non-deterministic
choice operator, the parallel composition operator and the ν-operator of the π-calculus.

Operational semantics There are a couple of ways to specify the operational semantics of the π-calculus:
the early way and the late way [58]. The main difference is in the formulation of the input transition relation.
In the early version, an input-prefixed process such as a(x).P can evolve into P [a/x] for every name a, so the
transition relation is infinite-branching (one branch for every value of x). In the late version, the parameter
x is not instantiated in the transition relation; rather, it allows the transition relation to relate a process
and an abstraction. Thus in the late version, the continuation of a(x).P is essentially an abstraction λx. P .
The instantiations of x are instead done when defining the (bi)simulation relations between processes. We
consider here only the late version of the operational semantics as it leads to simpler formulations of late/open
bisimulations. Our encoding of this late semantics in Abella follows directly from the encoding proposed in [36].
The adequacy of this encoding is discussed in detail in [36, 68].

The encoding of the late operational semantics of the π-calculus is given in Figure 3. The predicate one

encodes the free transition relation and oneb encodes the bound transition. Note that in addition to bound input
transition, the π-calculus also features a bound output transition. However, unlike the bound input transition,

in the bound output transition P
ā(x)
−→ Q, the parameter x can be replaced only with fresh names that are not

free in P . As we shall see, the distinction between the bound input and bound output in the definition of
bisimulation is captured by the use of different quantifiers: in the input case, the parameter x is replaced by a
universally quantified variable, where as in the output case, it is replaced by a ∇-quantified variable.

Late bisimulation Milner et.al. [46] defined a bisimulation as a symmetric relation which is also a simulation
relation. Encoding this definition directly in Abella would require an encoding of the notion of a set or a relation
together with its associated theory. Here we follow an alternative approach that avoids specifying symmetry
directly, but instead builds it into the definition of bisimulation indirectly [58]. This in turn avoids the problem
of having to formalize set theory explicitly, at least for the purpose of presenting bisimulation and a few of its
properties that we discuss here. The definition of late bisimulation is given in Figure 4.

Note that in the clauses for bound input transitions, the abstraction M and N are applied to a universally
quantified name W. Note also that the name W is constrained to name W, so it ranges over nominal constants.

Open bisimulation Open bisimulation is encoded via a co-inductively defined predicate obisim, which has
the same type as lbisim. The body of the definition of obisim is just that of lbisim but with all occurrences of
name W removed. Open bisimulation, as defined in the literature [57], is actually a family of relations, indexed
by a distinction relation on names, which is an irreflexive finite binary relation on names. An important notion
in the definition of open bisimulation is that of a respectful substitution. A substitution θ respects a distinction
D if and only if for every (x, y) ∈ D, θ(x) 6= θ(y). One of the conditions in the definition of open bisimulation
is that the family of relations indexed by distinctions are closed under arbitrary respectful substitutions.

To encode open bisimulation, one obviously needs to encode the notion of distinctions and respectful sub-
stitutions. A straightforward approach would be to represent them directly. This would then require one to
define the application of substitutions to processes, in order to satisfy the closure condition under respectful
substitutions. In essence, this amounts to a deep embedding of distinction and respectful substitutions. While
this is certainly doable, there is a simpler alternative approach via a shallow embedding of distinction and re-
spectful substitutions. Such an approach was proposed in [67, 68] and relies on the use of quantifier alternation
to encode distinctions. To see how this is done, consider the following formulas, which are both provable in
Abella:

forall a, nabla b, forall c, (a = b -> false )

forall a, nabla b c, (b = c -> false )

In the first formula, the relative scoping of the quantifiers forbids the identification of a and b, even though a is
universally quantified. In the second formula, both b and c are ∇-quantified and thus they cannot be identified
as they denote distinct nominal constants. In general, a quantifier prefix

Q1 x1. Q2 x2. . . . Qn xn.

where Qi is either ∀ or ∇, can be seen as encoding a distinction D as follows: (xi, xj) ∈ D if and only if i 6= j
and

• Qi = Qj = ∇, or
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Kind action type.

Type tau action.

Type up , dn nm -> nm -> action.

Define

one : proc -> action -> proc -> prop ,

oneb : proc -> (nm -> action) -> (nm -> proc) -> prop

by

oneb (in X M) (dn X) M ;

one (out X Y P) (up X Y) P ;

one (taup P) tau P ;

one (match X X P) A Q := one P A Q ;

oneb (match X X P) A M := oneb P A M ;

one (plus P Q) A R := one P A R ;

one (plus P Q) A R := one Q A R ;

oneb (plus P Q) A M := oneb P A M ;

oneb (plus P Q) A M := oneb Q A M ;

one (par P Q) A (par P1 Q) := one P A P1 ;

one (par P Q) A (par P Q1) := one Q A Q1 ;

oneb (par P Q) A (x\par (M x) Q) := oneb P A M ;

oneb (par P Q) A (x\par P (N x)) := oneb Q A N ;

one (nu x\P x) A (nu x\Q x) :=

nabla x, one (P x) A (Q x) ;

oneb (nu x\P x) A (y\ nu x\Q x y) :=

nabla x, oneb (P x) A (y\ Q x y) ;

oneb (nu x\M x) (up X) N :=

nabla y, one (M y) (up X y) (N y) ;

one (par P Q) tau (nu y\ par (M y) (N y)) :=

exists X, oneb P (dn X) M /\ oneb Q (up X) N ;

one (par P Q) tau (nu y\ par (M y) (N y)) :=

exists X, oneb P (up X) M /\ oneb Q (dn X) N ;

one (par P Q) tau (par (M Y) T) :=

exists X, oneb P (dn X) M /\ one Q (up X Y) T ;

one (par P Q) tau (par R (M Y)) :=

exists X, oneb Q (dn X) M /\ one P (up X Y) R.

Figure 3: The specification of actions and the one-step predicates.
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CoDefine lbisim : proc -> proc -> prop by

lbisim P Q :=

(forall A P1 , one P A P1 ->

exists Q1 , one Q A Q1 /\ lbisim P1 Q1) /\

(forall X M, oneb P (dn X) M ->

exists N, oneb Q (dn X) N /\

forall W, name W -> lbisim (M W) (N W)) /\

(forall X M, oneb P (up X) M ->

exists N, oneb Q (up X) N /\

nabla w, lbisim (M w) (N w)) /\

(forall A Q1 , one Q A Q1 ->

exists P1 , one P A P1 /\ lbisim P1 Q1) /\

(forall X N, oneb Q (dn X) N ->

exists M, oneb P (dn X) M /\

forall W, name W -> lbisim (M W) (N W)) /\

(forall X N, oneb Q (up X) N ->

exists M, oneb P (up X) M /\

nabla w, lbisim (M w) (N w)).

Figure 4: The specification of late bisimulation.

• Qi = ∀ and Qj = ∇ and i < j.

Quantifier alternation obviously does not capture all distinction relations, but as was shown in [68], it is enough
to consider distinctions generated by quantifier alternation in proving open bisimilarity. Under this implicit
encoding, respectful substitutions are represented indirectly via instantiations of eigenvariables in proof search.
Details of the correspondence between the explicit representation and the implicit representation of distinctions
can be found in [68].

Some meta theory Using co-induction, we can prove some simple properties of bisimulation, such as the fact
that open bisimulation implies late bisimulation, and that open (late) bisimulation is an equivalence relation.
The proofs, except for the transitivity of bisimulation, consist of simple unfolding of definitions, and applications
of the co-induction hypothesis.

Theorem obisim-implies-lbisim :

forall P Q, obisim P Q -> lbisim P Q.

Theorem obisim-refl : forall P, obisim P P.

Theorem obisim-sym : forall P Q, obisim P Q -> obisim Q P.

Theorem obisim-trans:

forall P Q R, obisim P Q -> obisim Q R -> obisim P R.

The proof that bisimilarity is a congruence relation—i.e., it is closed under arbitrary process contexts—
is more involved. To show that bisimilarity is a congruence, it is enough to show that it is preserved by
simple contexts. We discuss below the two main cases that need to be shown—namely, preservation by parallel
composition and by the restriction operator.

To prove that bisimilarity is preserved by parallel composition, we prove a slightly more general statement:

Theorem obisim-cong-par: forall P Q R S,

obisim P Q -> obisim R S -> obisim (par P R) (par Q S).

The preservation under parallel composition can then be obtained from the above theorem by letting R = S
and observing the fact that bisimilarity is reflexive. Proving this theorem requires accounting for all possible
interactions between P and R (and respectively, between Q and S) and how their continuations remain related
by bisimilarity. To prove this theorem, we first find a co-inductive invariant, or a post fixed point of the
definition of (open) bisimulation, that contains these continuations (among others). Following a textbook
proof (see e.g., [58]), we define an invariant that includes closure conditions for both parallel composition and
the restriction operator (see [58] for details of why we need to consider both operators simultaneously in the
invariant).

Define inv : proc -> proc -> prop by

inv P Q := obisim P Q ;

inv (par P1 P2) (par Q1 Q2) := inv P1 Q1 /\ inv P2 Q2 ;
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inv (nu P) (nu Q) := nabla x, inv (P x) (Q x).

Define obisimInv : proc -> proc -> prop by

obisimInv P Q :=

(forall A P1, one P A P1 ->

exists Q1, one Q A Q1 /\ inv P1 Q1) /\

(forall X M, oneb P (dn X) M ->

exists N, oneb Q (dn X) N /\

forall W, inv (M W) (N W)) /\

(forall X M, oneb P (up X) M ->

exists N, oneb Q (up X) N /\

nabla w, inv (M w) (N w)) /\

(forall A Q1, one Q A Q1 ->

exists P1, one P A P1 /\ inv P1 Q1) /\

(forall X N, oneb Q (dn X) N ->

exists M, oneb P (dn X) M /\

forall W, inv (M W) (N W)) /\

(forall X N, oneb Q (up X) N ->

exists M, oneb P (up X) M /\

nabla w, inv (M w) (N w)).

The definition inv defines the invariant set. The definition obisimInv is similar to the definition of obisim,
except that the occurrences of obisim in the body is replaced by inv. If one considers the definition of (open)
bisimulation as given by a fixed point operator F , then the definition obisimInv encodes the application of
F to inv. Thus, to show that inv is a post-fixed point of open bisimulation (F), it is sufficient to prove the
following statement.

Theorem inv_obisimInv: forall P Q, inv P Q -> obisimInv P Q.

Once the post-fixed point condition for inv is established, we can complete the proof of the previously mentioned
theorem.

Theorem obisim-cong-par: forall P Q R S,

obisim P Q -> obisim R S -> obisim (par P R) (par Q S).

intros .

assert inv (par P R) (par Q S).

apply inv_obisim to H3.

search .

Since the invariant inv is closed under the restriction operator, we also get the following property for free:

Theorem obisim-cong-nu:

forall P Q, nabla n, obisim (P n) (Q n) ->

obisim (nu P) (nu Q).

intros .

assert inv (nu P) (nu Q).

apply inv_obisim to H2.

search .

A separating example To illustrate the difference between late and open bisimulation, consider the following
example from [57]. Let R = a(x).(τ.τ + τ) and let T = a(x).(τ.τ + τ + τ.[x = b]τ). Then R and T are late
bisimilar, but not open bisimilar. We briefly discuss a proof of late bisimilarity of R and T below. The proof
relies on a case analysis on a name provided to the input prefix of the processes. A crucial point in the proof is
that when one process makes an input transition, one may choose the matching transition of the other process
based on the input name, i.e., on whether it is a name already occurring in the processes, or a fresh name. In
open bisimulation this is not possible; the matching transition has to be chosen without reference to the identity
of the input name.

The statement of the late bisimilarity of R and T is given in the theorem below.

Theorem lbisim-R-T :

nabla a b,

lbisim (in a (x\ plus (taup (taup null)) (taup null)))

(in a (x\ plus (taup (taup null))

(plus (taup null)

(taup (match x b (taup null)))))).

This theorem is proved indirectly by using the following lemma, where the input prefix has been replaced by a
universal quantifier in the meta level:

Theorem lbisim-all-name:

nabla b, forall x, name x ->

lbisim (plus (taup (taup null)) (taup null))

(plus (taup (taup null))

(plus (taup null)

(taup (match x b (taup null))))).
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In a more readable (informal) notation, the above lemma can be written as ∇b. ∀x. name x ⊃ lbisim R′ T ′

where R′ = τ.τ + τ and T ′ = τ.τ + τ + τ.[x = b]τ . The proof is basically just an exhaustive search: for each
transition from R′, find a corresponding transition for T ′, and vice versa, so that their continuations are late
bisimilar. We show a case below where the transition from T ′ has to be matched by a transition from R′ so that
their continuations remain late bisimilar. Suppose the transition from T ′ leads to the continuation [x = b]τ (i.e.,
R′ chooses the third subprocess τ.[x = b]τ in its non-deterministic choice). The corresponding subgoal when
running the Abella proof script is the following:

Variables : x, A, Q1

H1 : name (x n1)

============================

exists P1,

one (plus (taup (taup null)) (taup null)) tau P1 /\

lbisim P1 (match (x n1) n1 (taup null))

Here the name n1 represents the ∇-quantified variable b, and the variable x represents the eigenvariable for the
universally quantified variable x, but raised to account for its relative scoping with respect to n1. The variable A,
which has been instantiated to tau, represents the action taken by process R′ and the variable Q1, instantiated
to (match (x n1) n1 (taup null)), represents the continuation of T ′.

The matching transition from R′ in this case depends on the value of x. If x = b, then [x = b]τ is equivalent
to τ , so in this case the transition from R′ needs to be derived from the first subprocess in its non-deterministic
choice, i.e., the process τ.τ . If x 6= b, then [x = b]τ is equivalent to the null process, so in this case we choose the
second subprocess of R′ to drive the transition. The continuations of R′ for these cases are τ and 0, respectively.

lbisim-all-name < case H1.

Subgoal 4.2.2.1:

Variables : x, A, Q1

============================

exists P1,

one (plus (taup (taup null)) (taup null)) tau P1 /\

lbisim P1 (match n2 n1 (taup null))

Subgoal 4.2.2.2 is:

exists P1,

one (plus (taup (taup null)) (taup null)) tau P1 /\

lbisim P1 (match n1 n1 (taup null))

In the first subgoal, the variable (x n1) is instantiated with a new nominal constant n2. This subgoal can be
simplified by instantiating P1 with null, followed by the tactics split and search, resulting in a new subgoal:

Variables : x, A, Q1

============================

lbisim null (match n2 n1 (taup null))

This can then be proved by a simple exhaustive search.
The second subgoal (4.2.2.2) can be simplified by instantiating P1 with (taup null), followed by the tactics

split and search. These reduce the subgoal to

Variables : x, A, Q1

============================

lbisim (taup null) (match n1 n1 (taup null))

which can be proved by an exhaustive search.
Let us now look at why open bisimilarity does not hold between R and T . As with late bisimilarity, proving

obisim R T in this case reduces to proving a lemma similar to lbisim-all-name, but without assuming name x:

Theorem obisim-for-all:

nabla b, forall x,

obisim (plus (taup (taup null)) (taup null))

(plus (taup (taup null))

(plus (taup null)

(taup (match x b (taup null))))).

To prove this lemma, we would have a similar subgoal as Subgoal 4.4.2 above, but without assuming name

(x n1):

Variables : x

============================

exists P1,

one (plus (taup (taup null)) (taup null)) tau P1 /\

obisim P1 (match (x n1) n1 (taup null))

The only way the proof search could proceed is to instantiate P1 with a process. There are two choices for
the instantiations of P1 that would satisfy the first conjunct in the goal: (taup null) or null. If we take the
first choice, we end up having to prove:
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Variables : x

============================

obisim (taup null) (match (x n1) n1 (taup null))

Since x is an eigenvariable, if this subgoal were provable, any instance of it would also be provable. In particular,
the instance

obisim (taup null) (match n2 n1 (taup null))

where x is instantiated to x\n2, for some fresh nominal constant n2, would also be provable. Since match n2

n1 (taup null) is (open/late) bisimilar to null, this subgoal would not be provable. So we are left with the
only other choice for P1, i.e., the process null. But in this case, we would have to prove the subgoal:

Variables : x

============================

obisim null (match (x n1) n1 (taup null))

If this were provable, then obisim null (match n1 n1 (taup null)) would also be provable, by letting x to
be y\y. But match n1 n1 (taup null) is bisimilar to (taup null), which is not bisimilar to null, so this
subgoal would not be provable either. Having exhausted all the choices for the instantiation of P1 we conclude
that the original goal obisim R T is not provable.

The reader may wonder whether the above argument of non-provability of obisim R T could be internalized
as a proof within Abella of the negation of obisim R T. This is unfortunately not the case. The reason has
to do with the shallow embedding approach we have taken in formalizing open bisimulation. To prove the
negation of obisim R T, we would have to reason about non-provability of continuations of obisim R T under
some respectful substitutions, and one would need to reason explicitly about such substitutions and their effect
on bisimilarity. If we were to use a deep embedding, e.g., by formalizing explicitly the notion of distinctions
and respectful substitutions, such a proof may be possible.

8 The Two-Level Logic Approach

As Sections 4, 5, 6, and 7 have illustrated, Abella has sophisticated support for reasoning about relations.
This makes it particularly well suited for specifications in the structural operational semantics style [54, 55]
that use inductively defined relations to specify computational behavior. However, Abella’s definitions must
be stratified : the defined predicates cannot be used negatively in their own definitions. This limitation means
that when specifying relations that induct on the structure of higher-order λ-terms used in λ-tree syntax, we
cannot rely on hypothetical reasoning, as is done in systems such as λProlog [39] or Twelf [50]. Instead, we use
an explicit context Gamma of typing assumptions, as we have illustrated in Sections 6.2 and 7.2. Such definitions,
where an explicit context argument has been added, are accompanied by an obvious problem: the meta-theoretic
properties of such lists of assumptions have to be established explicitly by the user. For instance, for the version
of the of predicate from Section 6.2, we had to manually prove the of_inst theorem by induction. Moreover,
we often need to know that the proof of this kind of theorem is height-preserving. This height is not part of
the obvious encoding of the predicate in G. To make it available in constructing inductive proofs, we would
need to extend the definition of the of predicate with an extra height parameter, together with its associated
assumptions using is_nat (cf. Section 2.2). In addition to the extra complexity in the definitions and theorems,
we would also need to maintain these proofs throughout the evolution of the system being specified. And,
finally, after we are done with one definition, we would need to do everything again for a different definition
with different kinds of hypotheses.

The two level logic approach [23, 35] is a way to alleviate this tedium of meta-theoretic reasoning by defining
a canonical hypothetical inductive definition that can capture a wide spectrum of other definitions using hypo-
thetical reasoning. Specifically, it uses the logic of hereditary Harrop formulas [39, Chapter 3] as a specification
logic where hypothetical definitions are specified using higher-order clauses that may be freely extended without
needing to revisit any meta-theorems.8 This modularity is achieved by encoding derivability of specification
logic sequents as an inductive definition in G, for which the meta-theory is proved once and for all, as we have
done in Section 7.2.

The following are some of the main benefits of the two-level logic approach.

1. The specification logic operates under an open world assumption, where new clauses can always be added
without affecting derivability in the specification logic. The reasoning logic (G), on the other hand,
retains its closed world reading where the collection of clauses of an inductive relation are fixed and
stable with respect to unfolding. In particular, the reasoning logic can reason about both derivability and

8To be more accurate, the two-level logic approach can be used with any specification logic that has certain meta-theoretic
properties. For example, the approach is easily adapted to linear logic [35] or intuitionistic dependent type theory [16, 17, 61, 62]
as the specification logic.
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non-derivability of specification logic formulas and sequents, whereas the specification logic itself has no
negation connective.9

2. Because all specifications are factored through a common specification logic, the meta-theoretic properties
of the specifications are obtained via the meta-theory of the specification logic itself. Indeed, since this
meta-theory is fixed and predictable, the tactics of the reasoning logic can often be optimized to utilize
the meta-theorems on the fly and without user direction. This is commonly summarized by the slogan
“substitution lemmas for free.”

3. Although not a property of the two-level logic approach as such, the specification logic of hereditary Harrop
formulas underlies the λProlog programming language. Thus, specifications can be directly executed using
λProlog implementations such as Teyjus [56]. We can thus prove properties of specifications that, under
a different view, actually constitute code.

We will introduce the two-level logic approach in stages, starting with the simple case of Horn clause
specifications and moving on to more complex higher-order specifications.

8.1 Horn clause specifications

Let us begin with a simple Horn clause specification of appending lists. To avoid namespace collisions with the
definitions in Section 4.2 we will use the base types i (for individuals) and ilist for lists of individuals. The
appending operation on ilists will then be given as a specification-level relation iappend; more concretely,
the specification logic has a type o of formulas, and iappend will have type ilist -> ilist -> ilist -> o.
Following λProlog conventions, these specification types are defined in a signature file (that must have extension
.sig), here ilist.sig:

sig ilist.

kind i type.

type a,b,c i. % some individuals

kind ilist type.

type inil ilist.

type icons i -> ilist -> ilist.

type iappend ilist -> ilist -> ilist -> o.

The clauses defining iappend are given in a corresponding module file (with extension .mod), here ilist.mod:

module ilist.

iappend inil L L.

iappend (icons X L) K (icons X M) :-

iappend L K M.

These files follow standard λProlog syntactic conventions of capitalizing the universally quantified variables in
a clause and using :- to separate the head of a clause from its body.

In Abella, this specification can be imported by means of the Specification top-level command.

Abella < Specification "ilist".

Reading specification "ilist "

If this command is used, it must be the first one in the run of Abella, because every run of Abella is parameterized
on a given specification (which may be empty). The effect of this command is to transport the specification
signature, without change or interpretation, into the type system of Abella’s reasoning logic. In other words, it
is as if the following top-level commands were submitted to Abella.

Kind i type.

Type a, b, c i.

Kind ilist type.

/* ... and so on */

The clauses from the corresponding .mod are also loaded into memory. (The precise nature of the inclusion of
the clauses will be made clear in the next subsection.)

To gain access to derivations in the specification logic, Abella uses the notation {F}, where F is a specification
logic formula (i.e., a term of type o), to assert that F is derivable in the specification logic from the loaded clauses.
It is possible to use Abella as a logic programming interpreter by using the top-level Query command to search
for derivations. Here is an example:

Abella < Query {iappend L K (icons a (icons b inil))}.

Found solution :

L = inil

K = icons a (icons b inil)

9Note that, in a situation where new clauses can always be added, there is no sensible way to prove ¬A, as any such proof will
not survive extensions with clauses that prove A.
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Found solution :

L = icons a inil

K = icons b inil

Found solution :

L = icons a (icons b inil)

K = inil

No more solutions .

The logic programming interpreter executes the query by interpreting the capitalized identifiers as logic variables,
and outputs their substitutions for each successful solution. It does not terminate if there are infinitely many
solutions. This interpreter is provided primarily as a debugging aid; it is not competitive with sophisticated
λProlog execution frameworks.

The more interesting way to use such specifications is to prove properties about them. As a first example,
let us prove that iappend is deterministic: given two lists L and K, there is always at most one M for which
iappend L K M may be derived in the specification logic. We can write this theorem statement fairly directly
in the reasoning logic:

Theorem iappend_det3 : forall L K M1 M2,

{iappend L K M1} -> {iappend L K M2} -> M1 = M2.

Note that the computational behavior of iappend is stated here in terms of what can be derived in the spec-
ification logic from the clauses defining this predicate. The proof of this theorem will accordingly be based
on an analysis of such derivations. Informally, we reason by induction on the height of one of the antecedent
derivations, such as the first one:

iappend_det3 < induction on 1. intros .

Variables : L K M1 M2

IH : forall L K M1 M2 , {iappend L K M1}* ->

{iappend L K M2} -> M1 = M2

H1 : {iappend L K M1}@

H2 : {iappend L K M2}

============================

M1 = M2

Observe that the the inductive restrictions @ and * (cf. Section 5) are attached to the {} predicates. The
hypotheses H1 and H2 are now available for case-analysis; whenever we use a clause for the iappend predicate
in this analysis, the accompanying @ annotation (if any) is reduced to a *. For didactic purposes, let us turn
on the instantiations flag so that we can see how the variables get instantiated during case-analysis.

Set instantiations on.

Case-analysis of H1 yields two subgoals, one for each clause of iappend. The first subgoal results from matching
the first clause:

iappend_det3 < case H1.

Variables : M1 M2

L <-- inil

K <-- M1

IH : forall L K M1 M2 , {iappend L K M1}* ->

{iappend L K M2} -> M1 = M2

H2 : {iappend inil M1 M2}

============================

M1 = M2

We can then case-analyze H2 to also instantiate M2 with M1 which reduces the subgoal to a trivial equality (that
can be finished with search).

iappend_det3 < case H2.

Variables : M2

L <-- inil

K <-- M2

M1 <-- M2

IH : forall L K M1 M2 , {iappend L K M1}* ->

{iappend L K M2} -> M1 = M2

============================

M2 = M2

The second subgoal results from matching the second clause of iappend:

40



Variables : K M2 M L1 X

L <-- icons X L1

M1 <-- icons X M

IH : forall L K M1 M2 , {iappend L K M1}* ->

{iappend L K M2} -> M1 = M2

H2 : {iappend (icons X L1) K M2}

H3 : {iappend L1 K M}*

============================

icons X M = M2

Note here that the inductive restriction on H3 has reduced from that of H1. The proof proceeds by case-analysis
of H2 which also instantiates M2 to icons X M3 (for a new variable M3) to yield:

iappend_det3 < case H2.

Variables : K M L1 X M3

L <-- icons X L1

M1 <-- icons X M

M2 <-- icons X M3

IH : forall L K M1 M2 , {iappend L K M1}* ->

{iappend L K M2} -> M1 = M2

H3 : {iappend L1 K M}*

H4 : {iappend L1 K M3}

============================

icons X M = icons X M3

Since the inductive restrictions now match, we can apply IH to H3 H4 to get M = M3, from which the conclusion
follows trivially.

In effect, the theorem proceeds as if Abella had the following inductive definition at the reasoning level
(although the syntax is invalid).

Define {iappend } : ilist -> ilist -> ilist -> prop by

{iappend inil L L} ;

{iappend (icons X L) K (icons X M)} := {iappend L K M}.

The correspondence is strong; if we turn the above invalid syntax into an actual definition iappend_m (m for
meta):

Define iappend_m : ilist -> ilist -> ilist -> prop by

iappend_m inil L L ;

iappend_m (icons X L) K (icons X M) := iappend_m L K M.

then we can prove both the following theorems by a simple induction (indeed, the proofs are identical).

Theorem spec_meta : forall L K M,

{iappend L K M} -> iappend_m L K M.

Theorem meta_spec : forall L K M,

iappend_m L K M -> {iappend L K M}.

More generally, for Horn clause specifications it is a matter of taste whether to use the specification or the
reasoning logic from the perspective of proving meta-theorems. Of course, if we use the specification logic for
such specifications, we have the benefit of being able to execute them using an λProlog implementation; thus
our meta-theorems state properties of actual code.

Before proceeding further, the reader is encouraged to attempt proving the following meta-theorems to get
a feel for reasoning about specification logic derivations.

Theorem iappend_det2 : forall L K1 K2 M,

{iappend L K1 M} -> {iappend L K2 M} -> K1 = K2.

Theorem iappend_assoc : forall L K M LK KM N1 N2,

{iappend L K LK} -> {iappend K M KM} ->

{iappend LK M N1} -> {iappend L KM N2} -> N1 = N2.

8.2 Hereditary Harrop specifications

The truly interesting applications of the two-level logic approach arise when specifications go beyond Horn
clauses by employing universal quantification and implications in the bodies of clauses. Such specifications
are particularly apt for λ-tree syntax, where descending under a λ-abstraction is mirrored by introducing a
universally quantified variable to stand for the bound variable in the body of the clause, and where associated
properties of that variable are encoded as extra antecedents in an implication. This style specification is best
illustrated with an example, for which we revisit the simply typed λ-calculus from Section 6.4, but place the
clauses in the specification logic. The signature is:
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Abstract Concrete Precedence/
Associativity

Formulas (F,G, . . . )
Atomic formulas p m1 · · · mn p M1 ... Mn 5, left
Implication F ⇒ G F => G 4, right

G <= F 3, left
Universal quantification Πx. F pi x\ F 1

Πx:τ. F pi (x:T)\ F 1
(parentheses optional)

Conjunction F &G F & G 2, left
Truth tt (no concrete syntax)

Clauses

p m1 · · · mn
︸ ︷︷ ︸

head

. stands for Π ~X. (p m1 · · · mn)

p m1 · · · mn
︸ ︷︷ ︸

head

:- F1, . . . ,Fk
︸ ︷︷ ︸

body

. stands for Π ~X. (Fk ⇒ · · · ⇒ F1 ⇒ p m1 · · · mn)

(where ~X are the free capitalized identifiers in the clause)

Figure 5: Concrete Syntax for hereditary Harrop formulas and specification logic clauses.

sig stlc.

kind ty type.

type a ty.

type arr ty -> ty -> ty.

kind tm type.

type app tm -> tm -> tm.

type abs ty -> (tm -> tm) -> tm.

We will encode the typing relation using the specification logic predicate of whose type is given by the following
declaration.

type of tm -> ty -> o.

Recall that o is the type of specification logic formulas. These formulas are composed of atomic formulas built
out of predicates such as iappend and of, and the connectives of the logic of hereditary Harrop formulas defined
in Section 7.2. Table 5 summarizes the concrete syntax of specification formulas and clauses that is supported
by Abella. Note that this concrete syntax is only a fragment of the full λProlog language; in particular, Abella’s
specification logic is simply typed, lacks disjunction and existential quantification, and only supports atomic
heads in clauses.

Using the syntax for formulas described above, the definition of the of predicate is written as follows.

module stlc.

of (app M N) B :- of M (arr A B), of N A.

of (abs A R) (arr A B) :- pi x\ of x A => of (R x) B.

Each clause of the specification is interpreted as a specification logic formula according to the convention
described in Table 5. For of, these are:

Πm,n, a, b. (of m (arr a b) ⇒ of n a ⇒ of (app m n) b) ,

Πr, a, b. ((Πx. of x a ⇒ of (r x) b) ⇒ of (abs r) (arr a b)) .

Once the specification is imported with

Specification "stlc".

these clauses are collected and stored in a special list, P , called the program. We will therefore use the term
program clause to mean a member of P .

Since the second clause of the of predicate contains an embedded implication, using it to backchain {of

(abs R) (arr A B)} would yield a specification sequent with a localized assumption for a new variable x,
written {of x A |- of (R x) B}. The general form of such a specification sequent is:

{ F1, . . . , Fn |- G }
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where the case of n = 0 is the familiar form { G } from Horn clause specifications. The multiset of formulas to
the left of |- is called the context of the sequent.

We can now use the Query command to animate this specification. Here are a few examples:

Abella < Query {of (abs A x\ x) B}.

Found solution :

A = ?5

B = arr ?5 ?5

No more solutions .

Abella < Query {of (abs A x\ app x x) B}.

No more solutions .

Abella < Query nabla x,

{of x (arr A B) |- of (abs A y\ app x y) D}.

Found solution :

A = ?17

B = ?19

D = arr ?17 ?19

No more solutions .

In the first query, the solutions are given in terms of a free logic variable ?5, meaning that any instance of
this variable would produce a corresponding instance of this solution. These logic variables are merely used to
display the solutions; they are not part of the syntax of terms and are therefore not available for manipulation by
users. The second query asks about the term λx. (x x) that is ill-typed, and Abella responds with no solutions.
The third query contains a nabla-quantified variable x. The logic variables A, B, etc. are existentially quantified
at an outermost scope, so the solutions for them cannot depend on x.

It is instructive at this juncture to trace the derivation of the solution of the third query step-by-step.

Theorem explore : forall A B, nabla x,

{of x (arr A B) |- of (abs A y\ app x y) (arr A B)}.

intros .

This brings us to:

Variables : A B

============================

{of n1 (arr A B) |- of (abs A (y\ app n1 y)) (arr A B)}

We can now match the goal of (abs A (y\ app n1 y)) (arr A B) against the head of the clause for abs in
stlc.mod, which instantiates the variable R in the head of the clause with y\ app n1 y. The resulting goal10

should therefore be:

Variables : A B

============================

{of n1 (arr A B) |- pi z\ of z A => of ((y\ app n1 y) z) B}

However, this goal is not in a reduced form in the sense of M from Section 7.2. Abella performs this goal
reduction automatically, promoting pi-bound variables to nabla-bound variables, and transferring antecedents
of => to the context. Abella then also normalizes β-redexes and introduces the new nabla-quantified variables.
The result is:

Variables : A B

============================

{of n1 (arr A B), of n2 A |- of (app n1 n2) B}

At this point we can continue with the clause for app to obtain:

Variables : A B

============================

exists A1,

{of n1 (arr A B), of n2 A |- of n1 (arr (A1 n2 n1) B)}

/\ {of n1 (arr A B), of n2 A |- of n2 (A1 n2 n1)}

Observe that we now have two goals because the body of the of_app clause has two predicates. Moreover,
this clause involves a variable in the body that does not occur in the head, so the result of the unfold is to
existentially quantify over that variable. The Query command was able to find a substitution for the variable,
but in our case we can provide it explicitly.

10To achieve this in the proof, one would use the unfold tactic using the named clauses feature. We leave a discussion of named
clauses out of this tutorial as this is a new and experimental feature, and is only rarely useful.
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explore < witness u\ w\ A.

Variables : A B

============================

{of n1 (arr A B), of n2 A |- of n1 (arr A B)}

/\ {of n1 (arr A B), of n2 A |- of n2 A}

The remainder of the proof is straightforward: in each conjunct, the goal is found among the assumptions, so
the subgoal can be closed with search.

What we achieved with unfold on the conclusion we can also achieve with case on a hypothesis of a {}

predicate; however, instead of selecting a clause, the case tactic exhaustively considers all possible derivations,
producing a subgoal for each possibility. As an example, suppose we wish to show the negation of the second
(unprovable) query above.

Theorem explore2 : forall A B,

{of (abs A x\ app x x) B} -> false .

Since there is only one possible clause to backchain (of_abs), the case H1 command produces:

explore2 < intros . case H1.

Variables : A B1

H2 : {of n1 A |- of (app n1 n1) B1}

============================

false

At this point, case H2 produces two subgoals, the first of which we will skip for now. The second subgoal is:

explore2 < case H2. skip.

Variables : A B1 F

H3 : {of n1 A, [F n1] |- of (app n1 n1) B1}

H4 : member (F n1) (of n1 A :: nil )

============================

false

Here we see the backchaining sequent form that has the general shape:

{ F1, . . . , Fn, [F] |- A }

where A is restricted to atomic specification-level formulas.11 This sequent form is the direct representation of
backchaining sequents from Section 7.2. The two hypotheses H3 and H4 are precisely the two conjuncts for the
clause for the goal reduction relation red that appeals to the backchaining relation bch, which corresponds to
the rule bch of Figure 2. They also have a natural reading: F n1 must be a member of the context (H4) that
can be used to backchain (H3).

At this point, if we try to case-analyze H3, then the case tactic will abort because the exact form of F n1

is not yet known. The tactic needs to make a decision here: if the head of the backchained clause matches the
goal, then the tactic should produce fresh assumptions for the body of the clause; however, if the head does not
match, then the tactic should close the subgoal for being vacuous. Neither choice can be made yet, since we
don’t yet know the head of F n1. (Note that the head of a clause must be an atomic formula.)

In order to obtain this information about the structure of F n1, we must consider H4. Note that in H4 we
have left the specification logic sequent form {} and are performing meta-reasoning directly on the form of
the context. This is the first point where we need to know how specification contexts are represented in the
reasoning logic. Abella represents such contexts as lists of specification formulas (i.e., terms of type o) using
the type olist with two constructors, nil and ::, with the latter written infix. This list type comes equipped
with a member predicate with this definition:

Define member : o -> olist -> prop by

member X (X :: L) ;

member X (Y :: L) := member X L.

Case-analysis of H4 will therefore lead to two subgoals for the two definitional clauses of member, one where
F n1 = of n1 A and the other with a fresh hypothesis member (F n1) nil. This latter case is trivial, so let
us consider the former subgoal:

explore2 < case H4.

Variables : A B1

H3 : {of n1 A, [of n1 A] |- of (app n1 n1) B1}

============================

false

11See [70] for a full explanation of how proof in the specification logic is organized within Abella.
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At this point, the case tactic can finally take a decision on H3, since the backchained clause has an atomic head.
Indeed, the head actually does not match the goal, since n1 does not unify with app n1 n1, so the subgoal is
finished with case H3.

This leaves just the subgoal that we skipped earlier, which is:

Variables : A B1 A1

H3 : {of n1 A |- of n1 (arr (A1 n1) B1)}

H4 : {of n1 A |- of n1 (A1 n1)}

============================

false

Here, the proof can be finished with a similar argument as before, starting with a case-analysis of H3 or H4. We
leave it to the reader as an exercise.

8.3 Dynamic context management

Let us now try to show that the of predicate defined in the previous subsection is deterministic in its second
argument, i.e., that each term has at most one type. Following the pattern of Section 8.1, we might write the
theorem as:

Theorem of_det2 : forall M A1 A2 ,

{of M A1} -> {of M A2} -> A1 = A2.

Like with lists earlier, this theorem is proved by induction on one of the antecedents, such as the first one. If
we attempt a direct induction, we will succeed for backchaining the program clause for applications. However,
for abstractions, we will end up with the following subgoal:

Variables : B R A B1

IH : forall M A1 A2, {of M A1}* -> {of M A2} -> A1 = A2

H3 : {of n1 A |- of (R n1) B}*

H4 : {of n1 A |- of (R n1) B1}

============================

arr A B = arr A B1

The IH cannot be applied to H3 and H4, even though the inductive restrictions match, because the IH only
applies to sequents with empty contexts.

The primary issue here is that the contexts of specification sequents grow when backchaining clauses, so the
of_det2 theorem is not general enough. To generalize it, we need to quantify over the possible specification
sequent contexts

Theorem of_det2 ’ : forall L M A1 A2 ,

{L |- of M A1} -> {L |- of M A2} -> A1 = A2.

Abella therefore allows specification sequents to have the following structure:

{ L, F1, . . . , Fn |- G }

or

{ L, F1, . . . , Fn, [F] |- A }

where L is a variable of type olist, F1, . . . , Fn, F,G are formulas, and A is an atomic formula. We sometimes
call L the context variable; if it exists, it must be unique and must be the first listed element of the context.
Abella does not support multiple context variables within the same {}.

Using this kind of quantification over contexts, the unprovable subgoal earlier now becomes:

Variables : L B R A B1

IH : forall L M A1 A2 , {L |- of M A1}* ->

{L |- of M A2} -> A1 = A2

H3 : {L, of n1 A |- of (R n1) B}*

H4 : {L, of n1 A |- of (R n1) B1}

============================

arr A B = arr A B1

We can now apply IH to H3 H4 by instantiating the L in the IH with of n1 A :: L. However, the proof is
not yet complete, as we now have a new possibility for proving {L |- of M A1}: backchaining a member of L:

Variables : L M A1 A2 F

IH : forall L M A1 A2 , {L |- of M A1}* ->

{L |- of M A2} -> A1 = A2

H2 : {L |- of M A2}

H3 : {L, [F] |- of M A1}*

H4 : member F L

============================

A1 = A2
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The hypothesis H3 is not usable by the IH as it involves a backchaining sequent. The only remaining option is
to proceed by case-analysis. However, as we saw earlier in the trace through a query, the case tactic cannot
yet decide on H3 as it does not know the head of the formula F. Unlike the trace earlier, though, there is no
other way to discover the form of F, since all we know is that it is a member of some olist, without any further
information on how that olist is built. Hence, this proof attempt for of_det2’ is doomed without further
constraining L.

What do we know about L? Let us think back to why we needed L in the first place: we needed to reason
about {of (abs A R) (arr A B)}, which in turn required us to reason about {of n1 A |- of (R n1) B}.
Thus, the kinds of members that we need in L must include elements such as of n1 A. More generally, to
derive of M A, we would need to extend the context by assumptions about bound variables, which are in turn
represented by nominal constants. This means that the possible forms of L must include at least the following
subset (for any k ≥ 0):

of n1 A1, of n2 A2, . . . , of nk Ak.

Let us therefore attempt to prove the theorem parsimoniously for only these kinds of contexts. We achieve this
by writing an inductive definition ctx for recognizing such contexts.

Define ctx : olist -> prop by

ctx nil ;

nabla x, ctx (of x A :: L) := ctx L.

The first clause accounts for the possibility of the context being empty, as is the case for a closed term, while the
second clause extends an existing context by a single assumption about of in the form indicated above. Note
the use here of nabla at the head (cf. Section 6.4). It guarantees that the ∇-quantified x is fresh for A and L,
which are universally quantified over the entire definitional clause.

We can now state an inductively provable form of the of_det2 theorem.

Theorem of_det2_lem : forall L M A1 A2 , ctx L ->

{L |- of M A1} -> {L |- of M A2} -> A1 = A2.

induction on 2. intros . case H2.

Let us walk through some of the cases of this proof. The first subgoal is for backchaining a program clause for
app, which yields the subgoal:12

Variables : L A1 A2 A N M1

H1 : ctx L

H3 : {L |- of (app M1 N) A2}

H4 : {L |- of M1 (arr A A1)}*

H5 : {L |- of N A}*

============================

A1 = A2

At this point, we can proceed by case-analysis on H3. Unlike the previous proof of of_det2, the case tactic
here yields two subgoals for the two possibilities for backchaining: the program clause for app or a member of
L. The former subgoal is straightforward and identical to what we have already encountered, but the latter
subgoal is novel:

Variables : L A1 A2 A N M1 F

H1 : ctx L

H4 : {L |- of M1 (arr A A1)}*

H5 : {L |- of N A}*

H6 : {L, [F] |- of (app M1 N) A2}

H7 : member F L

============================

A1 = A2

We are in a similar situation to what we have seen before, but now we have an additional hypothesis H1 that
constrains L. Indeed, we can prove the following lemma about all members of L.

Define fresh : tm -> ty -> prop by

nabla x, fresh x A.

Theorem ctx_mem : forall L F,

ctx L -> member F L ->

exists X A, (F = of X A) /\ fresh X A.

(The proof of ctx_mem is left as an easy exercise.) Back in the proof of of_det2_lem, we can now apply

ctx_mem to H1 H7 to get:

12In these subgoals, the IH is suppressed unless needed to prevent repetition.
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Variables : L A1 A2 A N M1 X A3

H1 : ctx L

H4 : {L |- of M1 (arr A A1)}*

H5 : {L |- of N A}*

H6 : {L, [of X A3] |- of (app M1 N) A2}

H7 : member (of X A3) L

H8 : fresh X A3

============================

A1 = A2

At this point, the head of the backchained clause in H6 is atomic, so we can use case H6 to unify X with
app M1 N and A3 with A2. This changes H8 to fresh (app M1 N) A2, which is not derivable as app M1 N is
not a nominal constant. Thus, case H8 closes this subgoal.

The next subgoal is the case for backchaining a program clause for abs:

Variables : L A2 B R A

H1 : ctx L

H3 : {L |- of (abs A R) A2}

H4 : {L, of n1 A |- of (R n1) B}*

============================

arr A B = A2

Like with app earlier, using case H3 will leave us with two subgoals, the first of which is:

IH : forall L M A1 A2 , ctx L -> {L |- of M A1}* ->

{L |- of M A2} -> A1 = A2

H1 : ctx L

H4 : {L, of n1 A |- of (R n1) B}*

H5 : {L, of n1 A |- of (R n1) B1}

============================

arr A B = arr A B1

Now, in order to use the IH, we would need to prove that ctx (of n1 A :: L). Since this follows trivially
from H1 by search, Abella allows a special form of the apply tactic with some arguments left unspecified; they
are inferred and automatically proved by Abella.

of_det2_lem < apply IH to _ H4 H5.

Variables : L R A B1

H1 : ctx L

H4 : {L, of n1 A |- of (R n1) B1}*

H5 : {L, of n1 A |- of (R n1) B1}

============================

arr A B1 = arr A B1

The other subgoal amounts to backchaining a member of L to derive H3:

Variables : L A2 B R A F

H1 : ctx L

H4 : {L, of n1 A |- of (R n1) B}*

H5 : {L, [F] |- of (abs A R) A2}

H6 : member F L

============================

arr A B = A2

Here, as before with app, we use the ctx_mem lemma to derive that F must be of the form of n1 A1, and
therefore case H5 can decide that H5 is not derivable and hence the goal must be closed.

This leaves us with the final subgoal that defeated our earlier attempt for of_det2’:

Variables : L M A1 A2 F

H1 : ctx L

H3 : {L |- of M A2}

H4 : {L, [F] |- of M A1}*

H5 : member F L

============================

A1 = A2

Here, we can use ctx_mem with H1 and H5 to derive the structure of F, which lets us refine the goal further.

of_det2_lem < apply ctx_mem to H1 H5. case H6. case H4.

Variables : L A2 A3

H1 : ctx (L n1)

H3 : {L n1 |- of n1 (A2 n1)}

H5 : member (of n1 A3) (L n1)

============================

A3 = A2 n1
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Now, if we proceed by case-analysis on H3, there are no program clauses to backchain as none of these clauses
define typing for nominal constants. So, the sole possibility is backchaining a member of L n1.

of_det2_lem < case H3.

Variables : L A2 A3 F1

H1 : ctx (L n1)

H5 : member (of n1 A3) (L n1)

H7 : {L n1, [F1 n1] |- of n1 (A2 n1)}

H8 : member (F1 n1) (L n1)

============================

A3 = A2 n1

Once again, we can appeal to ctx_mem to refine the subgoal further.

of_det2_lem < apply ctx_mem to H1 H8. case H7. case H9.

Variables : L A3 A5

H1 : ctx (L n1)

H5 : member (of n1 A3) (L n1)

H8 : member (of n1 A5) (L n1)

============================

A3 = A5

We have now reduced the problem of showing uniqueness of typing to showing uniqueness of typing assump-
tions for variables. This is easy to show, since our ctx definition always extends L with typing assumptions
with a fresh nominal constant, and hence every typing assumption for a nominal constant occurs at most once.
We can prove this as a lemma by induction.

Theorem ctx_uniq : forall L X A1 A2 , ctx L ->

member (of X A1) L -> member (of X A2) L -> A1 = A2.

The proof is left as an exercise (hint: use the following lemma).

Theorem member_prune : forall L E, nabla (x:tm),

member (E x) L -> exists F, E = x\ F.

We are now finally able to close the subgoal above with backchain ctx_uniq with X = n1, L = L n1. The
reader is encouraged to now re-organize this proof to see that it requires a definition ctx of certain kinds of
contexts, a lemma ctx_mem characterizing members of such contexts, and a lemma ctx_uniq that such contexts
assign types functionally. Once these lemmas are in place, proving the determinancy of typing (of_det2_lem)
is straightforward and our original theorem of_det2 is a trivial corollary.

8.4 Exploiting the meta-theory of the specification logic

As mentioned in the preamble of Section 8, one of the main benefits of using a specification logic is that its meta-
theory is proved once and for all (cf. Section 7.2). The following three meta-theorems are the most commonly
encountered forms.

Monotonicity The statement of the monotonicity theorem is as follows.

forall L K G, (forall E, member E L -> member E K) ->

{L |- G} -> {K |- G}.

As explained in Section 7.2, this theorem subsumes weakening, contraction, and exchange. One interesting
aspect of this theorem is that it is height-preserving: if {L |- G} has an inductive restriction, then applying
this theorem should preserve the restriction on {K |- G}. This is justified in Section 7.2 by the use of the
height parameter to red and bch that is shown to be preserved by the monotonicity meta-theorem. As the
apply tactic of Abella does not preserve inductive restrictions on arguments, a special monotone tactic is used
instead. For hypotheses of the form:

H1 : {L |- G} or H1 : {L |- G} *

the invocation monotone H1 with K produces a corresponding new hypothesis

H2 : {K |- G} or H2 : {K |- G} *

as appropriate, and an additional subgoal to prove forall E, member E L -> member E K. Like with all
tactics, the search tactic is automatically attempted on this subgoal.

48



Instantiation Nominal constants that appear in a specification logic sequent may be replaced by any arbitrary
term using the following instantiation theorem.

forall L G t, (nabla x, {L x |- G x}) -> {L t |- G t}.

Note that this is not perfectly valid Abella syntax because the statement is parametric on the type of x. In other
words, it is a polymorphic theorem. Moreover, just as with monotonicity, this theorem can preserve inductive
restrictions, as proved in Section 7.2. Abella uses a specialized inst tactic for this theorem; for hypotheses of
the form:

H1 : {L |- G} or H1 : {L |- G} *

the invocation inst H1 with n1 = t produces a corresponding new hypothesis

H2 : [t/n1] {L |- G} or H2 : [t/n1] {L |- G} *

where [t/n1] stands for the capture-avoiding substitution of t for n1 in the specification sequent. (Note: this
substitution operation is not legal Abella syntax, just a notation used here to describe the tactic.)

Cut The final meta theorem corresponds to the use of cut-admissibility of the specification logic:

forall L F G, {L |- F} -> {L, F |- G} -> {L |- G}.

For hypotheses of the form:

H1 : {L |- F}

H2 : {L, F |- G}

the invocation cut H2 with H1 produces a new hypothesis:

H3 : {L |- G}

If the two premises H1 and H2 do not have a common context L, then both sequents are first put in the least
context that contains both premise contexts (by internally appealing to the monotone tactic). However, this
operation comes with a limitation: since Abella allows at most a single context variable in specification sequents,
the least upper bound (in the inclusion ordering) of two specification contexts may not exist if their context
variables differ. In this case, the user must first appeal to the other meta-theorems or lemmas to ensure both
premise sequents have a common context variable.

All three meta-theoretic tactics can also be applied to backchaining sequents when the syntax permits it.

Example As an illustration of the use of the meta-theoretic tactics, consider subject-reduction in the simply
typed λ-calculus. We first define the (big step) evaluation relation eval that has this type signature:

type eval tm -> tm -> o.

and these program clauses:

eval (abs A R) (abs A R).

eval (app M N) V :- eval M (abs A R), eval (R N) V.

The theorem we wish to prove is:

Theorem subjred : forall M V A,

{of M A} -> {eval M V} -> {of V A}.

The proof proceeds by induction on the second antecedent. The case of abstractions is straightforward. For
applications, we are in the following subgoal:

Variables : V A N R A1 M1 A2

IH : forall M V A, {of M A} -> {eval M V}* -> {of V A}

H3 : {eval M1 (abs A1 R)}*

H4 : {eval (R N) V}*

H5 : {of M1 (arr A2 A)}

H6 : {of N A2}

============================

{of V A}

Here, we apply IH to H5 H3 followed by case-analysis of the resulting hypothesis about abs A1 R to get:

Variables : V A N R M1 A2

IH : forall M V A, {of M A} -> {eval M V}* -> {of V A}

H3 : {eval M1 (abs A2 R)}*

H4 : {eval (R N) V}*

H5 : {of M1 (arr A2 A)}

H6 : {of N A2}

H8 : {of n1 A2 |- of (R n1) A}

============================

{of V A}
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In order to use the IH with H4, we need to show {of (R N) A}. To get there from H8, we first instantiate the
n1 with N, and then cut with H6.

subjred < inst H8 with n1 = N. cut H9 with H6.

Variables : V A N R M1 A2

IH : forall M V A, {of M A} -> {eval M V}* -> {of V A}

H3 : {eval M1 (abs A2 R)}*

H4 : {eval (R N) V}*

H5 : {of M1 (arr A2 A)}

H6 : {of N A2}

H8 : {of n1 A2 |- of (R n1) A}

H9 : {of N A2 |- of (R N) A}

H10 : {of (R N) A}

============================

{of V A}

Now we can apply IH to H10 H4 and finish the proof.

8.5 General context relations

The ctx definition in Section 8.3 was tailored to the of predicate. For a different predicate that would extend
the context in a different way, we would need a different variant of the ctx relation. This leads to an obvious
question: what if we need to prove a property about two different relations? One option might be to try to
prove this property in a context that contains both kinds of extensions, but this tends to make the proofs
needlessly complicated, with extraneous subgoals in nearly every case to rule out impossible situations. A more
scalable option offered by Abella’s rather general definition mechanism is to use separate tailored contexts for
the various predicates with an explicit link between the separate contexts.

Once again, this technique is best described in terms of an example. Suppose we wish to define a binary
relation copy on terms such that copy M N recursively examines the structure of M and recreates it in N. It has
this type signature:

type copy tm -> tm -> o.

and these clauses:

copy (app M1 M2) (app N1 N2) :-

copy M1 N1 , copy M2 N2.

copy (abs A R1) (abs A R2) :-

pi x\ copy x x => copy (R1 x) (R2 x).

The theorem we are interested in proving is the following:

Theorem copy_exists : forall M A, {of M A} -> {copy M M}.

(In fact, the theorem is weaker than it can be because copy works as well for terms that are ill-typed according
to of, but we ignore this issue as the example is mainly used to illustrate a technique.)

Now, Section 8.3 should already have made it clear that we cannot hope to prove the copy_exists theorem
directly by induction. Instead, we will need to prove a generalized lemma that allows for contexts in the two
clauses. How should these contexts be characterized? We can examine the program clauses of the of and copy

predicates to observe that the context extensions used to derive of M A are indeed related to the those for
copy M M. When the former has a context of the form:

of n1 A1, of n2 A2, . . . , of nk Ak,

then the latter must have a context of the form:

copy n1 n1, copy n2 n2, . . . , copy nk nk.

We can therefore define, inductively, a binary context relation ctx2 that characterizes both contexts at the same
time.

Define ctx2 : olist -> olist -> prop by

ctx2 nil nil ;

nabla x, ctx2 (of x A :: L) (copy x x :: K) := ctx2 L K.

The second definitional clause guarantees that x is fresh for A, L, and K. We can then prove a generalized lemma
using ctx2 that will have copy_exists as a corollary.

Theorem copy_exists_lem : forall L K M A, ctx2 L K ->

{L |- of M A} -> {K |- copy M M}.

We proceed by a straightforward induction on the second antecedent; here are some of the interesting cases.
For backchaining the program clause for abs, we have the subgoal:
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Variables : L K B R A1

IH : forall L K M A, ctx2 L K ->

{L |- of M A}* -> {K |- copy M M}

H1 : ctx2 L K

H3 : {L, of n1 A1 |- of (R n1) B}*

============================

{K |- copy (abs A1 R) (abs A1 R)}

Here, we can finish the goal by apply IH to _ H3; Abella constructs and proves the omitted goal that ctx2
(of n1 A1 :: L) (copy n1 n1 :: K). The other interesting subgoal arises from backchaining a member of
L.

Variables : L K M A F

IH : forall L K M A, ctx2 L K ->

{L |- of M A}* -> {K |- copy M M}

H1 : ctx2 L K

H3 : {L, [F] |- of M A}*

H4 : member F L

============================

{K |- copy M M}

Like in Section 8.3, to make progress we need to know something about the members of L. We can prove a
variant of ctx_mem directly with an identical proof.

Theorem ctx2_mem1 : forall L K F,

ctx2 L K -> member F L ->

exists X A, (F = of X A) /\ fresh X A.

Alternatively, we can project the binary relation on its first argument and reuse the ctx_mem theorem.

Theorem ctx2_proj1 : forall L K, ctx2 L K -> ctx L.

Whichever option is taken, we will be left with the subgoal:

Variables : L K A2

H1 : ctx2 (L n1) (K n1)

H4 : member (of n1 A2) (L n1)

============================

{K n1 |- copy n1 n1}

The proof can finish if we only knew that member (copy n1 n1) (K n1), as there is no program clause for
copy for nominal constants. This requires a separate lemma showing the relationship between the members of
contexts related by ctx2. Its easy proof is left as an exercise.

Theorem ctx2_sync : forall K L X A, ctx2 L K ->

member (of X A) L -> member (copy X X) K.

8.6 Extended example: Transitivity of subtyping in system Fsub

Our examples until now have used only a single nested implication in the bodies of program clauses, which does
not fully exploit the significant expressive power of higher-order specifications. As an extended example of the
possibilities offered by such specifications, we will give here a version of the proof of transitivity of subtyping
for system Fsub, which is an extension of system F with subtyping and bounded polymorphism. System Fsub

is described in more detail in [52, Chapter 26], and transitivity of subtyping in Fsub is problem 1a of the
POPLMark challenge [4].

The types (written using T, S, . . . ) of system Fsub are built from type variables (written α, β, . . . ) using the
following grammar.

T, S, . . . ::= α | ⊤ | T → S | ∀α≤T. S

The type ⊤ is the greatest element of the subtype relation ≤. For the bounded polymorphic type ∀α≤T. S,
valid instances can only be created for type arguments that are ≤ T . The bound variable can be freely α-varied.

The subtyping relation can be inductively specified using subtyping contexts (Γ), which are multisets of
elements of the form α≤T . The subtyping judgment has the form Γ ⊢ S ≤ T with the following inference rules.

Γ, α≤T ⊢ α ≤ T Γ ⊢ α ≤ α

Γ ⊢ α ≤ S Γ ⊢ S ≤ T

Γ ⊢ α ≤ T Γ ⊢ T ≤ ⊤

Γ ⊢ T1 ≤ S1 Γ ⊢ S2 ≤ T2

Γ ⊢ (S1 → S2) ≤ (T1 → T2)

Γ ⊢ T1 ≤ S1 Γ, α ≤ T1 ⊢ S2 ≤ T2

Γ ⊢ (∀α≤S1. S2) ≤ (∀α≤T1. T2)

In the final rule, by standard convention, we require that α is not free in Γ.
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In order to encode this as a specification in Abella, we have two possibilities. The first is to have a separate
syntactic class of type variables for which the first three subtyping rules apply, but this forces us to reason about
α-equivalence. The other choice is to use λ-tree syntax to get the α-equivalence (among other properties) for
free, but then the first three rules are difficult to encode as λ-tree syntax has no built in mechanism to detect
when something is a variable. Either option seems to present difficulties for the encoding.

Fortunately, there is a third possibility, suggested in [51], of retaining an encoding in λ-tree syntax while
using higher-order clauses to construct specialized instances of the first three variable rules whenever a new
variable is introduced into the subtyping context. The unscoped form of these three rules are then removed
from the system. We therefore use the following type signature for the grammar of types (tp) and for the
subtyping relation sub.

sig fsub.

kind tp type.

type top tp.

type arr tp -> tp -> tp.

type all tp -> (tp -> tp) -> tp.

type sub tp -> tp -> o.

As is standard in λ-tree syntax, we use λ-terms to depict binding, so the type ∀α≤S. T would be encoded as
all S (a\ T ).

The clauses for the sub relation are as follows.

module fsub.

sub T top.

sub (arr S1 S2) (arr T1 T2) :- sub T1 S1 , sub S2 T2.

sub (all S1 S2) (all T1 T2) :-

sub T1 S1,

pi a\

(pi u\ pi v\ sub a u => sub u v => sub a v) =>

sub a T1 =>

sub a a =>

sub (S2 a) (T2 a).

The first two clauses are straightforward translations of the corresponding inference rules. The body of the
third clause has embedded clauses defining transitivity and reflexivity of subtyping for the bound type variable,
represented here with the bound variable a, and the fact that it is ≤ T1. Note that the assumption

pi u\ pi v\ sub a u => sub u v => sub a v

is a Horn clause program which is specialized to the variable a but which can be used with arbitrary types
u and v to derive the subtyping relationships for a by transitivity. In other words, it computes the transitive
closure of subtyping chains beginning with a. This third program clause of sub is therefore a third-order clause,
as there are second-order formulas in its body.

To prove that the specified relation sub enjoys transitivity of subtyping amounts to proving the following
theorem in Abella:

Theorem transitivity ’ : forall S T U,

{sub S T} -> {sub T U} -> {sub S U}.

However, there is a problem: the proof of the theorem is by induction on the structure of the intermediate type
T, which in Abella requires a separate definition, is_tp, as we have seen before. Since the syntax of types is
itself untyped,13 we reuse the technique from Section 7.1 of defining the structure of types in an open fashion,
using nominal constants to stand for the type variables.

Define is_tp : tp -> prop by

nabla x, is_tp x ;

is_tp top ;

is_tp (arr S T) := is_tp S /\ is_tp T ;

is_tp (all S T) := is_tp S /\ nabla x, is_tp (T x).

Then, the actual transitivity theorem we show is:

Theorem transitivity : forall S T U, is_tp T ->

{sub S T} -> {sub T U} -> {sub S U}.

Of course, to prove this theorem we need to generalize the statement to reason about the context extensions
resulting from backchaining the program clauses of sub. Like we have already seen in earlier subsections, this
requires a context definition ctx characterizing the extensions to the context.

13Types do not have any classifiers in system Fsub.
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Define ctx : olist -> prop by

ctx nil ;

nabla a, ctx (( sub a a) ::

(sub a T) ::

(pi u\ pi v\ sub a u => sub u v => sub a v)

:: L) :=

ctx L.

The second clause of ctx adds three new members to the context, corresponding to the three antecedents of the
main implication in the body of the second program clause of sub.

Although this definition is somewhat more complex than similar definitions in earlier subsections, theorems
such as ctx_mem are still easily defined and proved.

Define name : tp -> prop by

nabla x, name x.

Define fresh : tp -> tp -> prop by

nabla x, fresh x T.

Theorem ctx_mem : forall L F,

ctx L -> member F L ->

exists A,

(F = sub A A /\ name A)

\/ (exists T, F = sub A T /\ fresh A T)

\/ (F = (pi u\ pi v\ sub A u => sub u v => sub A v)

/\ name A).

The proof is marginally more complex than proofs of similar theorems in earlier subsections but is nevertheless
straightforward and left as an exercise.

We can now state and prove the strengthened transitivity theorem.

Theorem transitivity : forall L S T U,

ctx L -> is_tp T ->

{L |- sub S T} -> {L |- sub T U} -> {L |- sub S U}.

induction on 2. intros .

At this juncture it would be tempting to continue with case H2 but this would have the effect of enumerating
all types, regardless of whether those types are related to S or not. Therefore, we instead proceed with case H3,
which produces four subgoals: three for the possible ways to backchain a program clause for sub and one for
backchaining an element of L.

The first subgoal, produced by backchaining the first program clause for sub, is:14

Variables : L S U

H1 : ctx L

H2 : is_tp top @

H4 : {L |- sub top U}

============================

{L |- sub S U}

Here, our only option is to continue with case H4, which produces two subgoals: one for the first program
clause for sub (which is trivial), and the other for backchaining a member of L, which is:

Variables : L S U F

H1 : ctx L

H2 : is_tp top @

H4 : {L |- sub top U}

H5 : {L, [F] |- sub top U}

H6 : member F L

============================

{L |- sub S U}

Now, we can apply ctx_mem to H1 H6; each resulting subgoal would be vacuous because top cannot unify
with a nominal constant.

The next overall subgoal is for the program clause of sub involves setting T to arr T1 T2: the resulting
argument is straightforward. After that, the most interesting subgoal involves binding T to all T1 T2, which
yields:

Variables : L U T2 S2 T1 S1

H1 : ctx L

H2 : is_tp (all T1 T2) @

H4 : {L |- sub (all T1 T2) U}

H5 : {L |- sub T1 S1}

H6 : {L, (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub n1 T1 , sub n1 n1 |- sub (S2 n1) (T2 n1)}

14Once again, the IH is suppressed unless relevant.

53



============================

{L |- sub (all S1 S2) U}

Once again we start with case H4, which produces three subgoals, two of which are similar to the previous
cases, and the third (after a case H2) is:

Variables : L T2 S2 T1 S1 T3 T4

H1 : ctx L

H5 : {L |- sub T1 S1}

H6 : {L, (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub n1 T1 , sub n1 n1 |- sub (S2 n1) (T2 n1)}

H7 : {L |- sub T4 T1}

H8 : {L, (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub n1 T4 , sub n1 n1 |- sub (T2 n1) (T3 n1)}

H9 : is_tp T1 *

H10 : is_tp (T2 n1) *

============================

{L |- sub (all S1 S2) (all T4 T3)}

From apply IH to H1 H9 H7 H5 we immediately have {L |- sub T4 S1}. Therefore, all that remains is to
link S2 and T3, which, by the program clause for sub, requires showing:

{L, (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub n1 T4 , sub n1 n1 |- sub (S2 n1) (T3 n1)}

We can nearly get there by the IH applied to H6 and H8, except that their contexts do not match: one has
sub n1 T1 while the other has sub n1 T4. But, by H7, we know that sub T4 T1, which by the embedded
clause in the context of H8 should let us derive sub n1 T1. We assert this fact, which Abella can easily prove.

transitivity_lem <

assert {(pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub T4 T1, sub n1 T4 |- sub n1 T1}.

Variables : L T2 S2 T1 S1 T3 T4

H1 : ctx L

H5 : {L |- sub T1 S1}

H6 : {L, (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub n1 T1 , sub n1 n1 |- sub (S2 n1) (T2 n1)}

H7 : {L |- sub T4 T1}

H8 : {L, (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub n1 T4 , sub n1 n1 |- sub (T2 n1) (T3 n1)}

H9 : is_tp T1 *

H10 : is_tp (T2 n1) *

H11 : {L |- sub T4 S1}

H12 : {(pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub T4 T1, sub n1 T4 |- sub n1 T1}

============================

{L |- sub (all S1 S2) (all T4 T3)}

We can then cut the assumption sub T4 T1 using H7, and use the result to cut the assumption sub n1 T1 out
of H6, yielding the required sequent to use with the IH.

The final overall subgoal corresponds to backchaining a member of L to derive {L |- sub S T}:

Variables : L S T U F

H1 : ctx L

H2 : is_tp T @

H4 : {L |- sub T U}

H5 : {L, [F] |- sub S T}

H6 : member F L

============================

{L |- sub S U}

We can use ctx_mem now to examine all the possibilities for F. Most cases are immediate; the sole exception is:

Variables : L U T2

H1 : ctx (L n1)

H2 : is_tp T2 @

H4 : {L n1 |- sub T2 (U n1)}

H6 : member (sub n1 T2) (L n1)

============================

{L n1 |- sub n1 (U n1)}

We know that if sub n1 T2 is in L n1, then it must have been added together with a Horn clause for transitivity
for n1 at the same time. In other words, we need the following theorem.

Theorem ctx_sync : forall L A T,

ctx L -> member (sub A T) L ->

member (pi u\ pi v\ sub A u => sub u v => sub A v) L.
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The proof is by induction on the first antecedent and left as an exercise as well. Appealing to it for the above
subgoal gives us enough information about the contents of L n1 to derive the goal.

The complete proof is shown in Figure 6.

Figure 6: full proof of the transitivity of subtyping for system Fsub

Theorem transitivity : forall L S T U,

ctx L -> is_tp T ->

{L |- sub S T} -> {L |- sub T U} -> {L |- sub S U}.

induction on 2. intros . case H3.

% T = top

case H4.

search .

apply ctx_mem to H1 H6. case H7.

case H5. case H8.

case H5. case H8.

case H5. case H8.

% T = arr T1 T2

case H4.

search .

case H2.

apply IH to H1 H9 H7 H5.

apply IH to H1 H10 H6 H8.

search .

apply ctx_mem to H1 H8. case H9.

case H7. case H10.

case H7. case H10.

case H7. case H10.

% T = all T1 T2

case H4.

search .

case H2.

apply IH to H1 H9 H7 H5.

assert { (pi u\ pi v\ sub n1 u => sub u v => sub n1 v),

sub T4 T1 , sub n1 T4 |- sub n1 T1 }.

cut H12 with H7. cut H6 with H13 .

apply IH to _ H10 H14 H8.

search .

apply ctx_mem to H1 H8. case H9.

case H7. case H10.

case H7. case H10.

case H7. case H10.

% backchain on a member of L

apply ctx_mem to H1 H6. case H7.

% sub a a

case H5. search .

% sub a T1

case H5. case H8. apply ctx_sync to H1 H6. search .

% pi u\ pi v\ sub a u => sub u v => sub a v

case H5. search .

9 Future Directions

Currently in Abella, only predicates can be inductively defined although it is often convenient to view types as
being inductively (or co-inductively) defined. In order to treat induction on types, one must write a predicate
that repeats the description of the type and then reason inductively on that predicate. We are considering
extending Abella so that all types can be immediately treated as if they were given by predicate definitions.

There have been a number of places in Section 8 where contexts were defined and a number of technical but
shallow theorems about contexts needed to be proved. Given that contexts are generally rather simple structures,
a variant of Abella has been developed [59] in which contexts can be declared differently than as lists: such
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specialized declarations allow for many of the technical lemmas to be proved by automatically produced proof
scripts.

The core logic of Abella does not allow either predicate quantification or polymorphic typing. Its notion of
modules is also rather primitive. By reconsidering modular construction of theorem (.thm) files, it might be
possible to view predicate quantification and polymorphic typing as features of a module language instead of
(more controversially) the target logic.

The specification logic used in the two-level logic approach described in Section 8 is the intuitionistic logic
of hereditary Harrop formulas. This choice is appealing since it is an expressive and popular logic that appears
within a number of systems, including λProlog, Isabelle, Minlog, and Twelf. The exact subset of logic and
its concrete syntax were chosen so that it corresponds to an executable subset of λProlog and the Teyjus
system [56] can be used to automatically search for proofs in that logic. There are, however, other natural
choices of specification logics. For example, an early paper on the two-level logic approach [35] illustrated some
advantages of using, instead, a linear logic programming language [30]. More recently, a variant of Abella has
been designed [62] in which an additional specification logic using the dependently typed λ-calculus LF co-exists
with the current specification language [29]. A natural question for the future development of Abella is how
far to take this idea: should Abella be made generic over arbitrary specification languages (in which case we
would need to consider the question of how specification languages are formally defined) and should it support
multiple specifications, possibly in different languages, at the same time?

The Bedwyr [7, 72] model checking system is based on a subset of the logic underlying Abella. Providing
articulation between these two systems could prove valuable for several reasons. For example, Bedwyr’s auto-
mated search can prove theorems that simply require complete state explorations: writing a complete proof for
such exploration in Abella is possible in principle but tedious and impractical. Also, Bedwyr could make use
of lemmas proved in Abella in order to make its search more effective: for example, searching for a winning
strategy in some board game could benefit significantly if it was known that symmetric versions of a winning
position are also winning. This latter fact could, in principle, be proved in Abella and imported into Bedwyr.
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A Summary of Abella syntax and commands

The most commonly used basic proof tactics of Abella are summarized in Figure 7. These tactics tend to follow
the inference rules of G closely, and are included in the trusted kernel of Abella. In addition to the main tactics,
there are a few meta-tactics that can be used at any point to manipulate the state of the proof in non-logical
ways. Figure 8 lists the most important of these meta-tactics.

Every Abella invocation starts with the declarations in Figure 9 already loaded. These declarations are used
to support the two-level logic approach described in Section 8. Moreover, the constants => and :: are treated
specially and written as infix. The symbol pi is treated polymorphically for any type T not containing o, or,
equivalently, pi has an infinite number of types, one for each value of T, and once the concrete syntax has been
parsed and checked, that type must be established unambiguously.

The online user manual for Abella, found at http://abella-prover.org/, contains a complete list of
commands and options.
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Tactic Effect

split When the conclusion is of the form C1 ∧ · · · ∧ Cn, replace the current goal by
n new subgoals, one for each of the Ci.

left, right When the conclusion is of the form Cl ∨Cr, replace the current goal by a new
subgoal for Cl (for left) or Cr (for right).

intros From the conclusion, move the outermost foralls to new eigenvariables,
replace the outermost nablas by nominal constants, and move implication
antecedents to new hypotheses.

witness t For a conclusion of the form exists x, A, remove the exists quantifier and
replace t for x in A (avoiding capture).

case H Apply a suitable left-introduction rule for the hypothesis H. For conjunctions,
this creates new hypotheses for the conjuncts; for disjunctions, it splits the
goal per disjunct; for exists, it promotes the quantified variable to a new
eigenvariable; and for defined atoms (see Section 4.1) it unfolds the definition.

unfold N When the conclusion is a defined atom, unfold the Nth clause of its definition
(N must be a number ≥ 1). If N is omitted, unfold the first clause whose head
matches the conclusion.

assert A Generate two subgoals, one to prove A from the current context and another
where A is added as a new hypothesis for the original conclusion. This
corresponds to the cut rule of G. The subgoal for proving A is automatically
attempted with search (see below).

apply H to H1 ... Hn

with x1 = t1, ....
When H is of the form ∀~x.∇~u.A1 ⊃ · · · ⊃ An ⊃ C, and each Hi is of the form
[σ]Ai for some substitution σ for the ~x, ~u, create a new hypothesis for [σ]C.
The optional with clause can give explicit substitutions for some of the ~x, ~u.
Any of the Hi can be an underscore (_), in which case a suitable candidate
is automatically constructed and either proved automatically by search or
generated as a fresh subgoal.

backchain H

with x1 = t1, ....
When H is of the form ∀~x.∇~u.A1 ⊃ · · · ⊃ An ⊃ C, this matches C with the
conclusion and generates new subgoals for each of the Ai; search is then
attempted on each generated subgoal. The optional with clause can give
explicit instantiations, as with apply.

search N Automatically search for a proof of the conclusion by repeatedly unfolding the
conclusion and looking up the result in the context. The optional argument N
(a number ≥ 1) specifies a maximum number of iterations of the unfold-lookup
loop.

Figure 7: The basic proof tactics

Tactic Effect

undo Undo the effect of the previous ordinary tactic. Can be applied repeatedly up
to the initial state of the proof.

skip Admit the current goal without proof. This is obviously not sound, but is
useful during the process of writing a proof. It is also the only mechanism for
introducing axioms.

abort Abort the proof of the current theorem and resets Abella to top-level command
processing mode.

Figure 8: The most important meta-tactics.
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Kind o type.

Type => o -> o -> o. % infix , right

Type pi (T -> o) -> o. % o not in T

Kind olist type.

Type nil olist.

Type :: o -> olist -> olist. % infix , right

Define member : o -> olist -> prop by

member A (A :: L) ;

member A (B :: L) := member A L.

Figure 9: The declarations and definitions that are implicitly included in every Abella development. Everything
in this color is treated as a keyword as it violates the lexical or typing conventions of ordinary declarations and
definitions.
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