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Abstract

In this paper, we use quantization to construct a nonparametric estimator of conditional

quantiles of a scalar response Y given a d-dimensional vector of covariates X. First we

focus on the population level and show how optimal quantization of X, which consists in

discretizing X by projecting it on an appropriate grid of N points, allows to approximate

conditional quantiles of Y givenX. We show that this approximation is arbitrarily good asN

goes to infinity and provide a rate of convergence for the approximation error. Then we turn

to the sample case and define an estimator of conditional quantiles based on quantization

ideas. We prove that this estimator is consistent for its fixed-N population counterpart.

The results are illustrated on a numerical example. Dominance of our estimators over

local constant/linear ones and nearest neighbor ones is demonstrated through extensive

simulations in the companion paper Charlier et al. (2014).
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1 Introduction

In numerous applications, one considers regression modelling to assess the impact of a d-

dimensional vector of covariates X on a scalar response variable Y . It is then classical to

consider the conditional mean and variance functions

x 7→ E[Y |X = x] and x 7→ Var[Y |X = x], (1.1)

respectively. A much more thorough picture, however, is obtained by considering, for various

α ∈ (0, 1), the conditional quantile functions

x 7→ qα(x) = inf
{
y ∈ R : F (y|x) ≥ α

}
, (1.2)

where F ( · |x) denotes the conditional distribution of Y given X = x. These conditional quantile

functions completely characterize the conditional distribution of Y given X, whereas (1.1), in

contrast, only measures the impact of X on Y ’s location and scale, hence may completely miss

to capture a possible impact of X on the shape of Y ’s distribution, for instance.

An important application of conditional quantiles is that they provide reference curves or

surfaces (the graphs of x 7→ qα(x) for various α) and conditional prediction intervals (intervals

of the form Iα(x) = [qα(x), q1−α(x)], for fixed x) that are widely used in many different areas.

In medicine, reference growth curves for children’s height and weight as a function of age are

considered. Reference curves are also of high interest in economics (e.g., to study discrimination

effects and trends in income inequality), in ecology (to observe how some covariates can affect

limiting sustainable population size), and in lifetime analysis (to assess influence of risk factors

on survival curves), among many others.

Quantile regression, that concerns the estimation of conditional quantile curves, was intro-

duced in the seminal paper Koenker and Bassett (1978), where the focus was on linear regression.

Since then, there has been much research on quantile regression, in particular in the nonpara-

metric regression framework. Kernel and nearest-neighbor estimators of conditional quantiles

were investigated in Bhattacharya and Gangopadhyay (1990), while Yu and Jones (1998) focused

on local linear quantile regression and double-kernel approaches. Many other estimators were

also considered; see, among others, Fan et al. (1994), Gannoun et al. (2002), Heagerty and Pepe

(1999), or Yu et al. (2003). In this work, we introduce a new nonparametric regression quantile

method, based on optimal quantization.

In probability theory, optimal quantization refers to the problem of finding the best ap-

proximation of a continuous d-dimensional probability distribution P by a discrete probability

distribution charging a fixed number N of points. In other words, the d-dimensional random
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vector X needs to be approximated by a random vector X̃N that may assume at most N val-

ues. Quantization was extensively investigated in (numerical) probability, finance, stochastic

processes, and numerical integration (see, e.g., Zador (1964), Pagès (1998), Pagès et al. (2004a),

Pagès et al. (2004b), and Bally et al. (2005)), but it was barely used in statistics—Sliced In-

verse Regression (Azaïs et al., 2012) and clustering (Fischer, 2010, 2014) are the only statistical

applications we are aware of). Yet, quantization is a natural tool in nonparametric quantile re-

gression. In this context, indeed, quantization automatically takes care of the localization-in-x

required in any nonparametric regression method. The resulting quantization-based estimators

inherently are based on adaptive bandwidths, hence may dominate the local constant and local

linear estimators from Yu and Jones (1998), that typically involve a unique global bandwidth.

Quantization-based estimators also provide a refinement over nearest-neighbor estimators (such

as those from Bhattacharya and Gangopadhyay (1990)) since, unlike the latter, the number of

“neighbors” the former consider depends on the point x at which qα(x) is to be estimated.

The outline of the paper, that mostly focuses on theoretical aspects, is as follows. Section 2

discusses quantization and provides some results on quantization, both of a theoretical and algo-

rithmic nature. Section 3 describes how to approximate conditional quantiles through optimal

quantization, which is achieved by replacing X in the definition of conditional quantiles by its

Lp-optimal quantized version X̃N (for some fixed N). The convergence rate of this approxima-

tion to the true conditional quantiles is obtained. Section 4 defines the corresponding estimator

and proves its consistency (for the fixed-N approximated conditional quantiles). The results are

illustrated on a numerical example, in which a smooth variant of the proposed estimator based

on the bootstrap is also introduced. Section 5 provides some final comments. Eventually, the

Appendix collects technical proofs.

2 Optimal quantization

In this section, we define the concept of Lp-norm optimal quantization and state the main

results that will be used in the sequel (Section 2.1). Then we describe a stochastic algorithm

that allows to perform optimal quantization (Section 2.2), and provide some convergence results

for this algorithm (Section 2.3).

2.1 Definition and main results

Let X be a random d-vector defined on a probability space (Ω,F , P ), with distribution PX , and

fix a real number p ≥ 1 such that E[|X|p] < ∞ (throughout, | · | denotes the Euclidean norm).

Quantization replaces X with an appropriate random d-vector π(X) that assumes at most N
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values. In optimal Lp-norm quantization, the vector π(X) minimizes the Lp-norm quantization

error

‖π(X)−X‖p, with ‖Z‖p :=
(
E
[
|Z|p

])1/p
.

This optimization problem is equivalent to finding an N -grid of Rd — γN , say — such that the

projection X̃γN = ProjγN (X) of X on the (Euclidean-)nearest point of the grid minimizes the

quantization error ‖X̃γN − X‖p. This definition leads to two natural questions: does such a

minimum always exist? How does this minimum behave as N goes to infinity?

Existence (but not unicity) of an optimal N -grid — that is, a grid minimizing this quantiza-

tion error — has been obtained under the assumption that PX does not charge any hyperplane;

see Pagès (1998). Irrespective of the sequence of optimal grids considered, X̃N converges to X

in Lp. This is a direct corollary of the following result, which is often referred to as Zador’s

theorem (Zador, 1964) and provides the rate of convergence of the quantization error; see, e.g.,

Graf and Luschgy (2000) for a proof.

Theorem 2.1 (Graf and Luschgy, 2000, Th. II.6.2). Assume that ‖X‖p+δ <∞ for some δ > 0.

Let PX(du) = f(u)λd(du)+ν(du) be the Lebesgue decomposition of PX , where λd is the Lebesgue

measure on Rd and ν⊥λd. Then

lim
N→∞

(
N

p
d min
γN∈(Rd)N

‖X̃γN −X‖pp
)

= Jp,d

(∫
Rd

(f(u))
d
p+d du

)1+ p
d

,

with Jp,d = minN
(
Np/d minγN∈(Rd)N D

p,U
N (γN )

)
, where Dp,U

N (γN ) denotes the (pth power of the)

quantization error, obtained for the uniform distribution over [0, 1]d, when considering the grid

γN ∈ (Rd)N .

In dimension d = 1, one has Jp,d = 1
2p(p+1) . For d > 1, little is known about Jp,d, but it can

be shown that Jp,d ∼
(
d

2πe

)p/2 as d→∞; see Graf and Luschgy (2000).

Corollary 2.2 (Graf and Luschgy, 2000, Cor. II.6.7). Assume that ‖X‖p+δ < ∞ for some

δ > 0. Then, for some C,D ∈ R and N0 ∈ N, we have that

‖X̃γN −X‖pp ≤
1

Np/d

(
C‖X‖p+δp+δ +D

)
,

for all N ≥ N0.

Summing up, there exist Lp-optimal N -grids — or optimal N -quantizers — that minimize

the quantization error. A further natural question then is: how to obtain an optimal N -grid?

We now discuss a stochastic algorithm that addresses this problem.
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2.2 The stochastic gradient algorithm

Except in some very exceptional cases (such as the uniform over a compact interval of the real

line), optimal N -grids have no closed form. That is, there exist no results that describe the

geometric structure of such grids. However, one can attempt to obtain (approximations of)

optimal N -grids through a stochastic gradient algorithm such as the following.

Let (ξt)t∈N0 , N0 = {1, 2, . . .}, be a sequence of independent and identically PX -distributed

random vectors, and let (δt)t∈N0 be a deterministic sequence in (0, 1) such that
∞∑
t=1

δt = +∞ and
∞∑
t=1

δ2t < +∞

(throughout the paper, we tacitly assume that the algorithm makes use of a sequence δt that

satisfies these conditions). The algorithm starts from a deterministic N -tuple X0 = x0 with N

pairwise distinct entries. This initial N -grid x0 is then updated as follows. For every t ∈ N0,

define recursively the grid Xt as

Xt = Xt−1 − δt
p
∇xdpN (Xt−1, ξt), (2.1)

where ∇xdpN (x, ξ) stands for the gradient with respect to the x-argument of the so-called local

quantization error dpN (x, ξ) = min1≤i≤N |xi − ξ|p, with x = (x1, . . . , xN ) ∈ (Rd)N and ξ ∈ Rd.

Note that, for any ξ, the ith entry of this gradient is given by(
∇xdpN (x, ξ)

)
i

= p |xi − ξ|p−1
xi − ξ
|xi − ξ|

I[xi=Projx(ξ)],

where IA denotes the indicator function of the set A, and with the convention 0/0 = 1 when

xi = ξ. This implies that theN -vector∇xdpN (x, ξ) always has exactly one non-zero entry, namely

the one corresponding to the point of the grid x that is closest to ξ. Consequently, at each step t

of the algorithm, only one point of the grid Xt−1 will be changed to define the grid Xt, namely

the point from the grid Xt−1 that is closest to ξt.

More details about this algorithm can be found in Pagès and Printems (2003). For p = 2, this

is known as the Competitive Learning Vector Quantization (CLVQ) algorithm, and is the most

commonly used one in quantization. This success is explained by the fact that the convergence

results obtained for the CLVQ algorithm are much more satisfactory than for p 6= 2.

2.3 Convergence results for the CLVQ algorithm

Here we state several results showing that the grids provided by the CLVQ algorithm converge

to optimal grids as the number of iterations t goes to infinity.

We start with the univariate case (d = 1). Assume that the support of PX is compact and

let its convex hull C be [a, b]. Write F+
N := {x = (x1, . . . , xN ) : a < x1 < · · · < xN < b} for the
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set of N -grids on C involving pairwise distinct points stored in ascending order, and let F̄+
N be

its closure; see Pagès (1998). Denote by D2,PX
N (x) =

∫
C min1≤i≤N |xi−w|2PX(dw) the (squared)

L2-norm quantization error associated with a given grid x = (x1, . . . , xN ) ∈ F+
N .

Theorem 2.3 (Pagès, 1998, Th. 27). In the univariate setup above, we have the following.

(i) Assume that PX is absolutely continuous with a density f : [a, b] → R+ that is positive

on (a, b), and assume either that f is strictly log-concave or that it is log-concave with

f(a+)−f(b−) > 0. Then x 7→ D2,PX
N (x) has a unique minimizer x∗ in F̄+

N , which coincides

with the unique solution of ∇D2,PX
N (x) = 0 in F̄+

N (when PX is the uniform over [0, 1], the

optimal grid is x∗ =
(
a+ 2k−1

2N (b− a)
)
1≤k≤N ).

(ii) Irrespective of the initial grid X0 ∈ F+
N , every trajectory (X0, X1, X2, . . .) of the CLVQ

algorithm is a.s. such that Xt ∈ F+
N for all t. If PX is absolutely continuous and if there

are finitely many grids x(∈ F̄+
N ) such that ∇D2,PX

N (x) = 0, then Xt a.s−−→ x∗ as t→∞, with

∇D2,PX
N (x∗) = 0.

Part (i) of the result provides a particular family of distributions for which the optimal grid

is unique (recall that existence always holds). Beyond stating that trajectories of the CLVQ

algorithm live in F+
N (with grids that therefore stay of size N), Part (ii) of the result provides

mild conditions under which the algorithm almost surely provides a limiting grid that is a critical

point of the quantization error, hence, under the assumptions of Part (i), is optimal.

Unfortunately, the picture is less clear for the multivariate case (d > 1). While it is still so

that the grid Xt will have pairwise distinct components for any t, some of the components of

the limiting grid x∗, if any, may coincide.

(a) If, parallel to the univariate case, this does not happen, then the a.s. convergence of Xt to

a critical point of the quantization error D2,PX
N (·) can be established under the assumption

that PX has a bounded density with a compact and convex support.

(b) Otherwise, no convergence results are available; the only optimality results that can then

be obtained relate to approximations involving grids of size k < N , where k is the number

of distinct components in the limiting grid x∗, which is quite different from the original

N -quantization problem considered initially.

The interested reader may refer to Pagès (1998) for details. For practical purposes, though,

one should not worry too much, as all numerical exercices we conducted were compatible with

case (a) (with increasing t, the smallest distance between two components of Xt always seemed

to stabilize rather than decrease to zero).
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3 Conditional quantiles through optimal quantization

Let us come back to the regression setup involving a scalar response Y and a d-dimensional vector

of covariates X, and consider the conditional quantile functions qα(·) in (1.2). It is well-known

that

qα(x) = arg mina∈R E
[
ρα(Y − a)|X = x

]
, (3.1)

where z 7→ ρα(z) = −(1−α)zI[z<0] +αzI[z≥0] = z
(
α− I[z<0]

)
is the so-called check function. As

we now explain, this allows to use optimal quantization to approximate conditional quantiles.

To do so, fix p ≥ 1 such that ‖X‖p <∞. Then, for any positive integer N , one may consider

the approximation

q̃Nα (x) = arg min
a∈R

E
[
ρα(Y − a)|X̃N = x̃

]
, (3.2)

where X̃N and x̃ are the projections of X and x respectively onto an Lp-optimal N -grid. Since

X̃N − X goes to zero as N → ∞, one may expect that q̃Nα (x) provides a better and better

approximation of qα(x) as N increases. The main goal of this section is to quantify the quality

of this approximation.

We will need the following assumptions.

Assumption (A) (i) The random vector (X,Y ) is generated through Y = m(X, ε), where

the d-dimensional covariate vector X and the error ε are mutually independent; (ii) the link

function (x, z) 7→ m(x, z) is of the form m1(x) + m2(x)z, where the functions m1(·) : Rd → R

andm2(·) : Rd → R+
0 are Lipschitz functions; (iii) ‖X‖p <∞ and ‖ε‖p <∞; (iv) the distribution

of X does not charge any hyperplane.

Note that Assumption (A)(ii)-(iii) directly implies that there exists C > 0 such that the link

function m(·, ε) of the model above satisfies

∀u, v ∈ Rd, ‖m(u, ε)−m(v, ε)‖p ≤ C|u− v|. (3.3)

The resulting Lipschitz constant — that is, the smallest real number C for which (3.3) holds

— is [m]Lip = [m1]Lip + [m2]Lip‖ε‖p, where [m1]Lip and [m2]Lip are the corresponding Lipschitz

constants of m1 and m2, respectively.

Assumption (B) (i) The support SX of PX is compact; (ii) ε admits a continuous den-

sity f ε : R→ R+
0 (with respect to the Lebesgue measure on R).

To obtain rates of convergence, we will need the following reinforcement of Assumption (A).

Assumption (A′) Same as Assumption (A), but with (iii) replaced by (iii)′ there exists

δ > 0 such that ‖X‖p+δ <∞, and ‖ε‖p <∞.
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We can then prove the following result (see the Appendix for the proof).

Theorem 3.1. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B),

‖q̃Nα (X)− qα(X)‖p ≤ 2 max
( √α

1− α
,

√
1− α
α

)
[m]

1/2
Lip

∥∥LN (X)
∥∥1/2
p
‖X − X̃N‖1/2p ,

for N sufficiently large, where (LN (X)) is a sequence of X-measurable random variables that is

bounded in Lp; (ii) under Assumptions (A′)-(B),

‖q̃Nα (X)− qα(X)‖p = O(N−1/2d),

as N →∞.

Of course, fixed-x consistency results are also quite appealing in quantile regression. Such a

result is provided in the following theorem (see the Appendix for the proof).

Theorem 3.2. Fix α ∈ (0, 1). Then, under Assumptions (A)-(B),

sup
x∈SX

∣∣q̃Nα (x)− qα(x)
∣∣→ 0,

as N →∞.

Unlike in Theorem 3.1, Theorem 3.2 does not provide any rate of convergence. This is a

consequence of the fact that, while the convergence of X̃N towards X can be shown to imply

the convergence of x̃ towards x for each fixed x, it does not seem possible to show that the rate

of convergence in the fixed-x convergence is inherited from the convergence involving X.

4 Quantized conditional quantile estimators

4.1 The proposed estimators and their consistency

Consider now the problem of estimating the conditional quantile qα(x) on the basis of indepen-

dent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ). For any N(< n), the approximation q̃Nα (x) in (3.2)

leads to an estimator q̂N,nα (x) of the conditional quantile qα(x), through the following two steps :

(S1) First, the CLVQ algorithm from Section 2.2 is applied to perform quantization in X. For

this purpose, (i) the initial grid X0 is obtained by sampling randomly among the Xi’s

without replacement, and with the constraint1 that the same x-values cannot be picked
1If the Xi’s are i.i.d. with a common density f , sampling without replacement among the Xi’s of course

implies that this constraint will be met with probability one. One often needs to impose it, however, in real-data

examples (due to the possible presence of ties) or when performing bootstrap (see later).
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more than once; (ii) n iterations are performed, based on ξt = Xt, t = 1, . . . , n. We

write γ̂N,n = (x̂N,n1 , . . . , x̂N,nN ) for the resulting grid and X̂N,n = Projγ̂N,n(X) for the

corresponding (empirical) quantization of X; to make the notation less heavy, we will

stress dependence on n in these quantities only when it is necessary.

(S2) Second, the approximation q̃Nα (x) = arg minaE[ρα(Y − a)|X̃N = x̃] is then estimated by

q̂N,nα (x) = arg mina
∑n

i=1 ρα(Yi − a) I
[X̂N
i =x̂N ]

,

where X̂N
i = X̂N,n

i = Projγ̂N,n(Xi) and x̂N = x̂N,n = Projγ̂N,n(x). Of course, q̂N,nα (x), in

practice, is simply evaluated as the sample α-quantile of the Yi’s whose corresponding X̂N
i

is equal to x̂N .

Note that the number of iterations is equal to the sample size n at hand, so that it is expected

that only moderate-to-large n will provide reasonable approximations of optimal N -grids.

For fixed N (and x), the convergence in probability of q̂N,nα (x) to q̃Nα (x) as n → ∞ can be

obtained by making use of the convergence results for the stochastic gradient algorithm discussed

in Section 2. In order to do so, we need to restrict to p = 2 (that is, to the CLVQ algorithm)

and to adopt the following assumption.

Assumption (C) PX is absolutely continuous with respect to the Lebesgue measure on Rd.

We then have the following result.

Theorem 4.1. Fix α ∈ (0, 1), x ∈ SX and N ∈ N0. Then, under Assumptions (A), (B)(i),

and (C), we have that, as n→∞,

|q̂N,nα (x)− q̃Nα (x)| → 0,

in probability, provided that quantization is based on p = 2.

In the previous section, we showed that, as N → ∞, q̃Nα (x) − qα(x) goes to zero almost

surely, hence in probability. Theorem 4.1 then suggests that q̂N,nα (x) − qα(x) might go to zero

in probability as both n and N go to infinity in some appropriate way. Obtaining such a

double asymptotic result, however, is extremely delicate, since, to the best of our knowledge, all

convergence results for the stochastic gradient algorithm in the literature are as n→∞ with N

fixed.
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4.2 Numerical example and bootstrap modification

For the sake of illustration, we evaluated the estimator q̂N,nα (x) for N = 10, 25, and 40, in a

sample of n = 300 mutually independent observations (Xi, Yi) obtained from the model

Y =
1

5
X3 + ε, (4.1)

where X = 6Z − 3, with Z ∼ Beta(0.3, 0.3), and ε ∼ N (0, 1) are independent. The left panels

in Figure 1 plot the corresponding quantile curves x 7→ q̂N,nα (x) for α = 0.05, 0.25, 0.5, 0.75, and

0.95 (actually, these curves were evaluated only at 300 equispaced points in (−3, 3)). It is seen

that the number of quantizers N used has an important impact on the curves. For small N , the

curves are not smooth and show a large bias. For large N , bias is smaller but the variability

is large. One should keep in mind that, for large N , the grid provided by the CLVQ algorithm

poorly approximates the corresponding optimal N -grid, since a fixed number n of iterations are

used in the algorithm (that should not be too small compared to N).

Smoother quantile curves can be obtained from the bootstrap, through the following proce-

dure. For some integer B, we first generate grids γ̂N,nb , b = 1, . . . , B (each of size N), as follows

from the CLVQ algorithm: first, we sample N observations with replacement from the initial

sample X1, . . . , Xn to generate an initial grid X0
b (with the same constraint as in (S1) above

that the N values obtained are pairwise different); second, we perform iterations based on ξtb,

t = 1, . . . , n, that are similarly obtained by sampling with replacement from X1, . . . , Xn (this

time, without any constraint). This allows to consider the bootstrap estimators

q̄N,nα,B (x) =
1

B

B∑
b=1

q̂(b)α (x),

where q̂(b)α (x) = q̂
(b),N,n
α (x) is obtained by performing (S2) based on the original sample (Xi, Yi),

i = 1, . . . , n, and the grid γ̂N,nb . Bootstrapping, thus, focuses on the construction of the grids.

The right panels of Figure 1 plot the resulting bootstrapped quantile curves x 7→ q̄N,nα,B (x)

for the same values of α and N as in the original (non-bootstrapped) versions. Bootstrapping

clearly smooths all curves, and moreover significantly reduces boundary effects for small N .

These advantages require to take B large enough. But of course, very large values of B should

be avoided in order to keep the computational burden under control.

The main competitors to the proposed quantization-based estimators are the nearest-neighbor

estimators (as those of Bhattacharya and Gangopadhyay, 1990) and the local constant and local

linear estimators from Yu and Jones (1998). For the sake of comparison, we plot those com-

petitors in Figure 2, jointly with our bootstrapped estimator (based on B = 50), on the same

10



−3 −2 −1 0 1 2 3

−
5

0
5

X

Y

−3 −2 −1 0 1 2 3

−
5

0
5

X

Y

−3 −2 −1 0 1 2 3

−
5

0
5

X

Y

−3 −2 −1 0 1 2 3

−
5

0
5

X

Y

−3 −2 −1 0 1 2 3

−
5

0
5

X

Y

−3 −2 −1 0 1 2 3

−
5

0
5

X

Y

Figure 1: Estimated conditional quantile curves x 7→ q̂N,nα (x) (left) and their bootstrapped counterparts x 7→

q̄N,nα,B (x) for B = 50 (right), based on N = 10 (top), N = 25 (middle), and N = 50 (bottom). The sample size

is n = 300, and the quantiles levels considered are α=0.05, 0.25, 0.5, 0.75, and 0.95. See (4.1) for the data

generating model.
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Figure 2: The proposed estimated conditional quantile curves x 7→ q̄N,nα,B (x) for B = 50 (top left), their nearest-

neighbor competitors from Bhattacharya and Gangopadhyay (1990) (top right), and their local constant and

local linear competitors from Yu and Jones (1998) (bottom left and bottom right, respectively). The sample is

the same as in Figure 1.
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sample used in Figure 1. For each estimator, the smoothing parameters involved were selected

in an automatic way. For nearest-neighbor estimators, the number k of neighbors to consider

was chosen to minimize the MSE

MSE(k) =
1

Nx

Nx∑
i=1

(
q̂kα(xi)− qα(xi)

)2
,

where q̂kα(x) denotes the nearest-neighbor estimator of qα(x) based on k neighbors and {x1, . . . , xNx}

is an equispaced grid on (−3, 3) (note that this method uses the population conditional quantiles,

hence is infeasible in practice). Local constant/linear estimators (that are based on the Gaussian

kernel) involve a bandwidth that, for fixed α, is selected (here in a genuinely data-driven way)

as

hα =
α(1− α)hmean

φ(Φ−1(α))2
,

where φ and Φ are respectively the standard normal density and distribution functions. Here,

hmean corresponds to the optimal bandwidth for regression mean estimation and is chosen

through cross-validation; see Yu and Jones (1998). As for the quantization-based estimators, the

number of quantizersN is selected through a data-driven method that is defined and investigated

in the companion paper Charlier et al. (2014).

Since Z is generated according to a beta distribution with (equal) parameter values that

are smaller than one, the Xi’s are less dense in the middle of the interval (-3,3) than close to

its boundaries. The local constant and linear estimators seem to suffer from this fact, as the

corresponding quantile curves are significantly less smooth in the middle than at the boundaries.

The nearest-neighbor estimator and our quantization-based estimator provide better estimations

in the middle part, with an advantage for our estimator that appears to be smoother (despite

the fact that, unlike for the nearest-neighbor estimator, the corresponding smoothing parameter

value is chosen in a totally data-driven way).

5 Final comments

In this paper, we presented a new method to estimate nonparametrically conditional quantile

curves of Y given X. The main idea is to use optimal quantization as an alternative to more

standard localization techniques such as kernel or nearest-neighbor methods. Our construction

consists in replacing X in the definition of conditional quantiles with a quantized version of X.

We showed that this provides a valid approximation of conditional quantiles. In the empirical

case, this approximation leads to new estimators of conditional quantiles, that, as we proved,

are (for fixed N) consistent to their population counterparts.

13



We illustrated the behavior of these estimators on a numerical example, and showed that N

essentially behaves as a smoothing parameter, parallel to the bandwidth and the number of

neighbors to be used for kernel and nearest-neighbor methods, respectively. Of course, extensive

simulations are needed to compare the performances of the proposed estimators with these

classical competitors. This is achieved in the companion paper Charlier et al. (2014), where it is

shown that quantization-based estimators tend to dominate their competitors in terms of MSEs

as soon as X is not uniformly distributed. There, a method to choose empirically the smoothing

parameter N is also developed and investigated.
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A Proofs of Section 3

In this section, we prove Theorems 3.1 and 3.2, which requires to establish several lemmas. We

first introduce some notation. Let Ga(x) = E[ρα(Y − a)|X = x] and denote the corresponding

quantized quantity by G̃a(x̃) = E[ρα(Y −a)|X̃N = x̃]. Since q̃ = q̃Nα (x) = arg mina∈R G̃a(x̃) and

q = qα(x) = arg mina∈RGa(x), it is natural to try to control the distance between G̃a(x̃) and

Ga(x). This is achieved in Lemma A.2, the proof of which requires the following preliminary

result.

Lemma A.1. Fix α ∈ (0, 1) and a ∈ R. Then, under Assumption (A), (i) ρα : R → R is

Lipschitz, with Lipschitz constant [ρα]Lip = max(α, 1 − α), and (ii) Ga : Rd → R is Lipschitz,

with Lipschitz constant [Ga]Lip = max(α, 1− α)[m]Lip.

Proof of Lemma A.1. Since (i) is a trivial calculus exercise, we only prove (ii). To do so, note

that, for any u, v ∈ Rd,

|Ga(u)−Ga(v)| =
∣∣E[ρα(Y − a)|X = u]− E[ρα(Y − a)|X = v]

∣∣
=
∣∣E[ρα(m(X, ε)− a)|X = u]− E[ρα(m(X, ε)− a)|X = v]|,

so that the independence of X and ε entails

|Ga(u)−Ga(v)| ≤ E[|ρα(m(u, ε)− a)− ρα(m(v, ε)− a)|] ≤ [ρα]Lip[m]Lip|u− v|,

where the last inequality follows from Part (i) of the result and equation (3.3).
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We still need the following lemma to prove Theorem 3.2.

Lemma A.2. Fix α ∈ (0, 1) and x ∈ SX . For any integer N , let x̃ = x̃N = ProjγN (x) and

Cx = CNx = {z ∈ SX : ProjγN (z) = x̃}. Then, under Assumptions (A)-(B),

(i) supx∈SX |x− x̃| → 0 as N →∞;

(ii) supx∈SX R(Cx)→ 0 as N →∞, where we let R(Cx) := supz∈Cx |z − x̃|;

(iii) supx∈SX supa∈R |G̃a(x̃)−Ga(x)| → 0 as N →∞;

(iv) supx∈SX |mina∈R G̃a(x̃)−mina∈RGa(x)| → 0 as N →∞.

Proof of Lemma A.2. (i) Assume by contradiction that there exists ε > 0 such that, for infinitely

many N (for N ∈ N (ε), say), we have supx∈SX |x̃
N − x| > ε. For any such value of N , one

can pick x ∈ SX (that may depend on N) with |x̃N − x| > ε. No point of the optimal grid γN

belongs to the ball B(x, ε) = {z ∈ Rd : |z − x| < ε}, which implies that, for all z ∈ B(x, ε/2),

|z̃N − z| > ε/2, where z̃ is the projection of z onto γN . Therefore, for N ∈ N (ε),

‖X̃γN −X‖pp =

∫
Supp(PX)

|z̃N − z|p dPX(z) ≥

∫
B(x,ε/2)

|z̃N − z|p dPX(z) >
(ε

2

)p
inf
y∈SX

PX
[
B(y, ε/2)

]
=: δε > 0, (A.1)

where the last inequality follows from the fact that y 7→ PX
[
B(y, ε/2)

]
is a continuous function

taking only strictly positive values on the compact set SX . Since the cardinality of N (ε) is

infinite, (A.1) prevents ‖X̃γN −X‖p to go to zero as N →∞, a contradiction.

(ii) Since SX is compact, we have that, for any x, the radius of the quantization cell Cx is

bounded. Hence, for any x, there exists x∗N ∈ Cx such that

R(Cx) = sup
z∈Cx

|z − x̃| = |x∗N − x̃| ≤ sup
x∈SX

|x− x̃|.

Hence,

sup
x∈SX

R(Cx) ≤ sup
x∈SX

|x− x̃|.

The result then follows from Part (i).

(iii) Fix a ∈ R. First note that, since [X̃N = x̃] is equivalent to [X ∈ Cx], one has

|E[ρα(Y −a)|X̃N = x̃]−E[ρα(Y −a)|X = x̃]| ≤ sup
z∈Cx

|E[ρα(Y −a)|X = z]−E[ρα(Y −a)|X = x̃]|.

Therefore,

|G̃a(x̃)−Ga(x)| = |E[ρα(Y − a)|X̃N = x̃]− E[ρα(Y − a)|X = x]|

≤ |E[ρα(Y − a)|X̃N = x̃]− E[ρα(Y − a)|X = x̃]|+ |E[ρα(Y − a)|X = x̃]− E[ρα(Y − a)|X = x]|

≤ 2 sup
z∈Cx

|E[ρα(Y − a)|X = z]− E[ρα(Y − a)|X = x̃]|.
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Using the independence between X and ε and the Lipschitz properties of ρα and m then yields

|G̃a(x̃)−Ga(x)| ≤ 2 sup
z∈Cx

|E[ρα(m(z, ε)− a)− E[ρα(m(x̃, ε)− a)]|

≤ 2 max(α, 1− α)[m]Lip sup
z∈Cx

|z − x̃| = 2 max(α, 1− α)[m]LipR(Cx). (A.2)

Hence,

sup
x∈SX

sup
a∈R
|G̃a(x̃)−Ga(x)| ≤ 2 max(α, 1− α)[m]Lip sup

x∈SX
R(Cx).

The result then follows from Part (ii).

(iv) Letting I+ = I
[mina∈R G̃a(x̃)≥mina∈RGa(x)]

, we have

|min
a∈R

G̃a(x̃)−min
a∈R

Ga(x)|I+ =
(
G̃q̃Nα (x)(x̃)−Gqα(x)(x)

)
I+

≤
(
G̃qα(x)(x̃)−Gqα(x)(x)

)
)I+ ≤ sup

a∈R
|G̃a(x̃)−Ga(x)|I+.

Proceeding similarly with I− = I
[mina∈R G̃a(x̃)<mina∈RGa(x)]

, this yields

|min
a∈R

G̃a(x̃)−min
a∈R

Ga(x)|I− =
(
Gqα(x)(x)− G̃q̃Nα (x)(x̃)

)
I−

≤
(
Gq̃Nα (x)(x)− G̃q̃Nα (x)(x̃)

)
I− ≤ sup

a∈R
|G̃a(x̃)−Ga(x)|I−,

so that |mina∈R G̃a(x̃)−mina∈RGa(x)| ≤ supa∈R |G̃a(x̃)−Ga(x)|. The result therefore follows

from Part (iii).

We can now prove Theorem 3.2.

Proof of Theorem 3.2. First note that, for any x ∈ SX ,

|Gq̃Nα (x)(x)−Gqα(x)(x)| ≤ |Gq̃Nα (x)(x)− G̃q̃Nα (x)(x̃)|+ |G̃q̃Nα (x)(x̃)−Gqα(x)(x)|

≤ sup
a∈R
|Ga(x)− G̃a(x̃)|+ |min

a∈R
G̃a(x̃)−min

a∈R
Ga(x)|

≤ sup
x∈SX

sup
a∈R
|Ga(x)− G̃a(x̃)|+ sup

x∈SX
|min
a∈R

G̃a(x̃)−min
a∈R

Ga(x)|.

Therefore, Lemma A.2(iii)-(iv) readily implies that, as N →∞,

sup
x∈SX

|Gq̃Nα (x)(x)−Gqα(x)(x)| → 0. (A.3)

Now, let Ñ be such that, for any N ≥ Ñ , we have |Gq̃Nα (x)(x)−Gqα(x)(x)| ≤ 1 for all x ∈ SX .

As we will show later in this proof, this implies that there exists M such that

|q̃Nα (x)− qα(x)| ≤M, (A.4)
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for all x ∈ SX and N ≥ Ñ .

One can easily check that, for any x ∈ SX , a 7→ Ga(x) is twice continuously differentiable,

with derivatives

dGa(x)

da
= F ε

(
a−m1(x)

m2(x)

)
− α and

d2Ga(x)

da2
=

1

m2(x)
f ε
(
a−m1(x)

m2(x)

)
.

Consequently, performing a second-order expansion about a = qα(x) provides

Gq̃Nα (x)(x)−Gqα(x)(x) =
1

2m2(x)
f ε
(
qNα∗(x)−m1(x)

m2(x)

)
(q̃Nα (x)− qα(x))2,

for some qNα∗(x) between q̃Nα (x) and qα(x). Therefore,

sup
x∈SX

(q̃Nα (x)− qα(x))2 ≤
supx∈SX m2(x)

infx∈SX f
ε
(
qNα∗(x)−m1(x)

m2(x)

) sup
x∈SX

|Gq̃Nα (x)(x)−Gqα(x)(x)|. (A.5)

Since m2(·) is a continuous function defined over the compact set SX , we have

sup
x∈SX

m2(x) ≤ Ca (A.6)

for some constant Ca. Using (A.4) and the fact that qα(·), m1(·), and m2(·) are continuous

functions also defined over this compact set (with m2(·) taking strictly positive values), we have

that, for N ≥ Ñ ,

sup
x∈SX

|qNα∗(x)−m1(x)|
m2(x)

≤
supx∈SX

(
|qα(x)|+ |m1(x)|+M

)
infx∈SX m2(x)

≤ Cb,

for some constant Cb. Jointly with the continuity of the positive function f ε(·), this implies

that the infimum in (A.5) admits a strictly positive lower bound that is independent of N (for

N ≥ Ñ). Using this, (A.3) and (A.6), we conclude from (A.5) that

sup
x∈SX

(q̃Nα (x)− qα(x))2 → 0,

as N →∞, which was to be proved.

It remains to show that the claim in (A.4) indeed holds true. By contradiction, assume that

there exists a sequence (xM ) (and N ≥ Ñ) such that |q̃Nα (xM ) − qα(xM )| ≥ M . Using first

the convexity of a 7→ Ga(x), then the fact that |Gq̃Nα (x)(x) − Gqα(x)(x)| ≤ 1 for all x ∈ SX (for

N ≥ Ñ), we obtain that, for any a between qα(xM ) and q̃Nα (xM ), one has

Ga(xM ) ≤ Gqα(xM )(xM ) +
|Gq̃Nα (xM )(xM )−Gqα(xM )(xM )|

|q̃Nα (xM )− qα(xM )|
|a− qα(xM )|

≤ Gqα(xM )(xM ) +
1

M
|a− qα(xM )|

for any integer M . In particular,

Gqα(xM )+1(xM ) ≤ Gqα(xM )(xM ) +
1

M
(A.7)
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for any integer M . The smoothness of a 7→ Ga(x) ensures that, for any M , there exists qM

between qα(xM ) and qα(xM ) + 1 such that

Gqα(xM )+1(xM ) = Gqα(xM )(xM ) +
1

2

d2Ga(xM )

da2

∣∣∣∣∣
a=qM

.

In view of (A.7), the sequences (xM ) and (qM ) are such that

1

m2(xM )
f ε
(
qM −m1(xM )

m2(xM )

)
=
d2Ga(xM )

da2

∣∣∣∣∣
a=qM

→ 0

as M →∞. Using again the fact that m2(·) is a continuous function defined over the compact

set SX , we conclude that

f ε
(
qM −m1(xM )

m2(xM )

)
→ 0 (A.8)

as M → ∞. By proceeding as above, we can however show that the argument of f ε in (A.8)

remains bounded as M →∞, so that (A.8) contradicts the continuity of f ε : R→ R+
0 .

The proof of Theorem 3.1 requires the following three lemmas.

Lemma A.3. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B), we have∥∥supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p
≤ 2 max(α, 1− α)[m]Lip

∥∥X̃N −X
∥∥
p

; (A.9)

(ii) under Assumptions (A′)-(B), we have that∥∥supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p

= O
(
N−1/d

)
,

as N →∞.

Lemma A.4. Fix α ∈ (0, 1). Then (i) under Assumptions (A)-(B), we have
∥∥G̃q̃(X̃N ) −

Gq(X)
∥∥
p
≤ 2 max(α, 1 − α)[m]Lip

∥∥X̃N − X
∥∥
p
; (ii) under Assumptions (A′)-(B),

∥∥G̃q̃(X̃N ) −

Gq(X)
∥∥
p

= O(N−1/d) as N →∞.

Lemma A.5. Let Assumption (B) hold and fix α, β ∈ (0, 1). For any x ∈ SX , let L(x) =

1/fY |X=x(qα(x)) and LNβ (x) = 1/fY |X=x(cNβ (x)), where cNβ (x) is the infimum of all c’s between

qα(x) and tβ(x) = tβ(q̃Nα (x), qα(x)) = βq̃Nα (x) + (1− β)qα(x) for which∫ max(qα(x),tβ(x))

min(qα(x),tβ(x))
fY |X=x(y) dy = fY |X=x(c) |tβ(x)− qα(x)| (A.10)

(existence follows from the mean value theorem). Then ‖LNβ (X)‖p → ‖L(X)‖p as N →∞.

18



Proof of Lemma A.3. Part (ii) of the result readily follows from Part (i) and Corollary 2.2, so

that we may focus on the proof of Part (i). Note that Ga(X̃N ) stands for the conditional

expectation of ρα(Y − a) given that X = X̃N , which is different from E[ρα(Y − a)|X̃N ]. For

any a,

∣∣G̃a(X̃N )−Ga(X)
∣∣ ≤ ∣∣G̃a(X̃N )−Ga(X̃N )

∣∣+
∣∣Ga(X̃N )−Ga(X)

∣∣
≤ supa

∣∣G̃a(X̃N )−Ga(X̃N )
∣∣+ supa

∣∣Ga(X̃N )−Ga(X)
∣∣

almost surely, so that

sup
a

∣∣G̃a(X̃N )−Ga(X)
∣∣ ≤ supa

∣∣G̃a(X̃N )−Ga(X̃N )
∣∣+ supa

∣∣Ga(X̃N )−Ga(X)
∣∣

almost surely. The triangular inequality then yields

‖supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p
≤
∥∥supa

∣∣G̃a(X̃N )−Ga(X̃N )
∣∣∥∥
p

+
∥∥supa

∣∣Ga(X̃N )−Ga(X)
∣∣∥∥
p
.

(A.11)

Since X̃N is X-measurable, we have that

G̃a(X̃
N ) = E

[
ρα(Y − a)|X̃N

]
= E

[
E[ρα(Y − a)|X]|X̃N

]
= E

[
Ga(X)|X̃N

]
,

which yields

supa
∣∣G̃a(X̃N )−Ga(X̃N )

∣∣ = supa
∣∣E[Ga(X)−Ga(X̃N )|X̃N ]

∣∣
≤ E

[
supa|Ga(X)−Ga(X̃N )|

∣∣∣X̃N
]
,

almost surely. From Jensen’s inequality, we then obtain

∥∥supa
∣∣G̃a(X̃N )−Ga(X̃N )

∣∣∥∥
p
≤
∥∥supa

∣∣Ga(X)−Ga(X̃N )
∣∣∥∥
p
.

Substituting in (A.11) and using Lemma A.1(ii) yields

‖supa
∣∣G̃a(X̃N )−Ga(X)

∣∣∥∥
p
≤ 2

∥∥supa
∣∣Ga(X)−Ga(X̃N )

∣∣∥∥
p

≤ 2 max(α, 1− α)[m]Lip
∥∥X̃N −X

∥∥
p
,

which establishes the result.

Proof of Lemma A.4. Letting I+ = I
[G̃q̃(X̃N )≥Gq(X)]

, note that

|G̃q̃(X̃N )−Gq(X)| I+ ≤
(
G̃q̃(X̃

N )−Gq(X)
)
I+

≤
(
G̃q(X̃

N )−Gq(X)
)
I+ ≤

(
sup
a

∣∣G̃a(X̃N )−Ga(X)
∣∣)I+,
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almost surely. Similarly, with I− = I
[G̃q̃(X̃N )<Gq(X)]

, we have

|G̃q̃(X̃N )−Gq(X)| I− ≤
(
Gq(X)− G̃q̃(X̃N )

)
I−

≤
(
Gq̃(X)− G̃q̃(X̃N )

)
I− ≤

(
sup
a

∣∣G̃a(X̃N )−Ga(X)
∣∣)I−,

almost surely, so that |G̃q̃(X̃N )−Gq(X)| ≤ supa
∣∣G̃a(X̃N )−Ga(X)

∣∣, almost surely. The result

then directly follows from Lemma A.3.

Proof of Lemma A.5. We have to prove that, as N →∞,∫
SX

1(
fY |X=x(cNβ (x))

)p dPX(x)→
∫
SX

1(
fY |X=x(qα(x))

)p dPX(x). (A.12)

First note that Assumption (B) ensures that, for any x ∈ SX ,

y 7→ fY |X=x(y) =
1

m2(x)
f ε
(
y −m1(x)

m2(x)

)
is continuous. Therefore, Theorem 3.2, which clearly entails that cNβ (x)→ qα(x) for any x (and

even uniformly in x) as N →∞, implies that

1(
fY |X=x(cNβ (x))

)p → 1(
fY |X=x(qα(x))

)p ,
still for any x as N → ∞. To establish (A.12), it is then sufficient — in view of Lebesgue’s

dominated convergence theorem — to prove that, for any x and any (sufficiently large) N ,

1

fY |X=x(cNβ (x))
=

m2(x)

f ε
(
cNβ (x)−m1(x)

m2(x)

) ≤ C (A.13)

for some constant C that does not depend on N .

To show (A.13), note that Theorem 3.2 and the continuity of m1(·) and m2(·) (with m2(·)

taking strictly positive values) over the compact set SX entail that, for N sufficiently large,∣∣∣∣cNβ (x)−m1(x)

m2(x)

∣∣∣∣ =

∣∣∣∣(qα(x)−m1(x)) + (cNβ (x)− qα(x))

m2(x)

∣∣∣∣
=

∣∣∣∣εα +
cNβ (x)− qα(x)

m2(x)

∣∣∣∣
≤ |εα|+

|cNβ (x)− qα(x)|
D1

≤ |εα|+
1

D1
= D2,

for some constants D1, D2 (that do not depend on N), where εα denotes the α-quantile of ε.

Consequently, (A.13) directly follows from the continuity of m2(·) and f ε(·) : R→ R+
0 .

Finally, we prove Theorem 3.1.
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Proof of Theorem 3.1. Throughout the proof, we write q(x) and q̃(x) for qα(x) and q̃Nα (x), re-

spectively. Similarly, q and q̃ will stand for qα(X) and q̃Nα (X), respectively. For any r, s ∈ R

and β ∈ (0, 1), we also let tβ(r, s) := βr + (1− β)s.

(i) Let first r, s ∈ R with r ≤ s. It is then easy to show that, for all y ∈ R, one has

ρα(y − r)− ρα(y − s) ≥ −(1− α)(s− r)I[y≤tα(r,s)] + α(s− r)I[y>s]. (A.14)

Hence, using (A.14),{
ρα(Y − q̃)− ρα(Y − q)

}
I[q̃≤q] ≥

{
− (1− α)(q − q̃)I[Y≤tα(q̃,q)] + α(q − q̃)I[Y >q]

}
I[q̃≤q].

For simplicity of notations, we will write in the sequel tα = tα(q̃, q). Taking expectation condi-

tional on X then yields

|Gq̃(X)−Gq(X)|I[q̃≤q] =
(
Gq̃(X)−Gq(X)

)
I[q̃≤q]

≥
{
− (1− α)(q − q̃)P [Y ≤ tα|X] + α(q − q̃)P [Y > q|X]

}
I[q̃≤q]

= (1− α)(q − q̃)
(
α− P [Y ≤ tα|X]

)
I[q̃≤q]

≥ min(α, 1− α)|q̃ − q|
(
P [Y ≤ q|X]− P [Y ≤ tα|X]

)
I[q̃≤q]

= min(α, 1− α)|q̃ − q|P [tα < Y ≤ q|X]I[q̃≤q], (A.15)

almost surely.

Now, for r, s ∈ R with r > s, one has that

ρα(y − r)− ρα(y − s) ≥ −(1− α)(s− r)I[y≤s] + α(s− r)I[y>t1−α(r,s)],

for all y ∈ R. Hence,{
ρα(Y − q̃)− ρα(Y − q)

}
I[q̃>q] ≥

{
− (1− α)(q − q̃)I[Y≤q] + α(q − q̃)I[Y >t1−α(q̃,q)]

}
I[q̃>q].

Taking expectation conditional on X, this gives (throughout with t1−α = t1−α(q̃, q), where we

stress that q̃ and q still stand for q̃α(X) and qα(X), respectively)

|Gq̃(X)−Gq(X)|I[q̃>q] =
(
Gq̃(X)−Gq(X)

)
I[q̃>q]

≥
{
− (1− α)(q − q̃)P [Y ≤ q|X] + α(q − q̃)P [Y > t1−α|X]

}
I[q̃>q]

= α(q − q̃)
(
P [Y > t1−α|X]− (1− α)

)
I[q̃>q]

≥ min(α, 1− α)|q̃ − q|
(
P [Y ≤ t1−α|X]− P [Y ≤ q|X]

)
I[q̃>q]

= min(α, 1− α)|q̃ − q|P [q < Y ≤ t1−α|X]I[q̃>q], (A.16)
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almost surely.

Our strategy consists in combining (A.15)-(A.16) to obtain an almost sure lower bound

for |Gq̃(X)−Gq(X)|. We will need to consider the cases α ≤ 1/2 and α > 1/2 separately.

(a) In the case α ≤ 1/2, we have, under q̃ > q, that tα ≤ t1−α, so that (A.16) entails

|Gq̃(X)−Gq(X)|I[q̃>q] ≥ min(α, 1− α)|q̃ − q|P [q < Y ≤ tα|X]I[q̃>q]. (A.17)

Summing (A.15) and (A.17) then provides∣∣Gq̃(X)−Gq(X)
∣∣ ≥ min(α, 1− α)|q̃ − q|P [min(tα, q) < Y ≤ max(tα, q)|X]. (A.18)

Now, for any x ∈ SX ,

P [min(tα, q) < Y ≤ max(tα, q)|X = x] =

∫ max(q(x),tα(x))

min(q(x),tα(x))
fY |X=x(y) dy

= fY |X=x(cNα (x)) |tα(x)− q(x)| = |tα(x)− q(x)|
LNα (x)

,

where tα(x) = tα(q̃(x), q(x)), cNα (x) and LNα (x) were defined in Lemma A.5. It follows that

P [min(tα, q) ≤ Y < max(tα, q)|X] =
|tα − q|
LNα (X)

almost surely. Since |tα − q| = α|q̃ − q| ≥ min(α, 1− α)|q̃ − q|, we have

P [min(tα, q) ≤ Y < max(tα, q)|X] ≥ min(α, 1− α)
|q̃ − q|
LNα (X)

almost surely.

Plugging into (A.18) yields that it almost surely holds that

|q̃ − q|2 ≤ 1

(min(α, 1− α))2
LNα (X)|Gq̃(X)−Gq(X)|

or equivalently, that

|q̃ − q|p ≤ 1

(min(α, 1− α))p
(LNα (X))p/2|Gq̃(X)−Gq(X)|p/2.

Taking expectations, applying the Cauchy-Schwarz inequality, then computing pth roots, pro-

vides

‖q̃ − q‖p ≤
1

min(α, 1− α)

∥∥LNα (X)
∥∥1/2
p
‖Gq̃(X)−Gq(X)‖1/2p . (A.19)

From Lemmas A.3-A.4, we obtain∥∥Gq̃(X)−Gq(X)
∥∥
p
≤

∥∥Gq̃(X)− G̃q̃(X̃N )
∥∥
p

+
∥∥G̃q̃(X̃N )−Gq(X)

∥∥
p

≤
∥∥supa|Ga(X)− G̃a(X̃N )|

∥∥
p

+
∥∥G̃q̃(X̃N )−Gq(X)

∥∥
p

≤ 4 max(α, 1− α)[m]Lip
∥∥X̃N −X

∥∥
p
.
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The result (in the case α ≤ 1/2) then follows by plugging this into (A.19) (the boundedness of

LN (X) = LNα (X) in Lp for all β ∈ (0, 1) is a direct corollary of Lemma A.5).

(b) We now turn to the case α > 1/2. Here, we have that tα ≤ t1−α under q̃ ≤ q, so

that (A.15) yields

|Gq̃(X)−Gq(X)|I[q̃≤q] ≥ min(α, 1− α)|q̃ − q|P [t1−α < Y ≤ q|X]I[q̃≤q]. (A.20)

Summing (A.16) and (A.20) then provides∣∣Gq̃(X)−Gq(X)
∣∣ ≥ min(α, 1− α)|q̃ − q|P [min(t1−α, q) < Y ≤ max(t1−α, q)|X]. (A.21)

The rest of the proof, that is entirely similar, relies on an application of Lemma A.5 with β =

1 − α, which provides an Lp-bounded function LN (X) that is here given by LN1−α(X). For the

sake of brevity, details are left to the reader.

(ii) The result directly follows from Part (i) and Corollary 2.2.

B Proof of Theorem 4.1

Let γN = γN (X) = {x̃1, . . . , x̃N} be an optimal grid and γ̂N,n = γ̂N,n(X1, . . . , Xn) = (x̂N,n1 , . . . , x̂N,nN )

be the grid provided by the CLVQ algorithm. Throughout this section, we assume the almost

sure convergence of the empirical quantization of X to the population one, that is

X̂N,n = Projγ̂N,n(X)
a.s.−−−→
n→∞

ProjγN (X) = X̃N , (B.1)

which is justified by the discussion in Section 2.3.

The proof of Theorem 4.1 then requires Lemmas B.1-B.2 below.

Lemma B.1. Let Assumption (C) hold. Fix N ∈ N0 and x ∈ SX , and write x̃ = ProjγN (x)

and x̂N = Projγ̂N,n(x). Then, with X̂N
i = Projγ̂N,n(Xi), i = 1, . . . , n, we have

(i) 1
n

∑n
i=1 I

[X̂N
i =x̂N ]

a.s.−−−→
n→∞

P [X̃N = x̃];

(ii) after possibly reordering the x̃i’s, x̂
N,n
i

a.s.−−−→
n→∞

x̃i, i = 1, . . . , N (hence, γ̂N,n a.s.−−−→
n→∞

γN ).

Proof. Under (B.1), Part (i) was shown in Bally et al. (2005) (see also Pagès (1998)) and Part (ii)

only states the a.s. convergence of the supports γ̂N,n to γN , which is a necessary condition for

the corresponding convergence of random vectors in (B.1).

Lemma B.2. Fix α ∈ (0, 1), x ∈ SX and N ∈ N0, let K(⊂ R) be compact, and define

ĜN,na (x̂N ) :=

1
n

∑n
i=1 ρα(Yi − a) I

[X̂N
i =x̂N ]

1
n

∑n
i=1 I

[X̂N
i =x̂N ]

.
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Then, under Assumptions (A) and (C), (i) supa∈K |Ĝ
N,n
a (x̂N ) − G̃a(x̃)| = oP(1) as n → ∞;

(ii) |mina∈R Ĝ
N,n
a (x̂N ) −mina∈R G̃a(x̃)| = oP(1) as n → ∞; (iii) |G̃

q̂N,nα (x)
− G̃q̃Nα (x)| = oP(1)

as n→∞.

Proof. (i) Since

G̃a(x̃) = E[ρα(Y − a)|X̃N = x̃] =
E[ρα(Y − a)I

[X̃N=x̃]
]

P [X̃N = x̃]
,

it is sufficient — in view of Lemma B.1(i) — to prove that, as n→∞,

sup
a∈K

∣∣∣∣ 1n
n∑
i=1

ρα(Yi − a) I
[X̂N
i =x̂N ]

− E[ρα(Y − a)I
[X̃N=x̃]

]

∣∣∣∣ = oP (1).

Of course, it is natural to consider the decomposition

sup
a∈K

∣∣∣∣ 1n
n∑
i=1

ρα(Yi − a) I
[X̂N
i =x̂N ]

− E[ρα(Y − a)I
[X̃N=x̃]

]

∣∣∣∣ ≤ sup
a∈K
|Ta1|+ sup

a∈K
|Ta2|,

with

Ta1 =
1

n

n∑
i=1

ρα(Yi − a)
(
I
[X̂N
i =x̂N ]

− I
[X̃N
i =x̃]

)
and

Ta2 =
1

n

n∑
i=1

ρα(Yi − a) I
[X̃N
i =x̃]

− E[ρα(Y − a)I
[X̃N=x̃]

].

Using the fact that m1(·) and m2(·) are continuous functions defined over the compact set SX ,

we obtain that, for any a ∈ K, there exist positive constants C1 and C2 such that

ρα(Y − a) ≤ max(α, 1− α)|Y − a| ≤ max(α, 1− α)(|m1(X)|+ |m2(X)| |ε|+ |a|) ≤ C1 + C2|ε|,

that is in L1 (recall that ε is assumed to be in Lp, p = 2), the uniform law of large numbers

(see, e.g., Theorem 16(a) in Ferguson, 1996) shows that supa∈K |Ta2| = oP (1) as n→∞.

Turning to Ta1, consider the set In = {i = 1, . . . , n : I
[X̂N
i =x̂N ]

6= I
[X̃N
i =x̃]
} collecting the

indices of observations that are projected on the same point as x for γN but not for γ̂N,n (or

vice versa on the same point as x for γ̂N,n but not for γN ). For any a ∈ K, we have

|Ta1| ≤
1

n

∑
i∈In

∣∣ρα(Yi − a)
∣∣ ≤ max(α, 1− α)

n

∑
i∈In

(|m1(Xi)|+ |m2(Xi)| |εi|+ |a|)

≤ #In
n
× 1

#In

∑
i∈In

(C1 + C2 |εi|) =: S1 × S2.

Clearly, Lemma B.1(ii) implies that #In/n = oP (1) as n→∞, while the independence between

In (which is measurable with respect to the Xi’s) and the εi’s entails that E[S2] = O(1) as n→
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∞, so that S2 is bounded in probability. Consequently, supa∈K |Ta1| goes to zero in probability

as n→∞. Part (i) of the result follows.

(ii) Fix δ > 0 and η > 0. Writing q̂ = q̂N,nα (x) and, as in the previous section, q̃ = q̃Nα (x),

first choose n1 and M large enough to have |q̃| ≤ M and P [|q̂| > M ] < η/2 for any n ≥ n1

(Lemma B.1(i) implies that q̂ is the sample quantile of a number of Yi’s that increases to infinity,

so that |q̂|, with arbitrarily large probability for n large, cannot exceed 2 supx∈SX |qα(x)|). Then,

with I+ = I
[mina∈R Ĝ

N,n
a (x̂N )≥mina∈R G̃a(x̃)]

, we have

|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)|I+ =
(
ĜN,nq̂ (x̂N )− G̃q̃(x̃)

)
I+

≤
(
ĜN,nq̃ (x̂N )− G̃q̃(x̃)

)
I+ ≤ sup

a∈[−M,M ]
|ĜN,na (x̂N )− G̃a(x̃)|I+, (B.2)

almost surely. Now, with I− = I
[mina∈R Ĝ

N,n
a (x̂N )<mina∈R G̃a(x̃)]

, we have that, under |q̂| ≤M ,

|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)|I− = |
(
G̃q̃(x̃)− ĜN,nq̂ (x̂N )

)
I−

≤
(
G̃q̂(x̃)− ĜN,nq̂ (x̂N )

)
I− ≤ sup

a∈[−M,M ]
|ĜN,na (x̂N )− G̃a(x̃)|I−. (B.3)

By combining (B.2) and (B.3), we obtain that, under |q̂| ≤M ,

|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| ≤ sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)|.

Consequently, for any n ≥ n1, we obtain

P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ
]

= P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ, |q̂| ≤M
]

+ P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ, |q̂| > M
]

≤ P
[

sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)| > δ
]

+
η

2
.

From Part (i) of the lemma, the first term is smaller than η/2 for any n ≥ n2. We conclude

that, for any n ≥ n0 := max(n1, n2), we have

P
[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ
]
< η,

which shows Part (ii) of the result.

(iii) The proof proceeds in the same way as in (ii) above. First we pick n1 and M large

enough to have P [|q̂| > M ] < η/2 for any n ≥ n1, which yields

P
[
|G̃q̃(x̃)− G̃q̂(x̃)| > δ

]
≤ P

[
|G̃q̃(x̃)− G̃q̂(x̃)| > δ, |q̂| ≤M

]
+
η

2
. (B.4)
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Now, from the triangular inequality, we obtain

P
[
|G̃q̃(x̃)− G̃q̂(x̃)| > δ, |q̂| ≤M

]
≤ P

[
|G̃q̃(x̃)− ĜN,nq̂ (x̂N )| > δ/2, |q̂| ≤M

]
+ P

[
|ĜN,nq̂ (x̂N )− G̃q̂(x̃)| > δ/2, |q̂| ≤M

]
≤ P

[
|min
a∈R

ĜN,na (x̂N )−min
a∈R

G̃a(x̃)| > δ/2
]

+ P
[

sup
a∈[−M,M ]

|ĜN,na (x̂N )− G̃a(x̃)| > δ/2
]
,

which, from Part (i) and Part (ii) of the lemma, can be made arbitrarily small for n large enough.

Jointly with (B.4), this establishes the result.

We can now conclude with the proof of Theorem 4.1.

Proof of Theorem 4.1. Since the function ρα(·) is strictly convex, G̃a(x̃) is also strictly convex

in a. Its minimum in a (for any fixed x) is therefore unique, and the convergence in probability

of G̃q̂(x̃) towards G̃q̃(x̃) implies the convergence in probability of the corresponding arguments.
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