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Abstract

In this thesis, we study the problem of analysing topological structure in point cloud data. One

widely used tool in this domain is persistent homology. By processing the data at all scales, it

does not rely on a particular choice of scale, which is one of the main challenge faced in this

area. Moreover, its stability properties provide a natural connection between discrete data

and an underlying continuous structure. Finally, it can be combined with other tools, like the

distance to a measure, which allows to handle noise that are unbounded. The main caveat of

this approach is its high complexity.

In this thesis, we will introduce topological data analysis and persistent homology, then show

how to use approximation to reduce the computational complexity. We provide an approxima-

tion scheme to the distance to a measure and a sparsifying method of weighted Vietoris-Rips

complexes in order to approximate persistence diagrams with practical complexity. We detail

the specific properties of these constructions.

Persistent homology was previously shown to be of use for scalar field analysis. We provide

a way to combine it with the distance to a measure in order to handle a wider class of noise,

especially data with unbounded errors. Finally, we discuss interesting opportunities opened

by these results to study data where parts are missing or erroneous.
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1 Introduction

Data gathering is now a daily activity, from companies collecting data about their customers

or employees, to intelligence agencies and polling organisations. The belief is that information

is a resource. For example, some governments want to encourage economic growth through

the use of data as shown by the open data initiative [1, 2, 3]. However, data in itself is useless.

It is necessary to interpret it and shape it into information.

Interpretation is often done through visualisation. Given a 2 or 3-dimensional object, we,

human beings, are able to interpret it. Data is usually given as a point set in some high

dimensional space. For example, grey scale images are points in a space whose dimension is

the number of pixels. An answer to a poll is a point in a space whose dimension is the number

of questions. Such high-dimensional data are impossible to visualise directly and we need to

process them before interpretation.

Multiple problems are part of this interpretation. Clustering [41, 59, 78, 95] and segmen-

tation [98] try to separate points into different groups. Reconstruction tries to recover a

continuous object from data points, usually under the form of a triangulation [21, 47]. Dimen-

sionality reduction projects data onto a smaller-dimensional space, which can make it easier

to visualise or analyse, using the most relevant parameters to describe the data [62, 93].

In this thesis, we consider topological data analysis and more precisely topology inference. We

aim to recover structure in the data by inferring the underlying topology. This knowledge can

guide us for the resolution of the above problems. If we know the correct number of connected

components, then we know the right number of clusters we should obtain in clustering. If we

know the intrinsic dimension of the data, then we know the size of the space we need to use

for dimensionality reduction. One of the most popular tools for topological data analysis in

recent years has been persistent homology, which analyses the data at different scales.

One must not forget that practical data is almost always noisy, either from measurement errors

or from imperfect models. Topological data analysis methods need to be robust against noise.

Existing algorithms usually work well when the noise is bounded. However, aberrant values

are common in data. A faulty sensor or a mistake can create points that have no relation with

the rest of the data and are difficult to handle.

Recently, persistent homology has spread to a large variety of fields. One application has been

to use persistent homology to define signatures for data. In this setting, persistence provides

topological information that discriminates between different classes of phenomena. This
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Chapter 1. Introduction

has been used to classify images of different pathologies [4, 38], to analyse electroencephalo-

grams [97] or differentiate between shapes [23]. Moreover it can provide a way to cluster or

segment data [33, 85, 90]. The next step is to search for a certain pattern and thus detect and

identify features, which has been applied for images [77], subtypes of cancer [84] or cyclic

patterns in genome [46].

Persistent homology also provides a way to better understand the structure of objects and

visualise it, from the structure of matter in astrophysics [91, 92] to compressed granular

media [75], complex networks [72, 86] or dynamical systems [10]. In biology, it can explain

protein compressibility [65] and describe root structures [57]. It has also been used to study

the propagation of genes coding resistances to antibiotics [58]. The reconstruction itself can

be done [35], provide structure for tracking [9] and visualisation for cortical structures [76, 89].

The output of persistent homology is usually a persistence diagram, a structure that does not

suit well a statistical setting. For example, we do not know how to define the mean of two

diagrams. However, the introduction of persistence landscapes [16] makes possible the use of

statistical analysis for topology, as has been done for orthodontic data [64, 70].

1.1 Persistent homology
Given a family of nested topological spaces indexed by a parameter α ∈R, F = {Fα}, persistent

homology studies the evolution of the topology of these spaces as α grows from −∞ to ∞. In

data analysis, the most usual way to build a sequence of topological spaces is to grow balls.

Given a point cloud P , it means that we are considering the sub-level sets of the distance to P .

Assuming that P is sampling an underlying object K , the hope is that some of the sub-level

sets have the same topological type as K . The topology of the sub-level sets is often stable over

an interval of values. In this thesis, we only consider parameters defined over subsets of R.

By topology, we mean the homology. Intuitively, it corresponds to the connected components

in dimension 0, the holes or cycles in dimension 1, the cavities in dimension 2 and so on.

Consider Figure 1.1, where we have a set of points noisily sampled along the edges of a square

S. We want to recover the topology of S which has 1 connected component and 1 cycle. For

α< 0, the sub-level set of the distance to P is empty. When α= 0, the sub-level set is exactly

P and therefore has 14 connected components, 1 for each point of P . As α increases and the

balls grow, we finally obtain a sub-level set that has the same topology as S. Remark that it is

stable for some values α.

The topological information obtained using persistence is usually represented by a persistence

diagram. A topological feature, for example a cycle, appears in one of the topological spaces of

Fα ∈F . α is called the birth time of the topological feature. The topological feature then exists

in some Fγ, α < γ < β and no longer exists in Fδ for δ > β. β is called the death time of the

topological feature. Note that one 0-dimensional feature, id est, one connected component

does not die and thus has an infinite death time. The persistence diagram of dimension d of F

is the multi-set composed of pairs (x, y) where x is the birth time of d-dimensional feature and

y is the death time of the same dimensional feature. Persistence diagrams can be represented

either by a multi-set in R
2 or a barcode. In the first case, every pair (x, y) is represented by a

point. In the second case, (x, y) is represented by a bar starting at x and ending at y . Figure 1.2

2



1.1. Persistent homology

Figure 1.1 – Growing balls for persistence

shows the two representations obtained for topological features of dimension 1 (cycles) in the

example of Figure 1.1.

Figure 1.2 – Persistence diagram in dimension 1

The idea of persistence is that the topology features that corresponds to the underlying object

K are stable over an interval of values of the parameter. Therefore, they have a longer lifespan

than the feature due to noise. In our example, we see that one feature of dimension 1 has

longer lifespan than the others. It corresponds to the cycle in S. The two smaller bars are due

to small cycles appearing as the balls grow.

Persistence is multi-scale. We consider the whole range of values for α and therefore, we look

at the data at all scales. It means that we can detect and recover the topology of objects that

have different topology depending on the considered scale. For example, the point cloud

of Figure 1.3 samples a spiral rolled over a torus. When we look at it very closely, we have a

1-dimensional object, the spiral. From an intermediate distance, we have the torus, which

is a 2-dimensional object. Persistent homology is able to correctly analyse this difference of

topology depending on the scale.

A good persistence diagram for inference is a diagram where the ratio between the lifespan

of relevant features and irrelevant ones, called gap, is large. Persistence diagrams are stable

to small variations of the function used to defined the sub-level sets. When the distance to P

approximates the distance to K , we obtain a good diagram.

The computation of persistence diagrams does not escape the so-called curse of dimensional-

ity, which means that they work well in small dimensions but not in higher ones due to a blow

up in complexity. The technique to compute persistence diagrams of a family F of union

3



Chapter 1. Introduction

Figure 1.3 – Spiral over a torus

of balls is to build an increasing family of simplicial complexes G . A simplicial complex is a

set of points, edges, triangles, tetrahedra and so on. The family G approximates the topology

of F . The classical algorithm [57] computing persistent homology has a time complexity of

O(N 3), where N is the number of simplices in the maximal simplicial complex in G . However,

if F is described using n balls in a space of dimension d , we need to build the maximal

d-dimensional simplicial complex in G . Its size is
(n

d

)
. Thus the complexity will be of order

O(n3d ), which make it unusable in practice for high dimensions.

Recent approaches try to make the complexity dependent on the intrinsic dimension instead

of the extrinsic one. For example, this has been achieved for Vietoris-Rips complexes [88].

It means that an object of small dimension embedded in a much higher dimensional space

can be analysed without paying the complexity cost of the ambient space. This is a way to

circumvent the curse of dimensionality without doing dimensionality reduction.

1.2 The problem of outliers
Aberrant values, also called outliers, create problems when computing persistence diagrams.

Consider the 1-skeleton of a cube, id est, the set of its edges. In input, we are given a point set

that samples the skeleton and contains four outliers located at the centre of four of the cube

faces, such that the two empty faces are opposite, as shown in Figure 1.4. These noisy points

perturb the persistence diagram significantly and reduce the gap.

Figure 1.4 – Sampling of a cube skeleton with outliers

We aim at recovering the persistence diagram of the cube skeleton shown in Figure 1.5, id est

the persistence diagram of the sub-level sets of the distance to the cube skeleton. The object

has a unique connected component appearing at 0 and existing for all non negative values of

the parameter α. At the start, we have 5 topological features of dimension 1, or cycles, because

4



1.3. The distance to a measure

the cube has six faces and one is algebraically the sum of the five others. As the offset grows,

the faces are filled and the 1-dimensional features disappear, replaced by a 2-dimensional

feature corresponding to the void inside the cube.

Figure 1.5 – Cube skeleton persistence diagram

The presence of outliers disrupts the persistence diagram. Computing the persistence diagram

of the sub-level sets filtration of the distance to the point cloud, we obtain Figure 1.6. Observe

that the diagram in dimension 1 has now a smaller gap but we can recover the correct structure.

However, in dimension 2, the persistent homology is completely different and the gap is 1,

which means that we can not separate signal from noise. We have two topological features.

Each corresponds to one half of the cube. When the faces are filled by the growing offsets, a

connection simultaneously forms in the middle of the cube, created by the four outliers.

Figure 1.6 – Persistence diagram obtained from the sampling with outliers

Recovering the whole diagram is especially useful when persistent homology is used to derive

signatures. Differences in the later part of the diagram can provide interesting information to

discriminate objects. However, outliers can completely change the aspect of the diagram.

1.3 The distance to a measure
To handle noise and especially outliers, the idea is to replace the distance to the point cloud

P by another function. Such a function must have two properties. It needs to be stable with

respect to small variations in the data and its sub-level sets have to be easily computable.

We use the distance to a measure. Given a point set P in a metric space X with n points and a

mass parameter m = k
n where k is an integer, the distance to the empirical measure µ on P is

5



Chapter 1. Introduction

the function defined over X by

dµ,m(x) =

√√√√ 1

k

k∑

i=1
dX(x, pi (x))2

where pi (x) is the i th nearest neighbour of x in P and dX(x, pi (x)) is the distance between x

and pi (x). In a more general setting, the distance to a measure µ quantifies the cost of the best

transport plan to bring a fraction m of the mass from µ to the point we consider. This function

is stable as has been first shown in [25] and can be easily computed in Euclidean spaces [67].

Thus it is a good candidate for topological inference.

Going back to the cube skeleton, the persistence diagram of the distance to the empirical

measure and a mass corresponding to 5 points is given in Figure 1.7. The diagram still contains

noise but there exists a clear difference between the lifespans of real topological features and

those due to noise in dimension 1 and 2.

Figure 1.7 – Diagram obtained using the distance to the empirical measure for the cube
skeleton

The use of the persistence diagram of the distance to a measure for real data is confronted

with a major issue. Outside of Euclidean spaces, the sub-level sets of the distance to a measure

are not computable. In Euclidean spaces, the sub-level sets of the distance to a measure are

a union of balls [67]. However, the number of balls needed to describe them is the same as

the number of non empty cell in the k th-order Voronoi diagram of P , which can be as large as

O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉)
[39]. Hence, it is necessary to approximate them before being able to use it

in practice. An approximation with a linear number of balls was proposed in [67] and lower

bounds on the number of balls needed are given in [80]. Unfortunately, these results are

limited to Euclidean spaces and do not extend to other metric spaces.

This approximation is not sufficient to handle data in a high-dimensional space. The large size

of the simplicial complex used to compute persistence diagrams remains. The result from [88]

assumes that for one Fα ∈ F , all balls have the same radius. The balls in the sub-level sets

filtration of dµ,m do not verify this property and the method of [88] has to be adapted.

1.4 Contributions
This thesis investigates the complexity of computing persistent homology and how we can

handle noise with aberrant values. We aim at making homology inference robust to noise,
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and tractable for intrinsically low-dimensional data, even if embedded in-high dimensional

spaces. We propose an approximation method to the persistence diagrams of the distance to

a measure and introduce new settings in which it can be used in order to broaden the set of

possible applications.

Distance to a measure. The distance to a measure µ was defined in Euclidean spaces in [25].

Its stability is guaranteed if two measures are close with respect to the Wasserstein distance.

We straightforwardly extend this stability result to general metric spaces. Once the stability

of the distance to a measure is established, a natural question concerns the identifiability of

measures using the distances to measures. We provide new results on how we can identify

measures knowing only their distance to measure functions.

The second requirement for the use of the distance to a measure in persistent homology is

the computability of its sub-level sets. We improve the theoretical guarantees of the first

approximation provided in [67]. The sub-level sets are approximated using a linear number

of balls with a constant multiplicative approximation factor. We introduce new ways to

approximate distance to a measure functions in any metric space with similar guarantees. We

provide tight theoretical bounds.

Data structures for persistence of power distances. The result of the approximation of the

distance to a measure is a power distance. The computation of persistence diagrams of

power distance is thus an important challenge. The Vietoris-Rips filtration classically used

to approximate persistence diagrams for distance functions can be adapted to the power

distance case by the addition of weights. It gives a new structure called the weighted Rips

filtration. We study the stability of this construction and show that it is a metric space.

However, the use of the weighted Rips is not enough to make the computation of persistence

tractable. Like its unweighted version, it does not escape the curse of dimensionality. The size

of the filtration needed to compute the persistence diagram is exponential in the ambient

dimension. We adapt the linear sized approximation of the Vietoris-Rips filtration [88] to the

weighted Rips filtration. We thus obtain a filtration whose size is linear in the number of input

points and exponential in the intrinsic dimension of the data and such that its persistence

diagram approximates the persistence diagram of the power distance.

New noise conditions for the distance to a measure. Given two probability measures µ and

ν, the assumptions on the Wasserstein distance between µ and ν to ensure the closeness of

the two distances to measures dµ,m and dν,m are not optimal. We propose new conditions

such that the distance to a measure can be used for the computation of persistence diagrams.

In particular, it can allow a partial recovery of the persistence diagram when a complete

approximation is not possible.

Scalar field analysis and incomplete data. Persistence is also known to be used for scalar

field analysis [32]. The aim is to study the structure of a real valued function defined over a

Riemannian manifold. The previous algorithm was unable to handle outliers, either in the

7



Chapter 1. Introduction

function values or the position of the points. Using a new estimator for function values, built

using the distance to a measure, we adapt the previous pipeline to handle combinations of

noise with outliers in the geometry as well as in the function values. Moreover, this estimator

can be seen as a regression operator and we provide convergence rates.

This kind of techniques seems promising for the analysis of incomplete data. We provide

an elementary algorithm and some examples suggesting further directions of research. The

theoretical setting for incomplete data does not exist yet and we only present an illustration of

the problem.

1.5 Organisation
The research presented in this thesis is partially the outcome of two collaborations soon to be

published.

Chapters 2 and 3 introduce classical notions in topological data analysis and straightforwardly

extend the stability results of the distance to a measure to general metric spaces. Section 3.5,

however, presents new results on the identifiability of measures using the distance to a mea-

sure.

Chapters 4 and 5 are the result of a collaboration with F. Chazal, S. Oudot and D. Sheehy [18].

The first one concerns approximation to the distance to a measure, while the second one

studies the approximation of the persistence diagrams of power distance functions. The

approximation of the distance to a measure is obtained by an original method which also

provide new results for existing methods. The data structure for the computation of persistence

diagram is a technical adaptation of a previous work from D. Sheehy [88].

Chapter 7 studies scalar field analysis and is the outcome of a visit to T. Dey and Y. Wang at

The Ohio State University. The results, obtained in collaboration with F. Chazal, S. Oudot and F.

Fan [17] are an adaptation of [32] to new noise conditions, using the distance to a measure

and a new function estimator.

Finally, Chapters 6 and 8 present connected work studying the noise conditions of Chap-

ter 7and the proprieties of the new estimator. Chapter 8 also presents an opening to the

incomplete data problem.

8



2 Preliminaries

In this chapter, we introduce notions of algebraic topology and geometry used in this thesis.

First, we formalise the topological properties we study. They are the simplicial and singular

homologies. Then, we define their persistent versions before making some general geometric

considerations.

2.1 Simplicial and singular homologies
We introduce two algebraic constructions. First is the simplicial homology, built using simpli-

cial complexes. It provides a computable descriptor of the topology of simplicial complexes.

Second is the singular homology, which allows to discuss the homology of more general spaces

and can be related to simplicial homology.

2.1.1 Simplicial complexes
The construction of simplicial and singular homologies rely on simplicial complexes. We first

introduce abstract simplicial complexes.

Definition 2.1 Given a set of indices I ⊂ N, an abstract n-simplex is a set of n + 1 distinct

elements of I .

Definition 2.2 Given a set of indices I ⊂N, an abstract simplicial complex is a set S of abstract

simplices such that, for any subset σ ∈ S, every simplex σ′ ⊂σ belongs to S.

Abstract simplices and complexes can be realised using geometric simplices.

Definition 2.3 Given an Euclidean space R
d , a geometric n-simplex σ is the convex hull of a

set of n points (v0, . . . , vn) in R
d .

If the resulting object has dimension n, the n-simplex is said to be non-degenerate. Given a

n-simplex σ, the n +1 points of which σ is the convex hull are the vertices of σ. Consider the

n +1 sets of points obtained by removing one point from the vertices of σ. Each of these sets

defines a (n −1)-simplex σ′ called a facet of σ.

Figure 2.1 shows a 2-simplex and its facets of decreasing dimensions. A 2-simplex is a triangle.

It has 3 facets of dimension 1 which are its edges. These edges have each 2 facets of dimension

0 which are the vertices of the triangle.

9



Chapter 2. Preliminaries

Figure 2.1 – Decomposition of a 2-simplex

Definition 2.4 A set of geometric simplices S is a geometric complex, if for any n-simplex σ ∈ S,

all facets σ′ of σ belong to S and if the intersection of any pair of simplices is a face of each of

them.

Every abstract simplicial complex is isomorphic to a geometric simplicial complex [83, Theo-

rem 3.1]. This simplicial complex is called the geometric realisation of the abstract complex

and is a topological space for the topology induced by inclusion. The combinatorial structure

of abstract and geometric complexes is equivalent. We use the geometric complexes to give

some intuition about homology.

Simplicial complexes sharing the same 1-skeleton, i.e. the same set of edges or 1-simplices,

can be ordered using the inclusion. This ordering is partial but has a greatest element called

the clique complex.

Definition 2.5 Let P be a set of points and E ⊂ P 2 a set of edges. The clique complex of (P,E) is

the maximal simplicial complex for the inclusion among complexes whose 0-simplices are P

and 1-simplices are E.

In other words, the clique complex contains all simplices that could be built using the set

of edges E . Clique complexes form a family of simplicial complexes with some interesting

properties. First, they can be stored efficiently as only the 1-skeleton is needed to describe

the whole complex. Secondly, it is relatively easy to prove the contiguity of simplicial maps

involving clique complexes using Lemma 2.12 and thus to provide theoretical guarantees for

algorithms in Chapter 5.

2.1.2 Chain complexes
Homology is an algebraic construction using a chain complex. Consider a sequence of Abelian

groups {Ci }i≥0 and homomorphisms {∂i }i≥0 between those groups such as shown in Fig-

ure 2.2. A chain complex is a sequence where, for all n, ∂n∂n+1 = 0. This condition means that

Im ∂n+1 ⊂ Ker ∂n and we can define quotient groups using these spaces.

Cn+1
∂n

Cn C1
∂1

C0
∂0

0

Figure 2.2 – Chain complex

10
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Definition 2.6 Given a chain complex C , the quotient group Ker ∂n/Im ∂n+1 is called the nth

homology group of C .

Building a quotient group means that all elements of Im ∂n+1 are equivalent to 0. This implies

that two elements are equivalent if and only if their difference is an element of Im ∂n+1. The

elements of Im ∂n+1 are called boundaries while the element of Ker ∂n are called cycles. All ho-

mologies use this construction and differ by the choice of the groups {Ci } and homomorphisms

{∂i }.

2.1.3 Simplicial homology

We consider a simplicial complex X and assume that we have a numbering of the vertices of

X . For the purpose of simplicial homology, the order of the vertices in simplices has an impor-

tance. It defines a notion of orientation. Given a n-simplex σ, we write [v0, . . . , vi , . . . , v j , . . . , vn]

the set of its vertices. The orientation is reversed when two vertices are exchanged, −σ =
[v0, . . . , v j , . . . , vi , . . . , vn].

Let ∆n(X ) be the free Abelian group whose basis is the n-simplices of X with coefficient in a

ring A. Writing Sn(X ) for the set of all n-simplices of X , the elements of ∆n(X ) are of the form
∑

σ∈Sn (X ) nσσ. Given two elements
∑

nσσ and
∑

n′
σσ, their sum is given by

∑
(nσ+n′

σ)σ.

∆n+1(X )
∂n

∆n(X ) ∆1(X )
∂1

∆0(X )
∂0

0

Figure 2.3 – Chain complex over a simplicial complex

The boundary operator is induced by the decomposition of simplices shown in Figure 2.1.

In dimension 2, the boundary of a triangle will be its three edges. Signs in the coefficient

nσ intuitively indicate the orientation of the simplices and the boundary operator is defined

such that the orientation of all simplices is coherent. Given a n-simplex σ and its vertices

[v0, . . . , vn], we denote [v0, . . . , v̂i , . . . , vn] the simplex obtained by removing the vertex vi .

Definition 2.7 Given a simplicial complex X , the boundary homomorphism ∂n : ∆n(X ) →
∆n−1(X ) is defined on the basis elements by:

∂n(σ) =
∑

i
(−1)i [v0, . . . , v̂i , . . . , vn]

The sign part of the definition ensures that the orientation is consistent as shown in Figure 2.4.

The definition over the basis set extends to a homomorphism. By convention, ∂n = 0 for n ≤ 0.

Remark that applying ∂1 to the three edges from the triangle will give 0 because each vertex

appears once positively and once negatively. It is consistent with the construction of a chain

complex, which requires that ∂n−1 ◦∂n = 0.

Lemma 2.8 The composition ∂n−1 ◦∂n : ∆n(X ) →∆n−2(X ) is zero.

11
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δ1

δ2

Ï − +

Ï

ÏÏ

Figure 2.4 – Examples of boundaries

Proof: Let σ be a n-simplex. By definition, ∂n(σ) =
∑

i (−1)i [v0, . . . v̂i , . . . , vn] and hence

∂n−1 ◦∂n(σ) =
∑

j<i
(−1)i (−1) j [v0, . . . v̂ j , . . . v̂i , . . . vn]+

∑

j>i
(−1)i (−1) j−1[v0, . . . v̂i , . . . v̂ j , . . . vn]

=
∑

j<i
(−1)i (−1) j [v0, . . . v̂ j , . . . v̂i , . . . vn]−

∑

j<i
(−1)i (−1) j [v0, . . . v̂ j , . . . v̂i , . . . vn]

= 0

Definition 2.9 Given a simplicial complex X , the nth homology group of X is

Hn(X ) = Ker ∂n/Im ∂n+1,

where ∂n is the boundary homomorphism on ∆n+1(X ).

We give some intuition on a small simplicial complex in Figure 2.5. Intuitively, simplicial

homology counts holes in a complex. In this case, there are two holes of dimension 1. Thus,

we expect to have two generators for the homology group of dimension 1.

A

B

C
D

E

F

G

Figure 2.5 – Homology of a small simplicial complex

A representative cycle of the left hole could be the three edges [BC ], [C E ] and [EB ], id est the

chain [BC ]+ [C E ]+ [EB ]. For commodity, we write this cycle (BC E). Remark that the cycle

(AC EB) is in the same homology class as (BC E). The difference between the two of them is

(AC B) = [AC ]+ [C B ]+ [B A] which is the boundary of a 2-simplex and thus belongs to Im δ2.

More complex elements are also representatives of this class, (AC DEF BEF BC ) for example.

12



2.1. Simplicial and singular homologies

We can also choose a short representative for the right hole by taking (DGF ). Now, the cycle

(BC DGF ) is in neither of these classes. However, it is equal to (BEC )+ (DGF ) in the quotient

group. These two cycles constitutes a set of generators of the homology group of dimension 1.

Counting holes is equivalent to counting generators.

Many properties we prove are true for all homology groups of the simplicial complex X . In

this case, we write H∗(X ) instead of Hn(X ) to denote the fact that we can choose the group

arbitrarily. We defined simplicial homology with coefficients in a ring A. In practice, we restrict

ourselves to coefficient in finite fields for computation reasons. From now, A is assumed to be

a finite field.

2.1.4 Simplicial maps
We can relate simplicial complexes using the notion of simplicial maps.

Definition 2.10 Let X and Y be two simplicial complexes. A simplicial map f : X → Y is an

application such that for any simplex σ ∈ X , f (σ) =∪p∈σ f (p) is a simplex of Y . Moreover, two

simplicial maps f : X → Y and g : X → Y are contiguous if σ ∈ X implies that f (σ)∪ g (σ) ∈ Y .

Simplicial maps induce homomorphisms between homology groups of X and Y . Moreover,

contiguous maps induce the same homomorphisms in simplicial homology. Combining

Theorems 12.4 and 12.5 from [83]:

Theorem 2.11 Two contiguous simplicial maps f , g : X → Y induce two homomorphisms f⋆
and g⋆ that are equal in simplicial homology.

We use the notion of contiguity for technical results in Chapter 5. We will only consider clique

complexes at this time and the contiguity will be proved using the following technical lemma:

Lemma 2.12 Let X and Y be clique complexes and let f and g be two functions from the

vertex set of X to the vertex set of Y . If for every edge (p, q) ∈ X , the simplex generated by

{ f (p), g (p), f (q), g (q)} is in Y , then f and g induce contiguous simplicial maps from X to Y .

Proof: Let σ be a simplex of X . Every pair in f (σ)∪g (σ) is of the form ( f (p), f (q)), ( f (p), g (q)),

or (g (p), g (q)) for some vertices p and q in σ. Since (p, q) ∈σ, the hypothesis of the lemma

implies that all of these pairs are edges of Y . Thus, f (σ)∪g (σ) is a simplex in Y because Y is a

clique complex. Moreover, f (σ) ∈ Y and g (σ) ∈ Y because simplices are closed under taking

subsets. Therefore, f and g are contiguous simplicial maps.

2.1.5 Singular homology
Objects in real life are not simplicial complexes so analysing them using simplicial homology

does not make a lot of sense except if we can relate it to more general objects. This is done

by building singular homology. We denote the standard n-simplex by ∆
n = {(t0, . . . , tn) ∈

R
n+1|

∑
ti = 1∧ ti ≥ 0}.

Definition 2.13 A singular n-simplex in a topological space X is a continuous map σ : ∆n →X.
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The construction done with abstract and geometric complexes can also be done with singular

complexes to define singular homology groups. For simplicial complexes, both constructions

are equivalent [69, Theorem 2.27].

Theorem 2.14 Let X be a simplicial complex. Then the simplicial and singular homology

groups of X are isomorphic.

In this thesis, we restrict ourselves to the class of triangulable metric spaces.

Definition 2.15 A metric space X is triangulable if it is homeomorphic to a locally finite simpli-

cial complex.

The homeomorphism between X and a locally finite simplicial complex C , either abstract or

geometric, implies that their singular homology groups are isomorphic. Hence, the singular

homology of X is equivalent to the simplicial homology of C . Therefore, we can compute the

homology of C in order to obtain the homology of X . More details on singular homology can

be found in [69, 83].

2.2 Persistence
In this section, we define persistence diagrams and study how to compare them. We provide a

way to prove the closeness of persistence diagrams using the notion of interleaving between

persistence modules. Finally, we quickly discuss the computation of persistence diagrams.

2.2.1 Persistence diagrams
First, we introduce the basic vocabulary of persistent homology. A filtration {Fα}α∈R is a

family of topological spaces Fα such that for any α ≤ β, Fα ⊂ Fβ. The inclusion of Fα into

Fβ is denoted by Fα ,→ Fβ. A persistence module is a family of vector spaces {Uα}α∈R over a

field k and of homomorphisms u
β
α : Uα → Uβ such that for all α ≤ β ≤ γ, u

γ
α = u

γ

β
◦u

β
α and

uα
α = I d . Given a filtration F = {Fα}α∈R and α≤β, the inclusion induces a homomorphism at

the homology level H∗(Fα) → H∗(Fβ). These homomorphisms and the homology groups of

Fα form one persistence module for each dimension. For the sake of simplicity, we call the set

of these modules, the persistence module of F .

Definition 2.16 A persistence module U = ({Uα}, {u
β
α}) is quadrant-tame or q-tame if all ho-

momorphisms u
β
α with α < β have finite rank. By extension, a filtration F = {Fα}α∈R is said

q-tame if its persistence module is q-tame.

This notion of tameness ensures some basic properties for the persistence module. For

example, a q-tame persistence module has a well-defined persistence diagram [26, Theorem

2.8]. Other kind of tameness exists but we limit ourselves to q-tameness. A complete overview

of the tameness properties can be found in [26].

We define the direct sum W=U⊕V of two persistence modules as Wα =Uα⊕Vα and w
β
α =

u
β
α⊕v

β
α. A persistence module W is indecomposable if the only decompositions of W are W⊕0
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2.2. Persistence

and 0⊕W. Given an interval J ⊂R, the interval module I
J is defined as the persistence module

such that It = k if t ∈ J and 0 otherwise and i t
s = I d if s, t ∈ J and 0 otherwise.

Interval modules are indecomposable [26, Proposition 1.2] and a persistence module V where

each Vi is finite dimensional can be decomposed into a direct sum of interval modules

V =
⊕

l∈L I
Jl [42]. Moreover, this decomposition is unique up to a bijection between the

intervals [26, Theorem 1.3]. It means that if V =
⊕

l∈L I
Jl =

⊕
m∈M I

Km then there exists a

bijection σ : L → M such that Jl = Kσ(l ) for all l .

Each interval module I
J in the decomposition V can be seen as a homology generator that

appears at the start of J and disappears at the end of J . These two points are called respectively

birth and death of the generator. The set of interval modules in the decomposition describes

the persistence module and we define the persistence diagram using these intervals.

Definition 2.17 The persistence diagram Dgm(V) of a q-tame persistence module V=
⊕

l∈L I
Jl

is the multi-set:

Dgm(V) = {(pl , ql )|l ∈ L}

where pl and ql are the extremities of Jl .

For persistent homology, the number of points at coordinates (a,b) corresponds to the number

of generator that appears in the homology groups at time a and disappear at time b. An

alternate definition of persistence diagrams rely on counting rectangles. We consider two

sequences A = (ai )i∈Z and B = (b j ) j∈Z such that ai < ai+1 and b j < b j+1 for all i and j ,

limi→−∞ ai = lim j→−∞ b j = −∞ and limi→∞ ai = lim j→∞ b j = ∞. Looking at rk(H∗(Fai ) →
H∗(Fb j )), we have the number of generators that existed in Fai and still exist in Fb j .

ai−1 ai

b j−1

b j

rectangle containing n
j
i points

Figure 2.6 – Discrete construction of persistence diagram

Now, using the ranks of the homomorphisms around ai and b j , we can obtain the number n
j
i

of classes that are born between ai−1 and ai and die between b j−1 and b j for b j > ai−1.

n
j
i =rk(Hk (Fai ) → Hk (Fb j−1 ))+ rk(Hk (Fai−1 ) → Hk (Fb j ))

−rk(Hk (Fai ) → Hk (Fb j ))− rk(Hk (Fai−1 ) → Hk (Fb j−1 ))
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This number n
j
i corresponds to the number of points present in the blue rectangle of Figure 2.6.

The counting rectangles can be refined by building two sequences of sequences An = (an
i )i∈Z

and Bn = (bn
j ) j∈Z such that limsupi , j {|b j −b j−1|; |ai −ai−1|} = 0. Both constructions of persis-

tence diagrams are equivalent for q-tame persistence modules and points outside the diagonal

∆= {(x, x)|x ∈R}. Point located on ∆ are not useful for inference purposes. They are ignored

by the notion of distance used to compare persistence diagrams.

A persistence diagram can be represented in different ways. We use two equivalent representa-

tions in this thesis. Figure 2.7 shows these two representations for a given diagram. The first

one is the most direct. Seeing the diagram as a multi-point set of R2, we just draw each point

on the plane. While this representation is natural and is nice to intuitively comprehend the

notion of distance that will be introduced later, it does not work well when there exist points

with multiplicity. The second way of drawing the diagram is called a barcode. Each point is

now represented by an interval, which starts at its birth and stops at its death. Sometimes

less compact, this representation works better when points have multiplicity more than one

as we draw as many intervals as their multiplicity. In this example, two of the points have

multiplicity 2, fact that is not visible on the first representation.

Figure 2.7 – Two representations of the same diagram

In this thesis, we often build filtrations using functions. By abuse of notation, we speak of the

filtration of a function instead of its sub-level sets filtration { f −1(]−∞,α])}α∈R. By extension,

we speak about the persistence diagram of f and consider the tameness of f instead of the

ones of its sub-level sets filtration.

2.2.2 Bottleneck distance
To compare persistence diagram, we use the bottleneck distance. The idea is that two persis-

tence diagrams are close if their features with long lifespan have close birth and death times.

First we introduce the notion of δ-matching.

Definition 2.18 Let P and Q be two multi-sets of points in R
2. A δ-matching between P and Q

is a collection of pairs M ⊂ P ×Q such:

• Any point of P is matched with at most one point of Q and reciprocally.

• ∀(p, q) ∈ M, ||p −q||∞ ≤ δ.
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• If a ∈ P ∪Q is unmatched, then a is at distance at most δ from the diagonal ∆ for ||.||∞.

Definition 2.19 Let P and Q be two multi-sets of points in R
2. The bottleneck distance between

P and Q is defined by:

dB (P,Q) = inf{δ|∃M a δ-matching between P and Q}

dB (P,Q)

Figure 2.8 – Bottleneck distance

The bottleneck distance ignores points that are close to the diagonal. In the persistent homol-

ogy setting, it means that only the elements with a long lifespan have to be matched for two

diagrams to be close.

We also use a variant of the bottleneck distance. When comparing sets which do not have the

same scale, we use the bottleneck in a logarithmic scale. Consider an object K sampled with

n points P . We build the point cloud P ′ using a homothety of factor 10. Then P ′ sampled an

object K ′ which is ten times the size of K . The bottleneck distance between the diagrams of P

and P ′ is large. However, the topologies of K and K ′ are the same but at different scales. By

looking at the points in a logarithmic scale, the persistence diagrams are much more similar

as shown in Figure 2.9. On both diagrams, blue points correspond to the diagram of the small

object and red squares to the one of the big object. In logarithmic scale, they are identical up

to a translation along the first bisector, which corresponds to the scale factor.

0 1 10

1

10

.1 1 10

1

10

Figure 2.9 – Comparison of persistence diagrams of an object at two different scales
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Definition 2.20 Let P and Q be two multi-sets of points in R
2. Consider the multi sets P l and

Q l images of P and Q by the application (x, y) 7→ (ln(x), ln(y)). The bottleneck distance in

logarithmic scale between P and Q is defined by:

d
log
B (P,Q) = dB (P l ,Q l )

2.2.3 Persistence module interleaving
In practice, we compare persistence modules using the notion of interleaving. Theorem 2.23

then implies a proximity of the persistence diagrams for the bottleneck distance. First, we

introduce the notion of ǫ-homomorphism.

Definition 2.21 Let U = ({Uα}, {u
β
α}) and V = ({Vα}, {v

β
α}) be two persistence modules. An ǫ-

homomorphism from U to V is a collection Φ= {φt : Ut →V(t+ǫ)}t∈R of linear maps such that

the diagram of Figure 2.10 commutes for all α≤β.

Vβ+ǫVα+ǫ

Uα Uβ

v
β+ǫ
α+ǫ

u
β
α

φα φβ

Figure 2.10 – Diagram of an ǫ-homomorphism

ǫ-homomorphisms are sometime called homomorphisms of degree ǫ. The collection of maps

{ut+ǫ
t } is an ǫ-endomorphism and is called the shift map 1ǫ

U
. The notion of ǫ-interleaving

relates two persistence modules by guaranteeing that we can go from one to the other and

then come back. It is not an inverse as it does not give us the identity, but the shift map 12ǫ.

Definition 2.22 Let U= ({Uα}, {u
β
α}) and V= ({Vα}, {v

β
α}) be two persistence modules. U and V

are ǫ-additively interleaved if there exists two ǫ-homomorphism Φ from U to V and Ψ from V to

U such that:

ΨΦ= 12ǫ
V

ΦΨ= 12ǫ
U

The definition of ǫ-interleaving is equivalent to the commutativity of the diagrams in Fig-

ure 2.11. This notion of interleaving is called additive due to the addition of parameter ǫ

when doing shifts in the diagram and by opposition to the multiplicative interleaving defined

later. Unless stated otherwise, we speak of two ǫ-interleaved modules when the interleaving is

additive.

The main stability result for persistence diagrams states that two interleaved q-tame persis-

tence modules have diagrams close with respect to the bottleneck distance [22, 26].

Theorem 2.23 Let U= ({Uα}, {u
β
α}) and V= ({Vα}, {v

β
α}) be two q-tame ǫ-interleaved persistence

modules, then dB (Dgm(U),Dgm(V)) ≤ ǫ.
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Vβ+ǫVα+ǫ

Uα Uβ

v
β+ǫ
α+ǫ

u
β
α

φα φβ

VβVα

Uα+ǫ Uβ+ǫ

v
β
α

u
β+ǫ
α+ǫ

ψα ψβ

Uα−ǫ Uα+ǫ

Vα

uα+ǫ
α−ǫ

φα−ǫ ψα

Vα−ǫ Vα+ǫ

Uα

vα+ǫ
α−ǫ

ψα−ǫ φα

Figure 2.11 – Commutative diagrams of additive ǫ-interleaving

The proof of this theorem is quite long and technical. The interested reader can either refer

to the complete proofs in [22, 26] or the one restricted to sub-level sets filtrations of q-tame

functions in [40].

It is not always possible to achieve an ǫ-interleaving in practice but we can sometimes work in

a logarithmic scale. Given a persistence module U= ({Uα}, {u
β
α}), we consider the persistence

module U
′ = (Uln(α), {u

ln(β)
ln(α)}).

Definition 2.24 Let U= ({Uα}, {u
β
α}) and V= ({Vα}, {v

β
α}) be two persistence modules. Let U′ and

V
′ be the persistence modules considered in logarithmic scale. U and V are ǫ-multiplicatively

interleaved if U′ and V
′ are ǫ-additively interleaved.

As for the additive interleaving, it corresponds to a set of commutative diagrams given in

Figure 2.12

V(1+ǫ)βV(1+ǫ)α

Uα Uβ

v
(1+ǫ)β
(1+ǫ)α

u
β
α

φα φβ

VβVα

U(1+ǫ)α U(1+ǫ)β

v
β
α

u
(1+ǫ)β
(1+ǫ)α

ψα ψβ

Uα U(1+ǫ)2α

V(1+ǫ)α

u(1+ǫ)2α
α

φα ψ(1+ǫ)α

Vα V(1+ǫ)2α

U(1+ǫ)α

v (1+ǫ)2α
α

ψα φ(1+ǫ)α

Figure 2.12 – Commutative diagrams of multiplicative ǫ-interleaving

The use of logarithmic scale immediately implies:
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Corollary 2.25 Let U= ({Uα}, {u
β
α}) and V= ({Vα}, {v

β
α}) be two multiplicatively ǫ-interleaved

persistence modules, then:

d
log
B (Dgm(U),Dgm(V)) ≤ ln(1+ǫ).

Proof: The persistence modules U and V can be looked at logarithmic scale to obtain U
′ and V

′

that are additively ln(1+ǫ)-interleaved. By definition of the logarithmic bottleneck distance,

d
log
B (Dgm(U),Dgm(V)) = dB (Dgm(U′),Dgm(V′)). Using Theorem 2.23, we obtain

d
log
B (Dgm(U),Dgm(V)) = dB (Dgm(U′),Dgm(V′)) ≤ ln(1+ǫ)

Sometimes, interleaving is done directly on filtrations instead of persistence modules.

Definition 2.26 Let {Uα}α∈R and {Vα}α∈R be two filtrations and ǫ ≥ 0. {Uα} and {Vα} are ǫ-

interleaved if for any α ∈R, Uα ⊂Vα+ǫ ⊂Uα+2ǫ.

Remark that it directly implies that their persistence modules are interleaved.

Corollary 2.27 Let {Uα}α∈R and {Vα}α∈R be two q-tame and ǫ-interleaved filtrations. Then

dB (Dgm({Uα}),Dgm({Vα})) ≤ ǫ.

Proof: The two filtrations {Uα} and {Vα} with the inclusions induce two persistence modules U

and V. {Uα} and {Vα} are ǫ-interleaved. Hence, the diagram 2.11 commutes when all maps are

inclusions, which means that U and V are ǫ-interleaved and Theorem 2.23 applies.

2.2.4 Computation of persistence diagrams
A filtered simplicial complex is a simplicial complex S with a function f : S →R such that for

any pair of simplices σ, σ′ of S such that σ′ ⊂σ, f (σ′) ≤ f (σ). We have a filtration F = {Fα}

where Fα = f −1(]−∞,α]) is a simplicial complex for any α ∈ R. This filtration induces a

persistence module. Taking the homology coefficients in a finite field, the computation of

Dgm(F ) is equivalent to the reduction of a matrix of size N ×N , where N is the number of

simplices in F∞ [57]. The worst case complexity is thus O(N 3).

However, this matrix is usually sparse. Algorithms have been developed to improve the

running time of persistence diagram computation [8, 14, 99]. Versions using the inherent

duality between homology and cohomology also exist [12, 44, 45]. In practice, these algorithms

have a running time that is linear in the number of simplices N .

Until now, we restricted ourselves to the computation of persistent homology for filtrations

of simplicial complexes. This will be sufficient for the work in this thesis. It should however

be noted that the definition of persistence modules is not restricted to sequences of sets that

are filtrations. Transposed to simplicial complexes, this means that we can discuss sequences

where we have simplicial maps between complexes. It was first introduced for the zig-zag

persistence [19] where inclusions can occur in both directions, i.e. the family {Fi }i∈N verifies

for every i , either Fi ⊂ Fi+1 of Fi ⊃ Fi+1. Algorithms to compute this kind of diagrams have

been developed [20, 81] and then extended to any simplicial maps [48].
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2.3 Geometry
Algebraic preliminaries were necessary to introduce the concept of persistence diagrams.

However, guarantees on the result of algorithms for topological data analysis rely on geometric

assumptions. In this section, we make a quick overview of some common geometric concepts

and results that will be used during the thesis.

2.3.1 Metric spaces
We mostly work with metric spaces. Recall that a metric spaceX is a set with a distance function

dX(·, ·) defined for every pair of elements. The distance is a non-negative and symmetric

function that satisfies the triangle inequality, i.e. dX(x, y) ≤ dX(x, z)+dX(y, z) for any x, y, z

and such that dX(x, y) = 0 if and only if x = y . Given an element x ∈X and a real radius r ≥ 0,

we denote B(x,r ) = {y ∈X|dX(x, y) < r } the open ball of centre x and radius r . Similarly, the

closed ball will be denoted B̄(x,r ) = {y ∈X|dX(x, y) ≤ r }.

Subsets of X can be compared against each other using the Hausdorff distance. Given P and

Q two subsets of X, the idea is to measure how far a point of P has to be moved before being

in Q, and reciprocally. Formally, the Hausdorff distance is given by:

dH (P,Q) = max

(

sup
y∈Q

inf
x∈P

dX(x, y);sup
x∈P

inf
y∈Q

dX(x, y)

)

.

On the space of compact subsets of X, dH verifies the axioms of a distance. Introducing the

function distance to the subset P as dP (x) = infp∈P dX(x, p) and the distance dQ to Q, the

Hausdorff distance can be rewritten as the infinite norm between dP and dQ . Furthermore, it

can be characterised using inclusions of sub-level sets.

Lemma 2.28 Given two subsets P and Q of a metric space X, dH (P,Q) = ||dP −dQ ||∞.

Proof: Let x be a point ofX. For any ǫ> 0, there exists a point y ∈ P such that dX(x, y) ≤ dP (x)+ǫ.

Moreover, there exists z ∈Q such that dX(y, z) ≤ dH (P,Q)+ǫ. Hence dQ (x) ≤ dP (x)+dH (P,Q)+
2ǫ. This is true for all ǫ> 0 and therefore ||dQ −dP ||∞ ≤ dH (P,Q).

There also exists a point x ′ ∈X such that |dQ (x ′)−dP (x ′)| ≥ ||dQ −dP ||∞− ǫ. Without loss of

generality, we assume that dP (x ′) ≤ dQ (x). There exists y ′ ∈ P such that dX(x ′, y ′) ≤ dP (x ′)+ǫ.

For any z ′ ∈Q, dX(y ′, z ′) ≥ dX(x ′, z ′)−dX(x ′, y ′) ≥ dQ (x ′)−dP (x ′)−ǫ. Hence dH (P,Q) ≥ ||dQ −
dP ||∞.

Lemma 2.29 Given two subsets P and Q of a metric space X, the Hausdorff distance dH (P,Q) is

less than ǫ if and only if, for any α ∈R,

d−1
P (]−∞,α]) ⊂ d−1

Q (]−∞,α+ǫ]) ⊂ d−1
P (]−∞,α+2ǫ]).

Proof: Remark that if α < 0, then d−1
P (]−∞,α]) = ;. Assume that dH (P,Q) ≤ ǫ, take α ≥ 0

and let x be a point of d−1
P (]−∞,α]). Then for any η> 0, there exists a point p ∈ P such that

dX(x, p) ≤α+η. By definition of the Hausdorff distance, there exists a point q ∈Q such that

dX(p, q) ≤ ǫ+η. Using the triangle inequality, dX(x, q) ≤α+ǫ+2η. As there exists a q ∈Q for
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any value of η, this means that dQ (x) ≤α+ǫ. The second inequality is obtained by reversing

the roles of P and Q.

Now assume that d−1
P (]−∞,α]) ⊂ d−1

Q (]−∞,α+ ǫ]) ⊂ d−1
P (]−∞,α+2ǫ]). This implies that

P ⊂ d−1
P (]−∞,0]) ⊂ d−1

Q (]−∞,ǫ]). In other words, for any p ∈ P and η> 0, there exists a q ∈Q

such that dX(p, q) ≤ ǫ+η. Hence, supp∈P infq∈Q dX(p, q) ≤ ǫ. Doing the same with the second

inequality and α=−ǫ, we obtain dH (P,Q) ≤ ǫ.

Subsets of a metric space can have an intrinsic dimension that is smaller than the dimension

of the ambient space. For example, a curve in the Euclidean plane is of intrinsic dimension

1, while the ambient space if of dimension 1. The intrinsic dimension is described by the

doubling dimension.

Definition 2.30 The doubling constant λX of a metric space X is the maximum over all balls

B(x,r ) with x ∈X of the minimum number of balls of radius r /2 required to cover B(x,r ). The

doubling dimension is defined to be log2(λX).

When working in Euclidean spaces, we sometimes encounter the assumption that an input

point set is in general position.

Definition 2.31 Let P be a point set in an Euclidean space R
d . P is in general position if for

any i < d, no set of i +3 distinct points of P is on a sphere of dimension i and the convex hull of

any d +1 distinct points of P is of dimension d.

This condition means for example that no triple of points are aligned and no quadruple of

points are co-circular. Some geometric constructions such as the Delaunay triangulation

requires this condition to avoid degenerate cases that can hinder the complexity or the sound-

ness of algorithms. The general position assumption is reasonable if the point set P is finite. If

P is not in general position, it suffices to slightly perturb every point and we obtain a point set

that is in general position with probability 1.

2.3.2 Compact sets
Usually, we are given an input point set P and we assume the existence of an underlying object

K . Our objectives is to study K , sometimes called the ground truth using P . Assumptions on

the Hausdorff distance between P and K are common to provide theoretical guarantees. The

distance usually needs to be bounded by some geometric quantities describing K . Here, we

consider the case of a compact set K .

Every x ∈X has a closest point in K . However, this point is not necessarily unique. The set of

all points that have at least two nearest neighbours on K is called the medial axis of K and is

illustrated in Figure 2.13.

Definition 2.32 Let K be compact set of metric space X and A its medial axis. The reach of K is

defined as

rK = inf
x∈K

dX(x, A)
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Figure 2.13 – A curve and its medial axis

A standard assumption for reconstruction is that the reach of K is not too small. For example,

it has to be positive or more than the Hausdorff distance between K and the point set P .

Intuitively, this ensures that we have no point close to the medial axis and hence, given a point

p ∈ P , we can approximate well where its projection P is located.

The use of the reach has some limitations when there exist some sharp vertices for example.

The reach of the surface of a cube is 0. More precise quantities have been proposed for

sampling compact sets such as the weak feature size and the µ-reach [24], however we only

use the notion of reach in this thesis.

2.3.3 Riemannian geometry
Riemannian manifolds have nice regularity properties and are often used to state hypotheses.

Here, we introduce smooth Riemannian submanifolds of Euclidean spaces and some concepts

we need to express our assumptions. For a more thorough presentation, the reader can refer

to specialised books such as [52, 63].

Definition 2.33 A smooth d ′-submanifold of Rd is a subset M ⊂ R
d such that for any point

x ∈M, there exists an open set U containing x and a C∞ diffeomorphism φ from U onto an

open subset φ(U ) ⊂R
d such that φ(U ∩M) is a vector subspace of dimension d ′.

The scalar product on the tangent spaces of a submanifold M of Rd induces a metric dM, called

the geodesic metric. The pair (M,dM) is a metric space called a Riemannian submanifold of

R
d . As for any metric space, we can speak of balls defined on this space. The shortest path

between two points x and y is called the minimizing geodesic. Remark that the geodesic

distance between two points on a submanifold of Rd is always greater than their distance in

the metric of the embedding space R
d . The shortest path to go from one point to another is

always longer when we restrict ourselves to stay on a subspace rather than being allowed to

move in the whole space.

The data we can work with is given under the form of point sets. We usually assume that the

point set samples the manifold M with a certain precision.

Definition 2.34 Let M be a Riemannian manifold and let P ⊂M be a point set. P is a Rieman-

nian ǫ-sampling of M if for any x ∈M, there exists p ∈ P such that dM(x, p) ≤ ǫ.

Remark that if P is a Riemannian ǫ-sampling of M, then dH (P,M) ≤ ǫ. One part of the relation

is given by the inclusion of P inside M and the other is directly implied by the sampling

assumption and the fact that the Riemannian metric is greater than the Euclidean metric.
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Riemannian manifolds are very general objects and we cannot hope to reconstruct them or

infer correct information on them without adding some regularity assumptions.

To describe the way a Riemannian submanifold M folds, we use the notion of sectional curva-

ture at a point p. It is a function from the space of tangent 2-planes of M at p to R, whose value

is the curvature of a geodesic starting at p and tangent to the plane. This notion of curvature

is an extension to higher dimensions of the usual curvature notion for curves and surfaces.

For a formal definition, we refer the reader to [52, Chapter 4]. The sectional curvature being

the only notion of curvature used in this thesis, it will simply be called curvature.

Proposition 2.35 ([49, Proposition 2.1]) Let M⊂R
2 be a smooth compact manifold without

boundary. Then the absolute value of the curvature of M is bounded by cM which verifies:

cM ≤
2

r 2
M

where rM is the reach of M.

Another useful concept is the strong convexity radius ̺(M) defined as the largest radius such

that for any point of x ∈M and radius r < ̺(M), the geodesic ball B(x,r ) is strongly convex,

i.e. the shortest geodesic between two points y and z of B(x,r ) is unique and enclosed inside

B(x,r ).

2.3.4 Lower bound on the volume of Riemannian balls

Assuming we sample a compact manifold uniformly, we want to guarantee that we obtain a

dense enough point set on the manifold. We obtain it using a lower bound on the volume

of Riemannian balls, id est the balls in the Riemannian metric. Consider a manifold M with

sectional curvature upper bounded by cM. Then for any point x ∈M, the Günther-Bishop

theorem provides a lower bound of the volume of the Riemannian ball of radius a.

Theorem 2.36 (Günther-Bishop) Assuming that the sectional curvature of a manifold M is

always less than cM and a is less than the strong convexity radius of M, then for any point x ∈M,

the volume V (x, a) of the geodesic ball centred on x and of radius a is greater than V cM
d ′ (a) where

d ′ is the intrinsic dimension of M and V cM
d ′ (a) is the volume of the Riemannian ball of radius a

on a surface with constant curvature cM.

We explicitly bound the value of V (x, a), with the following technical lemma:

Lemma 2.37 Let M be a Riemannian manifold with curvature upper bounded by cM, then for

any x ∈M and a ≤ min(̺(M); πp
cM

), the volume V (x, a) of the geodesic ball centred at x and of

radius a verifies:

V (x, a) ≥C
cM
d ′ ad ′

where C
cM
d ′ is a constant independent of x and a.

24



2.3. Geometry

Proof: Given a ≤ min(̺(M), πp
cM

), we want to bound the volume V cM
d ′ (a). Consider the sphere

of dimension d ′ and curvature cM. The surface Sd ′−1
cM of the border of a ball of radius a ≤ πp

cM
on this sphere is given by [66]:

Sd ′−1
cM (a) = 2Γ

(
1

2

)d ′

Γ

(
d ′

2

)−1

c
− 1

2 (d ′−1)
M

sind ′−1(cMa)

We can bound the value of V cM
d ′ (a) :

V cM
d ′ (a) =

∫a

0
Sd ′−1(l )dl

=
∫a

0
2Γ

(
1

2

)d ′

Γ

(
d ′

2

)−1

c
− 1

2 (d ′−1)
M

sind ′−1(cMl )dl

≥ 2Γ

(
1

2

)d ′

Γ

(
d ′

2

)−1

c
− 1

2 (d ′−1)
M

2
∫ a

2

0

(
2cMl

π

)d ′−1

dl

= 4Γ

(
1

2

)d ′

Γ

(
d ′

2

)−1

c
− 1

2 (d ′−1)
M

π

2cM

∫ cMa
π

0
ud ′−1du

Writing

C
cM
d ′ =

4

d ′Γ

(
1

2

)d ′

Γ

(
d ′

2

)−1 (p
cM
π

)d ′−1

,

and using the Günther-Bishop Theorem, we have for any a ≤ min(̺(M); πp
cM

) and any x ∈M,

V (x, a) ≥C
cM
d ′ ad ′

.
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3 Distance to a measure

The limitations of the distance to a compact and the distance to a point set led to the introduc-

tion of the distance to a measure. First proposed by Chazal, Cohen-Steiner and Mérigot in [25],

this function aimed at adding robustness with regard to aberrant values, also called outliers.

In this chapter, we introduce the function and extend its stability results to any metric space

along with some easy but interesting properties. Then we study the identifiability of measures

knowing their distances and provide new qualitative results.

3.1 Measures
The original idea behind distance to a measure functions was to consider point sets as mea-

sures when they were previously considered as compact sets. Measures are functions defined

over a specific algebraic construction called σ-algebra. Intuitively, a measure tries to capture

the size of an object. To be coherent with this idea, the measure needs some basic properties.

Definition 3.1 A σ-algebra A on a set X is a non-empty collection of sets that is stable by

complement and countable union.

When we measure objects thanks to a function µ, we want µ to have some natural properties.

Especially, if objects are disjoint, the size of their union has to be equal to the sum of their

individual sizes. This is called the σ-additivity of µ and is formally defined for any countable

family (Un)n∈N family of pairwise disjoint sets of A by µ(
⋃

n Un) =
∑

n µ(Un).

Definition 3.2 A measure µ over a σ-algebra A is a non-negative and σ-additive function

defined on A such that µ(;) = 0

In this thesis, we will always work in a metric space X and consider the σ-algebra generated by

the open balls of X. It means that the σ-algebra A will be the smallest set B(X) that contains

all open balls and is closed by complement and numerable union. The elements of B(X) are

called Borel subsets of X. All measures in this thesis will be defined over B(X) and, by abuse of

notation, we will write that measures are defined on the metric space X. More specific kinds

of measures interest us. First of all is the notion of probability measure.

Definition 3.3 A probability measure on a metric space X is a measure such that µ(X) = 1.
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Given a Borel subset A ∈B(X), the value µ(A) is sometimes called the mass of A and µ(X)

is called the total mass of µ. Thus, a probability measure µ is a measure of total mass 1.

Introducing the empirical measure, one can consider a set of points as a measure.

Definition 3.4 Let P be a finite set of points in a metric space X. The empirical measure µP is

defined as:

µP =
1

|P |
∑

p∈P
δp

where δp is the Dirac measure at point p.

Recall that the Dirac measure at a point p is the measure such that for any set A, δp (A) is equal

to 1 if p ∈ A and 0 otherwise. The empirical measure is the probability measure sharing its

mass evenly between all the points of the point set. Remark that in the case of a multi-set,

when points can appear more than once, the definition still stands and the points have a mass

proportional to their multiplicity. Empirical measures belongs to a larger class of measures

called the measures with finite support.

Definition 3.5 Given a measure µ defined on a metric space X, the support of µ, Supp(µ), is the

smallest closed set of X whose complement has measure 0.

Definition 3.6 A measure µ is said to have finite support if Supp(µ) is a finite point set P.

Measures with finite support and especially empirical measures are often used to approximate

other measures. Some discussion can be found in Section 6.3.3.

Definition 3.7 Given a probability measure µ defined on a metric space X and 1 ≤ p ≤∞, the

p th moment of µ for a point x0 ∈X is defined by

∫

X

dX(x, x0)p dµ(x).

3.2 Wasserstein distances
To compare measures with same total mass, we use Wasserstein distances, also called optimal

transportation distances. Intuitively, they are the minimal cost to move all the mass from one

measure to another. The way two move the mass between two measures is described by a

transport plan:

Definition 3.8 Let µ and ν be positive measures with the same total mass on a metric space X.

A transport plan between µ and ν is a measure π on X×X such that for all A,B ∈B(X),

π(A×X) =µ(A) and π(X×B) = ν(B).

We denote by Π(µ,ν) the set of all transport plans between µ and ν. The p th order cost of the

transport plan π is defined as

Cp (π) =
(∫

X×X
dX(x, y)p dπ(x, y)

) 1
p

.
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The Wasserstein distance between µ and ν is the minimum cost over all transport plans.

Definition 3.9 Let µ and ν be positive measures with the same total mass on a metric space X.

The Wasserstein distance of order p between µ and ν is defined as

Wp (µ,ν) = min
π∈Π(µ,ν)

(∫

X×X
dX(x, y)p dπ(x, y)

) 1
p

.

The Wasserstein distance is finite if both probability measures have finite p-moments, which

is always the case for measures with compact support. In this thesis, we will consider the

distance W2 in cases where it is finite. For more details on Wasserstein distances and optimal

transportation theory, we refer the reader to [94].

3.3 Distance to a measure
The distance to a measure introduced in [25] is defined in Euclidean spaces. However, the

definition is more general and can be extended to any metric space. First, we consider the

so-called pseudo-distance to a measure.

Definition 3.10 Let µ be a probability measure on a metric space X and let m ∈ [0,1[ be a mass

parameter. We define the pseudo-distance to µ:

δµ,m : x ∈X 7→ inf{r ≥ 0 |µ(B̄(x,r )) > m}.

This function corresponds to the distance we need to look at in order to catch the mass m as

shown in Figure 3.1. When m = 0, it is the distance to the support of µ. For m > 0, we not only

consider the nearest point of the support but also the structure of the measure beyond.

x

µ

δµ,m(x)

m

Figure 3.1 – Pseudo-distance to a measure

However, this function lacks essential properties such as the continuity with regard to µ and m.

Consider for example the measure µǫ defined on R and given in Figure 3.2, where 0 has mass
1
2 −ǫ and 1 has mass 1

2 +ǫ. Then δµǫ,m(0) = 0 for any m < 1
2 −ǫ and δµǫ,m(0) = 1 for m ≥ 1

2 −ǫ.

Moreover, for any ǫ> 0, δµǫ, 1
2

(1) = 0 but δµ0, 1
2

(1) = 1, while W2(µǫ,µ0) = ǫ. The distance to the

measure µ averages the function m 7→ δµ,m to provide these properties.
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1
2 −ǫ

0

1
2 +ǫ

1

Figure 3.2 – Measure µǫ

Definition 3.11 Let µ be a probability measure on a metric space X and let m ∈ [0,1[ be a mass

parameter. The distance to the measure µ is defined by:

dµ,m : x ∈X 7→

√
1

m

∫m

0
δµ,l (x)2dl .

Proposition 3.12 Given a measure µ on a metric space X and x ∈X, the application m ∈ [0,1[ 7→
dµ,m(x) is continuous on [0,1[.

Proof: On ]0,1[, m 7→
∫m

0 δµ,l (x)2dl is continuous as the integral of a well-defined function.

Furthermore, m 7→ 1
m is continuous and thus dµ,m is continuous. The only problem is for

m = 0 due to the term 1
m . It suffices to show the continuity in 0 and it will also guarantee that

dµ,m(x) is well-defined.

Let m > 0. Then by definition:

∀0 ≤ l ≤ m, δµ,0(x) ≤ δµ,l (x) ≤ δµ,m(x)

which translates for dµ,m :

√
1

m

∫m

0
δµ,0(x)2dl ≤

√
1

m

∫m

0
δµ,l (x)2dl ≤

√
1

m

∫m

0
δµ,m(x)2dl

δµ,0(x) ≤ dµ,m(x) ≤ δµ,m(x)

By definition of the pseudo-distance, for any ǫ> 0, µ(B̄(x,δµ,0 +ǫ) > 0. Thus for any 0 < m <
µ(B̄(x,δµ,0 +ǫ), δµ,m(x) ≤ δµ,0 +ǫ. Consequently, the function m 7→ δµ,m(x) is continuous at 0.

Hence m 7→ dµ,m(x) is continuous at 0 and dµ,0(x) = δµ,0(x).

An interesting case for practical application is when the measure has a finite support and more

precisely when µ is an empirical measure on a point set P . Figure 3.3 gives one example of a

discontinuous pseudo-distance and continuous distance to a measure.

In this case, consider the parameter k = mn where n is the number of points in P . Given

a point x∈X, the pseudo-distance δµ,m(x) corresponds to the distance to the ⌈k⌉th nearest

neighbour of x in P . The distance to µ, dµ,m(x) is the square average of the distance to the ⌈k⌉
nearest neighbours of x. Let us write the points of P , (p1(x), . . . , pn(x)) such that for all i < j ,

dX(pi (x), x) ≤ dX(p j (x), x).

Proposition 3.13 Let P be a point cloud in a metric space X, m ∈ [0,1[ a mass parameter and
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Figure 3.3 – Empirical measure on a point cloud and values of δµ,m and dµ,m

x ∈X. If µ is the empirical measure on P and k = mn then

dµ,m(x) =

√√√√ 1

k

(
⌊k⌋∑

i=1
dX(pi (x), x)2 + (k −⌊k⌋)dX(p⌈k⌉(x), x)2

)

Proof: Let us consider a ball of centre x and radius r . Fixing dX(p0(x), x) = 0 and dX(pn+1(x), x) =
∞, there exists an integer i such that dX(pi (x), x) ≤ r < dX(pi (x), x). Then µ(B̄(x,r )) = i

n as

the ball contains exactly i points from P . This implies that for any i ≤ n and any i−1
n < m ≤ i

n ,

δµ,m(x) = dX(pi (x), x).

dµ,m(x)2 =
1

m

∫m

0
δµ,l (x)2dl

=
1

m

(
⌊mn⌋∑

i=1

∫ i
n

i−1
n

δµ,l (x)2dl +
∫ mn

n

⌊mn⌋
n

δµ,l (x)2dl

)

=
1

m

(
k∑

i=1

1

n
dX(pi (x), x)2 +

(k −⌊k⌋)

n
dX(p⌈k⌉(x), x)2

)

=
1

k

(
k∑

i=1
dX(pi (x), x)2 +dX(p⌈k⌉(x), x)2

)

Remark that if k is an integer then the expression in Proposition 3.13 can be simplified as

the term k −⌊k⌋ is zero. In practice, one always chooses k to be an integer which results in a

simpler expression. From now on, unless specified otherwise, k will always be assumed to be

an integer in order to simplify the proofs. However, all results adapt if k is not an integer.

3.4 Stability
In this section, we will study the stability of the distance to a measure with respect to the

Wasserstein distance. It is a simple adaptation of the analysis in the Euclidean case [25].

First, let us introduce the notion of submeasure. A measure ν is a submeasure of a measure µ

if for every B ∈B(X), ν(B) ≤µ(B). Let Subm(µ) be the set of all submeasures of µ, that have a
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total mass m. Then the distance to a measure µ at x ∈X can be expressed as the Wasserstein

distance between two measures, the Dirac mass mδx at x and a submeasure of µ of mass m.

Intuitively, dµ,m(x) is the minimal cost of moving a mass m from µ to x.

Proposition 3.14 Let µ be a probability measure on a metric space X, and let m ∈]0,1[ be a

mass parameter. Then,

dµ,m(x) = min
ν∈Subm (µ)

1
p

m
W2(mδx ,ν).

Given x ∈X and m > 0, let Rµ,m(x) be the set of the submeasures of µ with total mass m whose

support is contained in the closed ball B̄(x,δµ,m(x)) and whose restriction to the open ball

B(x,δµ,m(x)) coincides with µ. The proof shows that Rµ,m(x) is exactly the set of minimizers

of Proposition 3.14.

In order to prove this theorem we need to introduce a few definitions. The cumulative function

Fν : R+ →R of a measure ν on R
+ is the non-decreasing function defined by Fν(y) = ν([0, y)).

Its generalized inverse F−1
ν : m 7→ inf{t ∈R | Fν(t ) > m} is left-continuous.

Proof: If ν is a measure of total mass m on X then there exists only one transport plan between

ν and the Dirac mass mδx . It transports every point of X to x. Hence we get

W2(mδx ,ν)2 =
∫

X

dX(h, x)2 dν(h).

Let dx : X→R denote the distance function to the point x and let νx be the push-forward of ν

by dx . That is, for any subset I of R,νx (I ) = ν(d−1
x (I )). Note that F−1

νx
(m) = δν,m(x). Using the

change of variable formula and the definition of the cumulative function, we get:

∫

X

dX(h, x)2dν(h) =
∫

R+
t 2dνx (t ) =

∫m

0
F−1
νx

(l )2dl .

Suppose further thatν is a submeasure ofµ, then Fνx (t ) ≤ Fµx (t ) for all t > 0. So, F−1
νx

(l ) ≥ F−1
µx

(l )

for all l > 0, and thus,

W2(mδx ,ν)2 ≥
∫m

0
F−1
µx

(l )2dl =
∫m

0
δµ,l (x)2dl = mdµ,m(x)2.

This inequality implies that dµ,m(x) is smaller than 1p
m

W2(mδx ,ν) for any ν ∈ Subm(µ).

Consider the case when the inequality is tight. Such a case happens when for almost every

l ≤ m, F−1
νx

(l ) = F−1
µx

(l ). Since these functions are increasing and left-continuous, equality must

hold for every such l . By the definition of the pushforward, this implies that ν(B̄(x,δµ,m(x))) =
m, i.e., all the mass of ν is contained in the closed ball B̄(x,δµ,m(x)), and that ν(B(x,δx,µ(m))) =
µ(B(x,δx,µ(m))). Because ν is a submeasure of µ this is true if and only if ν is in the set Rµ,m(x)

described before the proof. Thus Rµ,m(x) is exactly the set of submeasures ν ∈ Subm(µ) such

that dµ,m(x) = 1p
m

W2(mδx ,ν).

To conclude the proof we only need to show that there exists at least one measure µx,m in the

set Rµ,m(x). If µ(B̄(x,δµ,m(x))) = m, then µx,m = µ|B̄(x,δµ,m (x)) is an obvious choice. The only

difficulty is when the boundary ∂B(x,δµ,m(x)) of the ball has too much mass. In this case we
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uniformly rescale the mass contained in the bounding sphere such that the measure µx,m has

total mass m. More precisely we let:

µx,m =µ|B(x,δµ,m (x)) + (m −µ(B(x,δµ,m(x))))
µ|∂B(x,δµ,m (x))

µ(∂B(x,δµ,m(x)))
.

We hence have 1p
m

W2(mδx ,µx,m) = dµ,m(x).

From this result, we have the following Wasserstein stability guarantee for the distance to a

measure.

Theorem 3.15 Let µ and ν be two probability measures on a metric space X and let m ∈]0,1[

be a mass parameter. Then:

||dµ,m −dν,m ||∞ ≤
1

p
m

W2(µ,ν).

Proof: Using Proposition 3.14, we get that
p

m dµ,m(x) =W2(mδx ,µx,m), where µx,m ∈Rµ,m(x).

Let π be an optimal transport plan between µ and ν, i.e., a transport plan between µ and ν

such that ∫

X×X
dX(x, y)2dπ(x, y) =W2(µ,ν)2.

Let us consider the submeasure µx,m of µ. There exists π̃ a submeasure of π that transports

µx,m to a submeasure ν̃ of ν of mass m and

W2(µx,m , ν̃) ≤W2(µ,ν).

Using Proposition 3.14 again, we get for any x ∈X,
p

m dν,m(x) ≤W2(mδx , ν̃). Thus,

p
m dν,m(x) ≤W2(mδx , ν̃) ≤W2(mδx ,µx,m)+W2(ν̃,µx,m)

≤
p

m dµ,m(x)+W2(µ,ν).

The roles of µ and ν can be reversed to conclude the proof.

The combination of Proposition 3.14 and Theorem 3.15 implies that the function x 7→ dµ,m(x)

is 1-Lipschitz.

Corollary 3.16 Let µ be a probability measure on a metric space X and let m ∈ [0,1[ be a mass

parameter. The function x 7→ dµ,m(x) is 1-Lipschitz.

Proof: Remark that if m = 0 then dµ,0 is the distance to Supp(µ) which is 1-Lipschitz. Assume

that m > 0 and let x and y be two points of X. Proposition 3.14 implies

dµ,m(x) = min
ν∈Subm (µ)

1
p

m
W2(mδx ,ν).
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Let ν ∈ Subm(µ). We have:

dµ,m(x) ≤
1

p
m

W2(mδx ,ν)

≤
1

p
m

W2(mδy ,ν)+
1

p
m

W2(mδx ,mδy )

=
1

p
m

W2(mδy ,ν)+dX(x, y)

Thus dµ,m(x)−dX(x, y) ≤ dµ,m(y). The roles of x and y can be interchanged to obtain us the

1-Lipschitz property as |dµ,m(x)−dµ,m(y)| ≤ dX(x, y).

3.5 Discriminating results
We just showed that two measures that are close with respect to the Wasserstein distance give

close distance to measure functions. A natural question arises. Is the opposite true? If two

measures gives distance to measure functions that are close to each other, what can we say

about the measures themselves? In this section and the next, we provide some partial answers

to this question.

We will first show that if two distances to measure are equal everywhere and for all values

of the mass parameter on a Euclidean space then the two measures are equal. Then we

relax some hypotheses on the mass or the number of points where the distances are known

while restricting the set of measures to the ones with finite support. All presented results are

qualitative and finding quantitative results is an ongoing research direction.

3.5.1 Correspondence between measure and distance to a measure
The distances to measure and measures have a one-to-one correspondence in the sense that a

distance to a measure defined for all points of Rd and all masses m can be generated by only

one probability measure on R
d . This translates in the following theorem:

Theorem 3.17 Let µ and ν be two probability measures on R
d , then:

(
∀x ∈R

d , ∀m ∈ [0,1[, dµ,m(x) = dν,m(x)
)
⇔µ= ν

Before proving this result, let us recall an elementary lemma from measure theory.

Lemma 3.18 ([87, Theorem 1.19]) Let An be a family of Borel sets such that Ai+1 ⊂ Ai for all i

and let µ be a non-negative measure such that µ(A1) is finite. Writing A =∩∞
n=1 An :

lim
n→∞

µ(An) =µ(A)

Let us now prove Theorem 3.17.

Proof: The construction of the distance to a measure is unique, hence if µ= ν, then dµ,m = dν,m .

We need to prove that if dµ,m(x) = dν,m(x) for all x and m, then the two measures µ and ν are

equal.
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Assume that it is not the case. Then there exists a Borel subset U ∈B(Rd ) such thatµ(U ) 6= ν(U ).

B(Rd ) is generated by the balls of Rd . Thus, there exists a point x and a radius r such that:

µ(B(x,r )) 6= ν(B(x,r ))

Without loss of generality, let us assume that m0 = µ(B(x,r )) < ν(B(x,r )) = m2. Let An =
B(x,r ) \ B̄(x,r − 1

n ) for n ≥ n0 = ⌈ 1
r ⌉. Then for all n, An+1 ⊂ An and A = ∩∞

n=0 An . Applying

Lemma 3.18:

∃n, ν(An) < m2 −m0

This implies:

∃ǫ> 0, m0 < ν(B(x,r −ǫ)) = m1 ≤ m2

By definition of the pseudo-distance to a measure:

∀m, m0 < m < m1, δµ,m(x) ≥ r > r −ǫ≥ δν,m(x)

Our initial assumption states in particular that dµ,m0 (x) = dν,m0 (x).

dν,m1 (x)2 =
1

m1

∫m1

0
δ2
ν,mdm

=
1

m1

∫m0

0
δ2
ν,mdm +

1

m1

∫m1

m0

δ2
ν,mdm

≤
m0

m1
dν,m(x)2 +

1

m1
(r −ǫ)2dm

<
m0

m1
dµ,m(x)2 +

1

m1

∫m1

m0

δµ,x (x)2dm

= dµ,m1 (x)2

Thus we found an x and an m such that dν,m(x) 6= dµ,m(x), which contradict the assumption.

Hence µ= ν.

3.5.2 Recovering a measure from its distance

The correspondence between distance to a measure functions and measures makes it con-

ceivable to reconstruct a measure knowing the distance to a measure function. This means

that for a given Borel subset, we can compute its measure. In this section, we introduce some

partial inversion for the pseudo distance δµ,m to a measure µ. As we explained in section 3.3,

the pseudo-distance is not continuous. We then need a right and a left inverse. For commodity

we write them:

m−
µ,x (r ) = sup{m|δµ,m(x) < r }

m+
µ,x (r ) = inf{m|δµ,m(x) > r }

These inverses allow us to compute the mass of balls centred in x and with radius r thanks to

the following technical lemma:
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δµ,m(x)

m

r2

r1

m+
µ,x (r1) = m−

µ,x (r1)

m−
µ,x (r2)

m+
µ,x (r2)

Figure 3.4 – Left and right inverses of the pseudo-distance δµ,m(x)

Lemma 3.19 Let µ be a probability measure on a metric space X and x ∈X. For any r ≥ 0,

m−
µ,x (r ) =µ(B(x,r ))

m+
µ,x (r ) =µ(B̄(x,r ))

Proof: Let us fix r0 ≥ 0 and show that m−
µ,x (r0) =µ(B(x,r0)).

Let m be such thatδµ,m(x) < r0. There exists r1 such thatδµ,m(x) < r1 < r0. Thus inf{r |µ(B̄(x,r )) >
m} < r1 < r0. Hence µ(B(x,r0)) ≥µ(B̄(x,r1)) > m. By definition, m−

µ,x (r0) ≤µ(B(x,r0)).

Now assume that µ(B(x,r0)) > m−
µ,x (r0). Remark that µ(B(x,r0)) is the limit of µ(B̄(x,r )) when

r increases and tends to r0. Hence, there exists r1 < r0 such that µ(B̄(x,r1)) > m−
µ,x (r0). Then

there exists m2 such that m−
µ,x (r0) < m2 <µ(B̄(x,r1)), which means that δµ,m2 (x) ≤ r1. Finally

m−
µ,x (r0) ≥ m2 > m−

µ,x (r0) which gives a contradiction. Thus m−
µ,x (r0) =µ(B(x,r0)).

Let us now prove m+
µ,x (r0) =µ(B̄(x,r0)).

Fix m > m+
µ,x (r0). Then δµ,m(x) > r0, id est inf{r |µ(B̄(x,r )) > m} > r0. Hence, µ(B̄(x,r0)) ≤ m

and by definition µ(B̄(x,r0)) ≤ m+
µ,x (r0).

Now assume thatµ(B̄(x,r0)) < m+
µ,x (r0). Remark thatµ(B̄(x,r0)) is the limit ofµ(B̄(x,r )) when r

decreases and tends to r0. Hence, there exists r > r0 and m such that µ(B̄(x,r )) < m < m+
µ,x (r0).

Thus δµ,m(x) ≥ r > r0 which implies m+
µ,x (r0) ≤ m < m+

µ,x (r0). This is a contradiction and then

m+
µ,x (r0) =µ(B̄(x,r0)).

Given a measureµ and a point x, the function m 7→ dµ,m(x)2 defined on [0,1[ is non-decreasing,

continuous and differentiable. In fact, it is given by the relation

d 2
µ,m(x) =

1

m

∫m

0
δµ,l (x)2 dl

where l 7→ δµ,l (x) is an non-decreasing function. Knowing dµ,m(x) for any mass m, it is

possible to compute the value of δµ,m(x) for any value of m ∈ [0,1[. Moreover, we can compute

m−
µ,x (r ) and m+

µ,x (r ).
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3.5.3 Application to the real line
Using this in dimension 1, we design an algorithm to reconstruct a measure µ knowing the

value of dµ,m at two points for every m ∈ [0,1[. In fact, we show that we recover the measure of

a ball with an arbitrary precision ǫ, by which we mean that difference between the computed

value and the real one is at most ǫ.

Theorem 3.20 Let µ be a probability measure on R. Given two distinct points x and y in R and

dµ,m(x) and dµ,m(y) for all m ∈ [0,1[, there exists an algorithm that computes µ(B(z,ρ)) with

precision ǫ for any z ∈R, ρ > 0 and ǫ> 0. Moreover, if µ has compact support, then µ(B(z,ρ))

can be exactly computed in finite time.

Proof: Remark first that, if z = x, then µ(B(z,ρ)) = m−
µ,x (ρ). Hence, let us assume that z 6= x

and z 6= y . The principle of the algorithm is to compute the mass of the ball B0 = µ(z,ρ) by

iteratively adding and removing masses from a sequence of intervals (Bi )i≥0 centred on points

(zi )i≥0. At each step we compute a quantity si that will be close to µ(B0) for some i determined

during the execution of the algorithm.

Construction:

Without loss of generality, we assume that x < y . By convention we write z0 = z. First we

consider the case z > x and z − x ≥ ρ. We build z1 to be the symmetric of z0 by x and fix

B1 = B(z1,ρ) =]z1 −ρ, z1 +ρ[. Note that B0 ∩B1 =;.

x z yz1

B0B1

Remark that a1 =µ(B0)+µ(B1) can be computed because a1 =µ(B(x, z −x +ρ))−µ(B̄(x, z −
x −ρ)) and using Lemma 3.19

a1 = m−
µ,x (z +ρ−x)−m+

µ,x (z −ρ−x) = s1.

We use information at point y . We define z2 to be the symmetric of z1 by y and fix B2 = B(z2,ρ).

x z yz1 z2

B0B1 B2

Again the mass µ(B1)+µ(B2) can be computed using Lemma 3.19.

a2 = m−
µ,y (z2 − y +ρ)−m+

µ,y (z2 − y −ρ)

Remark that B2 is disjoint from B1 and B0. Moreover, s2 = a1 −a2 =µ(B0)−µ(B2). We carry on

the iterative construction of zi+1 by taking the symmetric of zi by x if i is even and by y if i is

odd. Bi is defined as the open ball of centre zi and radius ρ, which is disjoint from all B j when

j < i , while si+1 = si + (−1)i ai+1 where ai+1 =µ(Bi )+µ(Bi+1). Every ai is computable as the

difference of mass between two balls centred either in x or in y .

a2i+1 =µ(B(x, z2i+1 +ρ))−µ(B̄(x, z2i+1 −ρ)) = m−
µ,x (z2i+1 −x +ρ)−m+

µ,x (z2i+1 −x −ρ)
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a2i =µ(B(y, z2i +ρ))−µ(B̄(y, z2i −ρ)) = m−
µ,y (y + z2i +ρ)−m+

µ,y (y + z2i −ρ)

By a trivial recursion, for any n > 0,

sn =
n∑

i=1
(−1)i+1ai =µ(B0)+ (−1)n+1µ(Bn).

If z < y and z − y ≥ ρ, then the symmetric construction obtained by reversing the roles of x

and y works to obtain the same final relation. However, if z > x, z −x < ρ and y −x < 2ρ, this

construction is not possible because B0 and B1 will no longer be disjoint. We need to slightly

change the construction of the sequence Bi . Be careful that the sets will no longer be open

intervals and it will change the way the various ai are computed. First, we build B1 such that

B1 ∪B0 is an open ball centred in x and B1 ∩B0 =;. This means that B1 =]2x − z −ρ, z −ρ]

is closed on the right side. To come back to the first construction, we fix z1 = x −ρ to be the

mean of B1 and ρ′ = z −x to be half its diameter. Hence B1 =]z1 −ρ′, z1 +ρ′].

x z yz1

B0B1

Keeping the definition ai = µ(Bi )+µ(Bi+1), we have a1 = µ(B(x, z +ρ− x)) = m−
µ,x (z +ρ− x).

We build iteratively Bi+1 as before, taking the symmetric of Bi either by x or y , depending on

the parity of i . The definitions of zi+1, ai+1 and si+1 follow naturally. Notice that B0 and B2 are

not necessarily disjoint. However, the construction is the same as before starting with B1 and

for any i > j > 0, Bi ∩B j =;. Be also careful that the computation of ai+1 is slightly different

from before, the function m+ being replaced by m−.

a2i+1 =µ(B(x, z2i+1 +ρ))−µ(B(x, z2i+1 −ρ)) = m−
µ,x (z2i+1 −x +ρ)−m−

µ,x (z2i+1 −x −ρ)

a2i =µ(B(y, z2i +ρ))−µ(B(y, z2i −ρ)) = m−
µ,y (y + z2i +ρ)−m−

µ,y (y + z2i −ρ)

x z yz1 z2

B0B1 B2

Termination of the algorithm:

Remark that µ(B0) is bounded by the values (si ) as for any i ≥ 1:

s2i ≤µ(B0) ≤ s2i+1.

Given the value ǫ, we can decide to stop the algorithm as soon as |si+1 − si | < ǫ. Then |si −
µ(B0)| < ǫ. We need to show that there exists such a i .

Fix n such that nǫ> 1. The measure µ is a probability measure and thus is positive with total

mass 1. Moreover, all the Bi for i ≥ 1 are pairwise disjoints and hence there exists j ∈ [1,n]

such that

a2 j =µ(B2 j−1)+µ(B2 j ) < ǫ.
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Otherwise:

µ(R) ≥
2n∑

i=1
µ(Bi ) =

n∑

j=1
a2 j+1 > nǫ> 1

When the measure has compact support then there exists a N such that for any n ≥ N , Bn ∩
Supp(µ) =; because (z2i ) and (z2i+1) are two unbounded monotonic sequence and hence

limn→∞ |zn | = +∞. Thus for any n ≥ N , we have sn = sn+1 =µ(B0).

3.5.4 Higher dimensional reconstruction for finite support measures
Unfortunately, the algorithm in dimension 1 can not be transposed in higher dimensions.

However, by considering only measures with finite support, we can reconstruct exactly a

measure µ in R
d by knowing the value of dµ,m at d +2 points for all masses m ∈ [0,1[.

HD-RECONSTRUCTION

1. Query dµ,m(xi ) for d +1 points (x1, . . . , xd+1) in general position.

2. For every i , compute the set Wi = {r |m−
µ,xi

(r ) 6= m+
µ,xi

(r )}.

3. Compute a superset Ω of Supp(µ) by taking Ω = ∪σ∈
∏d

i=0 Wi
∩d

j=1 S(x j ,σ j ), where σ j is

the j th component of σ and S(x,r ) is the sphere of centre x and radius r .

4. Assign correct masses to the points of Ω using the relation µ(S(xi ,r )) = m+
µ,xi

(r ) −
m−

µ,xi
(r ), making a query in another point if necessary.

Theorem 3.21 Let µ be a probability measure on R
d with finite support. Assuming that we can

query the function m 7→ dµ,m(x) for any x, the algorithm HD− reconstruction reconstructs the

measure µ with d +2 queries.

Proof: The remarks made in section 3.5.2 makes it possible to compute the set Wi for all i .

Given a point xi , it is sufficient to derive the function m 7→ dµ,m(xi ) and look for its disconti-

nuities. This way we can build the set W =
∏d

i=0 Wi .

The computation of the set Ω can be reduced to solving a set of linear systems. We lift

our space on the paraboloid P embedded in R
d+1 such that y2

d+1 =
∑d

i=1 y2
i for any point

y = (y1, . . . yd ) ∈R
d . A sphere of Rd becomes a hyperplane in R

d+1. Given σ ∈
∏d

i=0 Wi , the set

∩d
j=1S(x j ,σ j ) is the solution of a linear system of d +1 equations expressing the intersection of

d +1 hyperplanes. Due to the assumption on the general position of (x1, . . . , xd+1), this system

is non-degenerate and has a unique solution. We define Ω0 to be the set of all points that are

solution of at least one such linear system. We are only interested in the points located on the

paraboloid P . Hence, we take the intersection of Ω0 and P before projecting back on R
d to

obtain the set Ω.

Given a point x and a radius r , Lemma 3.19 gives µ(S(x,r )) =µ(B̄(x,r ))−µ(B(x,r )) = m+
µ,x (r )−

m−
µ,x (r ). Thus, we have Supp(µ) ⊂Ω. Moreover, it gives a system of

∑d
i=1 |Wi | equations on
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Chapter 3. Distance to a measure

the mass of points. For any i ∈ [1,d ] and r ∈Wi , the mass of µ(S(xi ,r )∩Ω) is known. If this

intersection is a single point then we assign the corresponding mass to the point. This is

always possible because µ is a valid assignment for the system. However, it is possible that

multiple assignments exist.

A

B

C

R

S U

T

Figure 3.5 – Case where masses can not be identified

This happens where it is impossible to distinguish between points as shown in Figure 3.5. Ω is

equal to the red points (R,S,T,U ) and we know α,β,γ such that:

µ(R)+µ(S) =α= 1− (µ(T )+µ(U ))

µ(R)+µ(T ) =β= 1− (µ(S)+µ(U ))

µ(T )+µ(U ) = γ= 1− (µ(R)+µ(S))

This system is not well conditioned. For example, if α=β= γ= 1
2 then µ(R) =µ(S) =µ(T ) =

µ(U ) = 1
4 is a solution but µ(R) = µ(U ) = 1

2 is another one. Notice that the three points A,

B and C are in general position. In this case, we can build a family of measures which are

candidates for µ. To recover µ exactly, we need to add a new query point. The way to remove

all ambiguities is to choose xd+2 such that no two points of Ω are at equal distance of xd+2.

In other words, xd+2 is outside the union of all bisector hyperplanes of points of Ω, which

happens with probability 1 if the point is randomly selected.

Remark that the cardinality of Supp(µ) is trivially lower bounded by the height of W and that

the necessity to use an additional point comes from very specific positions.

3.6 Relation to higher order Voronoi and power diagrams
In this section, we explore the relations between the distance to a measure and two families

of diagrams. The relation to the k th-order Voronoi diagram gives an interesting result on

reconstructing a measure from its distance with results similar to those of Section 3.5. This is

in turn related to power diagrams that provide the foundation upon which the approximation

techniques of Chapter 4 are built.
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3.6.1 k th-order Voronoi diagrams
The cell of a Voronoi diagram is defined as the set of points that share the same nearest

neighbour in P .

Definition 3.22 Let P be a point set in a metric space X. For any x ∈ P, the Voronoi cell of x is

the set:

V (x) = {y ∈X|∀p ∈ P, dX(x, y) ≤ dX(y, p)}

Figure 3.6 – A point cloud and its Voronoi diagram

The Voronoi diagram is the collection of Voronoi cells and their intersections. In the case

of Euclidean spaces, it corresponds to the dual of the famous Delaunay triangulation. More

details can be found in any classic book on computational geometry, for example [15].

This notion can be easily extended to higher order diagrams. The k th-order Voronoi diagram

is built by looking at the k nearest neighbours.

Definition 3.23 Let P be a point set in a metric space X. For any subset (x1, . . . , xk ) of k elements

of P, the corresponding k th-order Voronoi cell is the set:

V k (x1, . . . , xk ) = {y ∈X|∀p ∈ P \ (x1, . . . , xk ), ∀i ∈ [1,k], dX(xi , y) ≤ dX(p, y)}

Considering an empirical measure µ defined from a point set P , the relation between the

distance to µ for a mass m = k
n and the k th-order Voronoi diagram is direct. All points in the

same k th-order Voronoi cell share the same k nearest neighbours and thus d 2
µ,m restricted to

the cell is a quadratic form.

∀x ∈V k (x1, . . . , xk ), dµ,m(x)2 =
1

k

k∑

i=1
dX(xi , x)2
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Chapter 3. Distance to a measure

Figure 3.7 – The second order Voronoi diagram of the previous point cloud

This remark is especially interesting when the metric space X is Euclidean. It allow us to

identify a measure with finite support knowing only its distance for a sufficiently small mass

m.

Theorem 3.24 Let f be a function on a Euclidean space Rd , d ≥ 2, and m ∈ [0, 1
2 [. If there exists

an empirical measure µ with finite support P in general position such that f = dµ,m and for

any x ∈R
d , µ(x) ≤ m, then the measure µ is uniquely defined.

Proof: For the sake of simplicity, we assume that k = mn is an integer. Due to the hypotheses,

f is a quadratic form on each of the k th-order Voronoi cells of P . Thus it is differentiable in

the interior of all these cells. Let us define the set D = {x ∈R
d | f is not differentiable at x}. We

first show that D corresponds exactly to the boundary of k th-order Voronoi cells and thus to

the k th-order Voronoi diagram.

Let x be a point on the boundary of a k th-order Voronoi cell. Then there exists two sets

(x1, . . . , xk−1, y) and (x1, . . . , xk−1, z) such that x ∈ V k (x1, . . . , xk−1, y)∩V k (x1, . . . , xk−1, z) and

y 6= z. Moreover, we can choose y and z such that the two cells are not reduced to the point

x. Let us assume that f is differentiable at x. Then f 2 is also differentiable at x and we can

compute the gradient of f 2.

∇ f 2(x) =
2

k

(
k−1∑

i=1
(x −xi )+x − y

)

=
2

k

(
k−1∑

i=1
(x −xi )+x − z

)
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3.6. Relation to higher order Voronoi and power diagrams

However, y 6= z and thus we have a contradiction. The set D corresponds exactly to the

intersections of two or more k th-order Voronoi cells.

The k th-order Voronoi diagram is an affine diagram. Let us consider an edge e of this diagram.

Then there exist d points (x1, . . . , xd ) ∈ P d such that e is contained in the bisector hyperplanes

of xi and x j for all i 6= j . We denote a and b the two extremities of e. a is the centre of the

circumsphere to the d-dimensional simplex σ whose vertices are (x1, . . . , xd ) and another

point in P , denoted xd+1. The d − 1 dimensional faces of the k th-order Voronoi diagram

containing a are included inside the bisector hyperplanes of pairs of edges of σ. Knowing

these orthogonality conditions, the positions of the points (x1, . . . , xd ) possesses one degree of

freedom and σ is defined up to a homothety. Figure 3.8 illustrates the situation for d=2. The

dashed lines correspond to the directions on which the points can be placed and the blue

triangles represent some possible simplices σ.

e

a

b

Figure 3.8 – An edge with similar triangles having A as orthocentre

Assuming that the edge e is non-degenerate, consider one of the full-dimensional cell incident

to e. Only one point y from the set {x1, . . . , xd } is part of the subset associated with the cell. The

homotheties obtained for the simplices using the extremities a and b of e defines exactly y as

the intersection of two lines. Consequently, all the vertices of σ are uniquely defined. Thus,

any point p of P such that there exists a non-degenerate edge e with p in the set (x1, . . . , xd ) can

be reconstructed, which is equivalent to say that at least one k th-order cell is not associated

with p.

Having a mass parameter m < 1
2 guarantees that, for all p ∈ P , there exists a cell that is not

associated with p. Let u be a direction. The hyperplane H orthogonal to u and containing

p subdivides the spaces in two. We choose u such that H ∩P = {p}. One of the half-space

defined by h contains more than k points because m < 1
2 . Hence the unbounded k th-order

cell in the direction of u in this half-space is not associated with p.
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Chapter 3. Distance to a measure

The general position assumption is not needed as long as we can find a non-degenerate edge

for every point p. The assumption is made here to avoid a more complicated discussion.

The hypothesis on the mass stating that m < 1
2 is necessary as illustrated by Figure 3.9. In this

example, the point located at the centre of the circle is part of all Voronoi cells for m ≥ 1
2 and

thus cannot be precisely placed. In fact, if m > 1
2 , it will be possible to slightly move it without

modifying the diagram. The centre of the circle is associated with all cells of the 10th-order

Voronoi diagram. One cell is highlighted as well as its associated points.

Figure 3.9 – A point cloud where the central point is associated with all cells for k = 10

If we work on the real line, the absence of edges makes it necessary to know the parameter

m a priori in order to reconstruct the measure. However, assuming that m is known, we can

compute n as the number of cells is exactly n −k and the reconstruction is easy. Ordering

the points of P such that p1 ≤ pi ≤ pn , and the points of D as y1,≤ y j ≤ yn−k−1, we have the

relations:

y j −p j = p j+k − y j

This holds for all j and due to the assumption that m < 1
2 , the system is well conditioned and

admits a unique solution.

The set of points P used to defined the empirical measure µ was implicitly assumed to not

contain any point with multiplicity 2. This uniqueness result can be extended to measures

that do not correspond to empirical measure or to the case of P having points with multiplicity.

However, it is necessary to assume that no point of Supp(µ) accumulates more than a mass m

and that there exists a cell not associated with p for all p ∈ P . Then the construction of Supp(µ)

is identical as the one in the previous proof. The mass of each point p has to be computed at

the end. Remark that the support points of the power distance dµ,m can be found and that

they are barycentres of points of Supp(µ) taken with their weights. The number of cells being

more than the number of points, we can build a well-conditioned system of equations to

reconstruct µ.

3.6.2 Power diagrams

k th-order Voronoi diagrams are affine diagrams and thus are related to power diagrams. A

power diagram is defined using a function called a power distance.

Definition 3.25 Let P be a compact subset of a metric space X. Given a function w : P →R, the
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3.6. Relation to higher order Voronoi and power diagrams

power distance f associated with (P, w) is defined by:

f (x) = inf
p∈P

(√
dX(p, x)2 +w(p)2

)

P is called the support of f .

For the sake of simplicity, the weight w(p) will be written as wp in the rest of the dissertation.

Lemma 3.26 A power distance f associated with (P, w) in a metric space X is 1-Lipschitz.

Proof: Consider x and y in X. For any ǫ > 0, there exists p ∈ P such that w2
p +dX(x, p)2 ≤

f (x)2 +ǫ2.

f (y)2 ≤ w2
p +dX(y, p)2

≤ w2
p +dX(x, p)2 +dX(x, y)2 +2dX(x, p)dX(y, p)

≤ f (x)2 +dX(x, y)2 +2 f (x)dX(y, p)+ǫ(ǫ+2dX(y, p))

≤
(

f (x)+dX(x, y)
)2 +ǫ(ǫ+2dX(y, p))

dX(y, p) is bounded as P is compact and the relation holds for any ǫ. Thus, f is 1-Lipschitz.

When P is a set of points, we build power diagrams with the same construction as Voronoi

diagrams, but using power cells instead of Voronoi cells.

Definition 3.27 Let f be a power distance associated with (P, w) in a metric space X. For any

p ∈ P, the power cell associated with p is defined by:

C (p) =
{

x ∈X|∀q ∈ P,
√

dX(p, x)2 +w2
p ≤

√
dX(q, x)2 +w2

q

}

In Euclidean spaces, any affine diagram can be expressed in the way of a power diagram

defined with a power distance. This result is due to Aurenhamer and Imai [7, Theorem 3]. In

our case, this translates in the following theorem, which is a restriction of [25, Proposition 3.1]

Theorem 3.28 Let µ be a probability measure with finite support on an Euclidean space R
d

and m ∈ [0,1[ be a mass parameter. There exists a set of points P and of weights (wp )p∈P such

that dµ,m = f , where f is the power distance associated with (P, w).

The power distance f can be constructed as shown in [67] and detailed in section 4.1. The

interesting part is that the sub-level sets of a power distance are a union of balls centred on

the points of P . Thus we can describe the sub-level sets of dµ,m and use the Nerve Theorem to

build a simplicial complex similar to the Čech complex to compute the persistent homology of

dµ,m . However, the number of balls is the same as the number of non-empty k th-order Voronoi

cells in the case of an empirical measure. This number can be of order O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉)
[39]

which make it impossible to use in practice. Chapters 4 and 5 will tackle this problem using

approximating schemes.
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4 Distance to a measure approximation

The interest of the distance to a measure for handling noise in persistent homology is hindered

by the complexity of its sub-level sets. Theorem 3.28 guarantees that in Euclidean spaces, the

sub-level sets can be described as a union of balls. However, the number of balls is too large to

make it usable in practice. Moreover, this description cannot be used in other metric spaces.

This chapter explores schemes to approximate the distance to a measure in order to reduce

the number of balls needed to describe the sub-level set of the distance to a measure.

First, we consider the case of an empirical measure µ on a finite point cloud P in an Euclidean

space. The results are provided without any assumption on the nature of µ or the generative

model of P . In a second time, we provide a way to approximate the distance to an empirical

measure in any metric space with a linear number of balls. Moreover, this approximation

scheme can be extended to any probability measure with compact support.

Let us make a quick recall of notation. When working with empirical measures, we consider

a point set P with n points and a mass parameter m. k = mn is assumed to be an integer

for the sake of simplicity. All results adapt if it is not the case but all proofs need specific

considerations for the ⌈k⌉th-nearest neighbour as shown in the proofs of Propositions 3.13

and 3.14.

4.1 Barycentric decomposition

In Euclidean spaces, the distance to an empirical measure can be described as a power distance

following Theorem 3.28. This means that its sub-level sets are a union of balls. The exact

expression of the power distance can be easily computed. Its support is a subset of Λk (P ), the

set of all barycentres of k points of P . This observation was first made in [67]. Let us write

(p1(x), . . . , pk (x)) the k-nearest neighbours of x and let bar (x) be their barycentre. Then the

distance to a measure becomes:
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dµ,m(x)2 =
1

k

k∑

i=1
||pi (x)−x||2

=
1

k

k∑

i=1

(
||pi (x)−bar (x)||2 +||bar (x)−x||2 +2 < pi (x)−bar (x)|bar (x)−x >

)

=
1

k

k∑

i=1
||pi (x)−bar (x)||2 +||bar (x)−x||2 +2 <

1

k

k∑

i=1
pi (x)−bar (x)|bar (x)−x >

=
1

k

k∑

i=1
||pi (x)−bar (x)||2 +||bar (x)−x||2

Remark that the first expression in the last equality depends only on the k th-order Voronoi

cell in which the point x is located. These cells are each associated with a set of k points of P

and thus with a barycentre. Let us introduce the weight associated with the barycentre, which

is the weight used in the power distance.

Definition 4.1 Let (q1, . . . , qk ) be a set of k points of P, then the weight associated with y =
1
k

∑k
i=1 qi is:

w2
y =

1

k

k∑

i=1
||qi − y ||2

Proposition 4.2 Let P be a point cloud in R
d and m ∈ [0,1[ be a mass parameter such that

k = mn. The distance to µ, dµ,m , is equal to the power distance associated with (Λk (P ), w),

where w is the weight from the previous definition. It means that:

dµ,m(x) = min
y∈Λk (P )

√
||x − y ||2 +w2

y =
√

||bar (x)−x||2 +w2
bar (x).

Proof: Let x be a point of Rd . We have dµ,m(x)2 = w2
bar (x) +||bar (x)−x||2 and bar (x) ∈Λk (P ).

Thus dµ,m(x) ≥ miny∈Λk (P )

√
||x − y ||2 +w2

y .

Now, consider a set of points (q1, . . . , qk ) ∈ P k and y their barycentre.

||x − y ||2 +w2
y =

1

k

k∑

i=1
||qi −x||2 ≥

1

k

k∑

i=1
||pi (x)−x||2 = dµ,m(x)2

Hence dµ,m(x) = miny∈Λk (P )

√
||x − y ||2 +w2

y .

The sub-level sets of dµ,m are thus a union of at most
(n

k

)
balls. In practice, some of these

balls are always included in others. They corresponds to sets of k points of P such that no

point x ∈ R
d has them as its k-nearest neighbours. In other words, their k th-order Voronoi

cell is empty. The set of barycentres Λk (P ) can thus be trimmed to the set of barycentres

corresponding to non-empty k th-order Voronoi cell without loss of precision. Although this

reduction is welcome, it is not sufficient to make computation tractable as the number of

non-empty cells can be O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉)
[39].
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4.2 Random sampling
Reducing the number of balls needed to describe the sub-level sets of the distance to a measure

is a necessity to be able to compute persistence diagrams in reasonable time. This can be seen

as reducing the number of points supporting the power distance. A natural way to do it is to

sample the set of barycentres.

We already saw that some of the barycentres are useless. Thus, we want to sample among the

other ones, those that are associated with a non-empty Voronoi cell. The 1-Lipschitz property

of dµ,m implies that removing a barycentre with a small cell will create an error of at most the

diameter of the cell.

Lemma 4.3 Given P a finite point set of Rd , a fixed m ∈ [0,1[ and µ the empirical measure on

P, let S be the support of dµ,m and w the weight function. For any b ∈ S, the power distance

f associated with (S \ {b}, w |S\{b}) satisfies || f −dµ,m ||∞ ≤∆b , where ∆b is the diameter of the

Voronoi cell associated with b.

Proof: Let C be the cell associated with b. Remark that f and dµ,m are equal outside C . Take

x ∈C . There exists a point y ∉C such that dX(x, y) ≤ ∆b
2 . dµ,m and f are 1-Lipschitz functions

and hence | f (x)−dµ,m(x)| ≤ 2dX(x, y) ≤∆b .

Selecting barycentres associated with bigger cells is hence natural. However, if there is an area

with only small cells, it is necessary to take at least one of the barycentres. We propose an

algorithm that samples randomly the barycentres. Given a point cloud P and a number i of

queries, it outputs a set of barycentres and their weights. Each query corresponds to a random

choice of a point and the computation of the barycentre associated with the cell containing

the point. The algorithm needs a box enclosing the point cloud P . It can be interesting to use

a box larger than the minimal enclosing one due to some outer Voronoi cell we may want to

capture.

dµ,m APPROXIMATION BY RANDOM SAMPLING

1. Compute an enclosing box of P .

2. Repeat i times:

(a) Pick uniformly at random a point x inside the box.

(b) Compute the barycentre y of the k nearest neighbours of x.

(c) If y is not yet in the result set B , add it to it and compute its weight.

We first show how the choice of the enclosing box affects the approximation. Let us write d B
µ,m ,

the approximation obtained by sampling the barycentres.

Lemma 4.4 If d B
µ,m approximates dµ,m with additive precision ǫ in the enclosing box B, then
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for any x ∈R
d ,

|d B
µ,m(x)−dµ,m(x)| ≤ min(max

y∈∂B

(dµ,m(y))+ǫ;ǫ+2dX(x,B)),

where ∂B is the boundary of B.

Proof: Trivially, we have d B
µ,m ≥ dµ,m . Consider a point x at distance δ from the enclosing box

B and let π(x) be its projection onto B.

δ≤ dµ,m(x) ≤ d B
µ,m(x) ≤ d B

µ,m(π(x))+δ≤ dµ,m(π(x))+ǫ+δ≤ dµ,m(x)+ǫ+2δ.

The choice of the enclosing box must balance maxy∈∂B dµ,m(y) that increases as the box grows

and dX(x,∂B) that decreases. Now, we prove that we are able to approximate dµ,m with

precision ǫ inside the enclosing box. We recall that V 0
d (r ) is the volume of a ball of radius r in

R
d .

Theorem 4.5 Let P be a finite point set in R
d and m ∈ [0,1[ be a mass parameter. Considering

the empirical measure µ on P, the random sampling algorithm returns an ǫ additive approx-

imation of dµ,m in the enclosing box B after O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉
+d log(n +k) ∆

V 0
d (ǫ)

)
queries with

probability at least 1
2 , where ∆ is the volume of B.

Proof: Remark that given a k th-order Voronoi cell V , if one of the query point was in V

then dµ,m |V = d B
µ,m |V . Let T be the union of all such cells. Then for all x ∈ R

d such that

B(x, ǫ2 )∩T 6= ;, |dµ,m(x)−d B
µ,m(x)| ≤ ǫ because dµ,m and d B

µ,m are 1-Lipschitz.

We bound the number of queries needed such that for all x ∈B, B(x, ǫ2 )∩T 6= ;. We introduce

p =
(

V 0
d

(
ǫ
2

)

∆

)
, the probability for a query point to be in a given ball of radius ǫ

2 .

We consider an uniform sampling of i queries, X1, . . . , Xi . We now build a tree where each

node corresponds to an event with some probability. We start with T1 = ;. Assuming that

there exists a x1 such that B(x1, ǫ2 )∩T1 = ;, we denote as A1 the event, ∃ j ≤ i , X j ∈ B(x, ǫ2 ).

Remark that Pr (A1) ≥ 1− (1−p)i . The ball B(x1, ǫ2 ) intersects one or more k th-order Voronoi

cells. We denote by C 1
1 , . . . ,C c1

1 these cells. Let B 1
1 the event that the first point to hit B(x1, ǫ2 )

is in C 1
1 . In this case, T2 = T1 ∩C 1

1 . If there exists x2 such that B(x2, ǫ2 )∩T2 =;, then we start

again with x2. The probability that one query point is inside B(x2, ǫ2 ) conditionally to B 1
1 is

greater than 1− (1−p)i−|T2|.

Recursively, we can define the whole tree. The depth of the tree is bounded by the number of

the number N of non-empty k th-order Voronoi cells. Given a path from the root to a leaf, the

realisation of all events on this path guarantees that the propriety needed for the theorem is

realised.

At each node, the conditional probability of the event A conditionally to the event B is bounded

from below by 1− (1−p)i−N . Moreover, the union of the event of type B conditionally to the

event of type A is 1. By recursion, we can go back from the leaves to the root. The probability

that at least one of the path has all events realised is at least 1−N (1− p)i−N . Knowing
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that N = O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉)
, and to guarantee that this probability is more than 1

2 , we need

i=O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉
+d log(n +k) ∆

V 0
d (ǫ)

)
.

Remark that the condition B(x, ǫ2 )∩T 6= ; is necessary to ensure that the error in x is less than

ǫ. Consider the power distance f associated with (Q,0), where Q is composed of x and an

arbitrary number of points located on the sphere of centre x and radius ǫ. This setting can

be achieved as a distance to a measure by considering the empirical measure on Q and k = 1.

Then, if there is no query point inside B(x, ǫ2 ), x is not a selected barycentre and d B
µ,m(x) = ǫ,

while dµ,m(x) = 0.

Although, this approximation scheme is working rather well in practice with a number of

queries linear in the size of P , we are unable to give guarantees on the result due to the

randomness. Remark that the number of queries needed to obtain guarantees is of the same

order as the number of points needed by the algorithm taking the queries on a grid.

We now concentrate on linear sized sets to approximate the distance to a measure using deter-

ministic algorithms. These schemes provide multiplicative approximation bounds instead of

additive ones.

4.3 Witnessed k-distance
The first method to approximate the distance dµ,m to an empirical measure µ in an Euclidean

space was proposed in [67]. Using the power distance structure of dµ,m , we select only the

barycentres that are associated with a cell containing a point of P . On the first hand, this

guarantees that we select at most |P | points to describe the new power distance. On the other

hand, it makes sense for inference purpose because P is supposed to sample an underlying

object. We want to recover precisely dµ,m in the area located near the underlying object and,

hence, near P .

Definition 4.6 Let P be a finite point set of Rd and let m ∈ [0,1[ be a mass parameter. Consider-

ing the empirical measure µ over P, the witnessed k-distance is defined as

dW
µ,m(x) = min

p∈P

√
w2

bar (p) +||bar (p)−x||2.

The computation of the weights does not present more difficulty than the search of the k

nearest neighbours for each point. The number of queries is exactly the size of the point set P .

Figure 4.1 shows a point set P and the barycentres for k = 2. From top to bottom, it displays

the set of all barycentres, then the set of all barycentres associated with a non-empty cell and

then the set of barycentres kept when using the witnessed k-distance.

A bound on the quality of the approximation was given [67, Lemma 3.3]. We improve this

bound to be at least as good as our new approximation, described in Section 4.4. We are not

able to prove the tightness of the bound. However, we can give a lower bound on the precision.

Theorem 4.7 Let P be a finite point set of Rd and let m ∈ [0,1[ be a mass parameter. Considering

the empirical measure µ over P,

dµ,m ≤ dW
µ,m ≤

p
6 dµ,m .

51



Chapter 4. Distance to a measure approximation

(a) All barycentres for k = 2

(b) Barycentres associated with non-empty cells for k = 2

(c) Barycentres used by the witnessed k-distance

Figure 4.1 – Set of barycentres associated with a point cloud52



4.3. Witnessed k-distance

The previous version of this theorem [67, Lemma 3.3] used a 3 instead of the
p

6. We postpone

the proof as it will be a quite direct corollary of Theorem 4.15 and concentrate first on studying

the tightness of the bound.

The tightness of the lower bound is obvious as it suffices to take k = 1 to get an equality

between dµ,m and dW
µ,m . However, we do not know if the upper bound is tight. The bound

p
6

can not be less than 1+
p

2, whose value is greater than
p

5.82.

Let us introduce the following example in R
d . We fix k = 2d and 0 < ǫ<

p
2. The point cloud P

consists of 4d 2 points located at the coordinates (0, · · · ,0,α,0, · · · ,0) with multiplicity 1 when

α= 1 or α=−1 and multiplicity 2d −1 when α= 1+
p

2−ǫ or α= ǫ−1−
p

2. Figure 4.2 gives its

representation in dimension 2 where triangles have multiplicity 1 and circles have multiplicity

3.

Figure 4.2 – Example for the tightness of dW
µ,m

The points are placed such that the k nearest neighbours of any triangle are itself and the k −1

points located at the nearest circle. These k nearest neighbours are also the ones from the

circles.

Consider the value of the dµ,m and dW
µ,m at the origin o. Each of the k nearest neighbors of o is

at distance exactly 1 from o. Hence,

dµ,m(o) = 1.

The construction induced that the structure is perfectly symmetric and the set of barycentres

W we consider in the witnessed k-distance contains exactly 2d points. These points are

located at the coordinates (0, · · · ,0,α,0, · · · ,0) where α= 1+ 2d−1
2d (

p
2−ǫ) or the opposite.
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Chapter 4. Distance to a measure approximation

Let b be a member of W . The weight associated with b is

wb =
1

2d

[(
2d −1

2d
(
p

2−ǫ)

)2

+ (2d −1)

(
1

2d
(
p

2−ǫ)

)2]

=
2d −1

(2d)3

[
(2d −1)(

p
2−ǫ)2 + (

p
2−ǫ)2

]

=
2d −1

(2d)2
(
p

2−ǫ)2.

All of the points of W are located at the same distance to o. Hence,

dW
µ,m(o)2 = wb +

(
1+

2d −1

2d
(
p

2−ǫ)

)2

=
2d −1

(2d)2
(
p

2−ǫ)2 +1+
2d −1

d
(
p

2−ǫ)+
(2d −1)2

(2d)2
(
p

2−ǫ)2

=
1

2d
+

2d −1

2d

(
1+2(

p
2−ǫ)+ (

p
2−ǫ)2

)

=
1

2d
+

2d −1

2d
(1+

p
2−ǫ)2.

Since we can take ǫ as small as we want and make the dimension grow, this relation ensures

that we cannot find a better constant than 1+
p

2 in Theorem 4.7. Remark that this does not

change if we apply a homothety to the example. Hence an additive bound is out of reach.

Previous work in [67] concentrated on the inference purpose of the distance to a measure,

which is not our focus here. Assuming the presence of a ground truth under the guise of a

Riemannian manifold, it is possible to achieve some additive bound between the distance to

the manifold and the witnessed k-distance.

4.4 Power distance with compact support
The witnessed k-distance presents two properties that we want to get rid of. First, it is only

usable in Euclidean spaces as it involves barycentres. For more general classes of spaces,

barycentres do not always exist and the distance to an empirical measure can not necessarily

be expressed as a power distance. The second point is related to scalar field analysis. Assume

that the points of P are sampled on a manifold M and that a real valued function f is defined

on the manifold. If we are interested in analysing the structure of f , it does not make a lot

of sense to consider the barycentres that can be outside M and it is difficult to assign them a

value.

The functions used until now are power distances f associated with (Q, w), where Q is a subset

of Λk (P ), the set of all barycentres of k points of P . Therefore the sub-level set f −1(]−∞,α]) is

a union of balls centred on the points q of Q. Their radius can be computed and is given by

rq (α) =
√
α2 −w2

q . When this radius is imaginary, the ball is considered empty by convention.

Power distances are stable under small perturbations of the points and thus we can hope to

change the support to obtain a more interesting approximation of dµ,m .

We first discuss the stability of power distances and then provide an approximation to dµ,m ,
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4.4. Power distance with compact support

whose support is exactly P and give guarantees equivalent to the one obtained with the the

witnessed k-distance.

4.4.1 Stability of power distances

The stability of power distances is directly linked to the weights put on the points. Considering

two weighted points clouds P and Q in a metric space X, we assume that the weights of the

power distances are t-Lipschitz. This means that they are induced by a t-Lipschitz function

on X and are obtained by restricting this function to P and Q. Stability is then obtained with

respect to the Hausdorff distance between P and Q.

We present two different results. Proposition 4.10 is better than Proposition 4.8 but maybe less

straightforward.

Proposition 4.8 Let X be a metric space, and let w : X→R be a function from X to R. Let P and

Q be two compact subsets of X. Let fP and fQ be the power distances associated with (P, w|P )

and (Q, w|Q ). If w is t-Lipschitz with t ≥ 1, then:

|| fP − fQ ||∞ ≤
p

2 t dH (P,Q).

Proof: Let x be a point of X and q ∈Q such that fQ (x)2 = w2
q +dX(x, q)2. There exists a point

p ∈ P such that dX(p, q) = ǫ≤ dH (P,Q). So,

fP (x)2 ≤ w2
p +dX(p, x)2

≤ (wq + tǫ)2 + (dX(q, x)+ǫ)2

= w2
q +dX(q, x)2 +2(t wq +dX(x, q))ǫ+ (1+ t 2)ǫ2.

Using t ≥ 1,

fP (x)2 ≤ fQ (x)2 +2t (wQ +dX(q, x))ǫ+2t 2ǫ2.

Moreover, the relation a +b ≤
p

2
p

a2 +b2 implies

fP (x)2 ≤ fQ (x)2 +2
p

2t fQ (x)ǫ+2t 2ǫ2 = ( fQ (x)+
p

2tǫ)2.

To conclude the proof, it suffices to reverse the roles of P and Q.

The second stability result relies on a lemma about inclusions between balls. In addition to the

stability result of Proposition 4.10, it is also useful for the study of the weighted Rips filtration

of Chapter 5.

Lemma 4.9 Let p, q ∈ X be points such that dX(p, q) ≤ ǫ, and let w : X→ R be a t-Lipschitz

function. For all α≥ wp ,

rp (α)+ǫ≤ rq (α+
√

1+ t 2 ǫ).
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Chapter 4. Distance to a measure approximation

Proof: First, observe that rp (α) can be bounded by

rp (α)2 =α2 −w2
p ≤α2 −w2

p + (tα−
√

1+ t 2 wp )2

= (
√

1+ t 2 α− t wp )2.

Next, we relate rp and rq ,

(rp (α)+ǫ)2 =α2 −w2
p +2ǫ

√
α2 −w2

p +ǫ2

≤α2 −w2
p +2ǫ(

√
1+ t 2 α− t wp )+ǫ2

= (α+
√

1+ t 2 ǫ)2 − (wp + tǫ)2

≤ (α+
√

1+ t 2 ǫ)2 −w2
q

= rq (α+
√

1+ t 2 ǫ)2.

The requirement that α≥ wp allows us to take the square root of both sides of the inequality

since both will be nonnegative.

The lemma means that for a parameter α, the ball centred at p with radius rp (α) is included

inside a ball centred at q with radius α′, slightly larger than α, as illustrated by Figure 4.3.

p
q

rp (α)

ǫ

ǫ
rq (α+

p
1+ t 2ǫ)

Figure 4.3 – Inclusion of weighted balls

Proposition 4.10 Let X be a metric space and let w : X→R be a function. Let P and Q be two

compact subsets of X. Let fP and fQ be the power distances associated with (P, w|P ) and (Q, w|Q ).

If w is t-Lipschitz, then

|| fP − fQ ||∞ ≤
√

1+ t 2 dH (P,Q).

Proof: Let x be any point of X. There exists p ∈ P such that x ∈ B̄(p,rp ( fP (x))). There

also exists q ∈ Q such that dX(p, q) ≤ dH (P,Q). By Lemma 4.9 and the triangle inequality,

x ∈ B̄(q,rq ( fP (x)+
p

1+ t 2 dH (P,Q))). Thus, fQ (x) ≤ fP (x)+
p

1+ t 2 dH (P,Q). P and Q are

interchangeable, therefore || fQ − fP ||∞ ≤
p

1+ t 2 dH (P,Q).
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4.4. Power distance with compact support

4.4.2 Approximation of the distance to a measure

Given a probability measure µ defined over a metric space X, we propose an approximation

d P
µ,m to dµ,m using power distances. Remark that we are no longer restricted to empirical

measures. This approximation starts by fixing a set P , which will serve as the support of the

power distance. We show that, for a well chosen P , we obtain a good approximation of dµ,m .

Definition 4.11 Let µ be a probability measure on a metric space X and let m ∈ [0,1[ be a mass

parameter. Given a subset P of X, we define d P
µ,m as the power distance associated with (P,dµ,m):

d P
µ,m(x) =

√
min
p∈P

dµ,m(p)2 +dX(p, x)2.

The weight of each point is its distance to the measure µ. If P is close to Supp(µ), we obtain an

approximation of dµ,m .

Theorem 4.12 Let µ be a probability measure on a metric space X and let m ∈ [0,1[ be a mass

parameter. Let P be a subset of X. If P is an ǫ-sample of Supp(µ), then

1
p

2
dµ,m ≤ d P

µ,m ≤
p

5 (dµ,m +ǫ).

Proof: Let x be a point of X. Using notations of Section 3.4,

dµ,m(x)2 =
1

m

∫

X

dX(y, x)2µx,m(y)dy.

Fix a point p ∈ P . Since µp,m is a submeasure of µ of total mass m,

dµ,m(x)2 =
1

m

∫

X

dX(y, x)2µx,m(y)dy

≤
1

m

∫

X

dX(y, x)2µp,m(y)dy

≤
1

m

∫

X

(dX(y, p)+dX(p, x))2µp,m(y)dy

≤ dX(p, x)2 2

m

∫

X

µp,m(y)dy +
2

m

∫

X

dX(y, p)2µp,m(y)dy

= 2(dX(p, x)2 +dµ,m(p)2).

The third inequality follows from the triangle inequality and the relation (a +b)2 ≤ 2(a2 +b2).

As the inequality holds for any point p in P we conclude that

dµ,m(x) ≤
p

2 d P
µ,m(x).
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Chapter 4. Distance to a measure approximation

To show the other inequality, we again fix p ∈ P . By definition,

d P
µ,m(x)2 ≤ dX(x, p)2 +dµ,m(p)2

≤ dX(x, p)2 +
1

m

∫

X

dX(p, y)2µx,m(y)dy

≤ dX(x, p)2 +
1

m

∫

X

(dX(p, x)+dX(x, y))2µx,m(y)dy

≤ 3 dX(x, p)2 +2 dµ,m(x)2.

By definition of dµ,m , dX(x,Supp(µ)) ≤ dµ,m(x). Consequently, there exists a point p ∈ P such

that dX(x, p) ≤ dµ,m(x)+ǫ. Hence,

d P
µ,m(x)2 ≤ 5(dµ,m(x)+ǫ)2.

4.4.3 Restriction to measures with finite support
Given a finite set of points P in a metric space X, we want to approximate the distance to the

empirical measure µ on P . Taking P itself as the support for the power distance, Theorem 4.12

yields an immediate corollary as ǫ= 0. Moreover, these bounds are tight.

Corollary 4.13 Let P be a finite point set of a metric space X and m ∈ [0,1[ be a mass parameter.

Considering the empirical measure µ on P,

1
p

2
dµ,m ≤ d P

µ,m ≤
p

5 dµ,m .

Proposition 4.14 The bounds of Corollary 4.13 are tight.

Proof: We are looking for a worst case scenario where inequalities become equalities for at least

one point. We consider the space R
d with the L1-norm, denoted | · |. For any fixed dimension

d , we build the set of 2d points whose coordinates have the form (0, · · · ,0,±1,0, · · · ,0). These

points are marked by triangles in the 2-dimensional illustration of Figure 4.4. Remark that

their pairwise distances are all equal to 2. We fix k = 2d and we study dµ,m and d P
µ,m at points

q(−3,0 · · · ,0) and o. First we compute the value of dµ,m(p) for any p ∈ P :

dµ,m(p)2 =
1

2d

∑

q∈P
|q −p|2 =

1

2d

∑

q∈P\{p}
22 = 4

2d −1

2d
= 4−

2

d

Now we compute the value of dµ,m at q and o:

dµ,m(o)2 =
1

2d

∑

p∈P
|p −o|2 = 1

dµ,m(q)2 =
1

2d

∑

p∈P
|p −q|2 =

1

2d
(4+ (2d −1)16) = 16−

6

d
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q p1 p2

p3

p4

o

Figure 4.4 – Example for the tightness of d P
µ,m in a general metric space

All the points p have the same value for dµ,m . Hence,

d P
µ,m(o)2 = dµ,m(p)2 +|p −o|2 = 5−

2

d

d P
µ,m(q)2 = dµ,m(p)2 +|p −q|2 = 8−

2

d

When d increases, the ratio
d P
µ,m (o)

dµ,m (o) tends to
p

5, while
d P
µ,m (q)

dµ,m (q) tends to 1p
2

. Thus, the bounds of

Corollary 4.13 are reached at the limit for the same data set, although at two different points.

Remark that the construction can be arbitrarily scaled thus an additive bound is out of reach.

4.4.4 Euclidean case

Restricting the class of metric spaces we consider yields better bounds. We consider the

Euclidean space R
d with the L2-norm. Considering a finite point set P and its empirical

measure µ in R
d , we are able to obtain bounds of the same quality as those of the witnessed

k-distance.

Theorem 4.15 Let P be a finite point set in R
d and let m ∈ [0,1[ be a mass parameter. Consider-

ing the empirical measure µ on P, the following relation is tight.

1
p

2
dµ,m ≤ d P

µ,m ≤
p

3 dµ,m .

Proof: The first inequality is exactly the same as the one from Theorem 4.12. For the second

inequality, let x be a point in R
d , and let p be a point of P . Thus,

d P
µ,m(x)2 ≤ dµ,m(p)2 +||p −x||2.

Using Proposition 4.2,

d P
µ,m(x)2 ≤ w2

bar (x) +||p −bar (x)||2 +||p −x||2,
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Chapter 4. Distance to a measure approximation

and with the inner product, this becomes

d P
µ,m(x)2 ≤ w2

bar (x) +||x −bar (x)||2 +2||p −x||2 +2 < x −bar (x)|p −x >

= dµ,m(x)2 +2||p −x||2 +2 < x −bar (x)|p −x > .

Note that

2 < bar (x)−x|x −p >= ||bar (x)−p||2 −||bar (x)−x||2 −||x −p||2.

Thus,

d P
µ,m(x)2 ≤ dµ,m(x)2 +||p −x||2 +||bar (x)−p||2 −||x −bar (x)||2.

This relation holds for any point of P . In particular it holds for any of the k nearest neighbours

of x. If we take the average over the k nearest neighbours of x and eliminate the negative term

−||x −bar (x)||2, we obtain

d P
µP ,m(x)2 ≤ dµP ,m(x)2 +

1

k

∑

p∈N N P
k (x)

||p −x||2 +
1

k

∑

p∈N N P
k (x)

||bar (x)−p||2.

Using the definitions of weights and of the distance to the measure,

d P
µ,m(x)2 ≤ dµ,m(x)2 +dµ,m(x)2 +w2

bar (x)

where wbar (x) ≤ dµ,m(x). We conclude that

d P
µ,m(x) ≤

p
3 dµ,m(x).

We now provide an example where these bounds are tight. For P , consider the two points a

and b on the real line with coordinates 1 and −1 as given in Figure 4.5.

-1 0 1

a bo

Figure 4.5 – Example for the tightness of d P
µ,m in Euclidean space

Fix the mass parameter m equal to 1 so that k = 2. It follows that

dµ,m(a) = dµ,m(b) =
√

1

2
||b −a||2 =

p
2,

dµ,m(o) =
√

1

2
||o −b||2 +||o −a||2 = 1.

We now compute the last interesting value:

d P
µ,m(o)2 = dµ,m(a)2 +||a −o||2 = 3.
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We can thus conclude that d P
µ,m(o) =

p
3 dµ,m(o) which gives us the tightness of the upper

bound.

For the lower, let us modify the weights. a has now weight (1−ǫ) and b has weight ǫ. There is

only one barycentre c at coordinate 2ǫ−1. Consider the point d at coordinate 3−2ǫ. Then:

dµ,m(d) =
√

(1−ǫ)(4−2ǫ)2 +ǫ(2−2ǫ2) =
√

16+12ǫ2

d P
µ,m(d) =

√
(2−2ǫ)2 +4(1−ǫ) =

√
8−12ǫ+4ǫ2

ǫ can be taken arbitrarily small and hence the lower bound is tight.

Given Theorem 4.15, the proof of Theorem 4.7 becomes easy.

Proof: First remark that dW
µ,m is a minimum over a smaller set than dµ,m due to Proposi-

tion prop:barDecompo. We thus get dµ,m ≤ dW
µ,m .

Let x be a point in R
d . Thus for any p ∈ P ,

dW
µ,m(x)2 ≤ w2

bar (p) +||bar (p)−x||2

≤ w2
bar (p) +||bar (p)−p||2 +||p −x||2 +2〈bar (p)−p|p −x〉

≤ dµ,m(p)2 +2||p −x||2 +||bar (p)−p||2

≤ 2(dµ,m(p)2 +||p −x||2)

≤ 2 d P
µ,m(x)2.

Using Theorem 4.15, we conclude:

dW
µ,m(x) ≤

p
2 d P

µ,m(x) ≤
p

6 dµ,m(x).

4.5 Application to persistence diagrams approximation
We now have a way to efficiently approximate the sub-level sets of the distance to a measure.

Thus, we hope to use it to approximate its persistence diagram. The presence of an additive

approximation gives a direct way to approximate persistence diagrams.

Lemma 4.16 Let f and g be two real valued functions with q-tame sub-level sets filtrations on

a metric space X. Then,

dB (Dgm( f ),Dgm(g )) ≤ || f − g ||∞

Proof: Recall that Dgm( f ) is the persistence diagram of the sub-level sets filtration { f −1(]−
∞,α])}α∈R. For any α ∈R,

f −1(]−∞,α]) ⊂ g−1(]−∞,α+|| f − g ||∞]).

As the relation is symmetric, this means that the two sub-level sets filtrations are || f − g ||∞-

interleaved and Corollary 2.27 applies.
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Chapter 4. Distance to a measure approximation

Here, we are interested in a restricted class of functions. We consider the distance to a

probability measure µ and some power distances with finite support. First, we need to prove

that they have well-defined persistence diagrams. We show that the functions are q-tame

using the following theorem:

Theorem 4.17 ([26, Theorem 2.22]) Let C be a finite simplicial complex and let f : C →R be a

continuous function. Then the sub-level sets filtration of f is q-tame.

First, we show that the distance to a probability measure is q-tame. Remark that dµ,m is a

non-negative function. Thus, we consider the sub-level sets d−1
µ,m([0,α]).

Proposition 4.18 Let µ be a probability measure on a triangulable metric space X, and let

m ∈ [0,1[ be a mass parameter. The sub-level sets filtration of dµ,m is q-tame.

Proof: Following Corollary 3.16, dµ,m is continuous and non-negative. If for any α, the sub-

level set d−1
µ,m([0,α]) is compact, then the sub-level sets filtration of dµ,m is q-tame. Since X is

triangulable, there exists a homeomorphism h from X to a locally finite simplicial complex

C . Then for any α> 0, we can restrict the simplicial complex C to a finite simplicial complex

Cα that contains the compact h(dµ,m([0,α])). The function dµ,m ◦h−1|Cα
is continuous on Cα.

Thus its sub-level sets filtration is q-tame [26, Theorem 2.22].

The construction extends to any α and therefore the sub-level sets filtration of dµ,m ◦h−1 is

q-tame. Furthermore, homology is preserved by homeomorphisms and thus we can say that

the sub-level sets filtration of dµ,m is q-tame.

We only need to show that any sub-level set d−1
µ,m([0,α]) is compact. Suppose for contradiction

that there exists an α> 0 such that d−1
µ,m([0,α]) is not compact. Then there exists a sequence

(xi )i>0 of points of d−1
µ,m([0,α]) such that dX(x0, xn) →∞ when n →∞. Hence we can extract a

sub-sequence (xφ(i ))i>0 such that, for any i and j , B̄(xφ(i ),
p

2α)∩ B̄(xφ( j ),
p

2α) =;.

dµ,m(xφ(i ))
2 =

1

m

∫m

0
δµ,l (xφ(i ))

2dl ≤α2.

The function δµ,l (xφ(i )) is non-negative and increasing with l and therefore m
2 δµ, m

2
(xφ(i ))2 ≤

mα2. Using the definition of δµ,m , this implies that µ(B̄(xφ(i ),
p

2α)) ≥ m
2 . Measures are

σ-additive, so

µ(X) ≥
∑

i>0
µ(B̄(xφ(i ),

p
2α)) ≥

∑

i>0

m

2
=∞.

However, µ is a probability measure and therefore µ(X) = 1. This contradiction implies that

d−1
µ,m([0,α]) is compact.

The power distances with a finite support have the same tameness property.

Proposition 4.19 Let X be a triangulable metric space and f be a power distance associated

with (P, w), where P is a finite point set. Then the sub-level sets filtration of f is q-tame.

Proof: By construction, f is non-negative and continuous and, for any α, the sub-level set

f −1([0,α]) is a finite union of balls. The space X is triangulable and hence the sub-level sets of
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4.6. Example of approximations

f are compact. The same construction as the one used for dµ,m works and we obtain that f is

q-tame.

In our approximation, we obtain a multiplicative approximation of dµ,m and not an additive

one. This kind of approximation gives an interleaving on a logarithmic scale.

Proposition 4.20 Let P be a finite point set of a triangulable metric space X and m ∈ [0,1[ be a

mass parameter. Considering the empirical measure µ on P,

d
log
B (Dgm(dµ,m),Dgm(d P

µ,m)) ≤ ln(
p

5).

Proof: Corollary 4.13 implies that

ln(dµ,m)− ln(
p

2) ≤ ln(d P
µ,m) ≤ ln(

p
5)+ ln(dµ,m).

The sub-level sets of ln(dµ,m) and ln(d P
µP ,m) are thus ln(

p
5)-interleaved and Theorem 2.23

applies.

Proposition 4.21 Let P be a finite point set in a Euclidean space R
d and m ∈ [0,1[ be a mass

parameter. Considering the empirical measure µ on P,

d
log
B (Dgm(dµ,m),Dgm(d P

µ,m)) ≤ ln(
p

3),

d
log
B (Dgm(dµ,m),Dgm(dW

µ,m)) ≤ ln(
p

6).

Proof: Again the proof is a simple use of Theorems 4.7 and 4.15 to obtain an interleaving

between sub-level sets. Then, we use Theorem 2.23.

Note that the approximations are not optimal for persistence diagram. A simple rescaling

of d P
µ,m and dW

µ,m reduces the interleaving factor in logarithmic scale to ln(6
1
4 ). However, we

always use the same approximation in practice and the rescaling does not change the shape of

the persistence diagram. The only influence is a slight shift of the diagram.

4.6 Example of approximations
The witnessed k-distance and the approximation by a power distance with support on the

points give guarantees of the same quality. However, there are some slight differences in the

shape of the sub-level sets. In an Euclidean space R
d , the distance to a measure can be seen

as the lower envelope of a set of paraboloids in the space R
d ×R. The witnessed k-distance

removes some of the paraboloids to reduce the complexity, while the power distance approx-

imation completely changes the location of the focus of the paraboloids. Figure 4.6 shows

some sub-level sets for these functions using a noisy point set sampled from a paraboloid and

containing an outlier. We are using a mass parameter corresponding to k = 3.

The difference in shape does not have a huge influence when using the persistence diagrams.

However, one has to be aware of it, especially if one wants to use this kind of function to do

reconstruction. From a visual point of view, the witnessed k-distance can be seen as the better

approximation because it gives a smoother visualisation. The approximation using the power
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Chapter 4. Distance to a measure approximation

distance supported by P can be used in a more general setting and yields equivalent guarantees

for homology inference. The random sampling presents the drawback of being a random

algorithm and the need of too many queries to obtain guarantees with high probability, but

can be fast in practice and is converging to dµ,m ad the number of queries tends to ∞.
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4.6. Example of approximations

(a) dµ,m

(b) d P
µ,m

(c) dW
µ,m

Figure 4.6 – Sub-level sets

65





5 Persistence of power distance func-

tions approximation

In the previous chapter, we showed that distance to a measure functions can be approximated

by power distances. We now consider the computation of the persistence diagram for such

functions. Methods used to compute persistence diagrams of distance functions, using simpli-

cial complexes such as the Čech complex of the α-complex [56] can be adapted. However, it

requires building simplicial complexes of large size that makes it impossible to use for high

dimensional data.

In this chapter, we adapt the classic Vietoris-Rips filtration to a weighted setting in order to

approximate the persistence diagram of a power distance function. The weighted structure has

an interesting structure. It is stable with respect to small perturbations of the support points or

the weights, and it almost induces a graph metric on the simplicial complex. This leads to the

hope of sparsifying the filtration in order to reduce its complexity, using the method from [88].

Unfortunately, this does not work and we show a way to used the linear-sized approximation

without weights to create a linear-sized approximation for the weighted setting.

5.1 Weigthed Rips filtration
Given a weighted set (P, w) and the associated power distance f , one can introduce a general-

ization of the Rips filtration that is adapted to the weighted setting as has been done in [67].

Combined with the approximation of dµ,m by a power distance, this construction allows us to

approximate the persistence diagram of dµ,m . Moreover, we show that it is stable with respect

to perturbation of the underlying sample and for similar weighted sets. This gives an interest

of its own to the weighted Rips filtration, that can therefore be used as a topological signature.

5.1.1 Definition
The sub-level set f −1(]−∞,α]) is the union of the balls centred on the points p of P with

radius rp (α) =
√
α2 −w2

p for α≥ 0 and the empty set for α< 0. By convention, we consider

that the ball is empty when the radius is imaginary and fix rp (α) = i if α< 0. We can define the

nerve of this union:

Definition 5.1 Let (P, w) be a weighted set in a metric space X, the weighted Čech complex
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Chapter 5. Persistence of power distance functions approximation

Cα(P, w) for parameter α is defined as the union of simplices σ such that
⋂

p∈σ B(p,rp (α)) 6= 0.

The Čech complex can be difficult to compute due to the problem of testing if a collection of

metric balls has a common intersection. It is often approximated by the Rips complex which

requires only distance computations. We do the same here and define a weighted version of

the Rips complex.

Definition 5.2 For a weighted set (P, w) in a metric spaceX, the weighted Rips complex Rα(P, w)

for a parameter α is the maximal simplicial complex whose 1-skeleton has an edge for each

pair (p, q) such that rp (α) and rq (α) are real and dX(p, q) < rp (α)+ rq (α). The weighted Rips

filtration is the sequence {Rα(P, w)} for all α ∈R.

Remark that if all weights are equal to 0, we are in the classical case of balls with equal radii.

We use the weighted Rips filtration to approximate the weighted Čech filtration thanks to

the following interleaving. For simplicity, the notation (P, w) indicating the point set P with

weights w is omitted.

Proposition 5.3 If (P, w) is a weighted set on a metric space X, then for all α ∈R:

Cα ⊆ Rα ⊆C2α.

Proof: Let α be a real number. The first inclusion is obtained by the definition of the weighted

Rips complex. Let (p, q) be an edge such that (p, q) ∈Cα. Then B(p,rp (α))∩B(q,rq (α)) 6= ;,

which means that dX(p, q) < rp (α)+ rq (α), i.e. (p, q) ∈ Rα.

For the other inclusion, let σ be a simplex of Rα. We fix p0 to be the point of σ with the greatest

weight. This means that for any p ∈σ, rp (α) ≥ rp0 (α). Since σ ∈ Rα, we get that, for all p and q

in σ, dX(p, q) < rp (α)+ rq (α) with both radii real. To prove that σ ∈C2α we need to prove that:

⋂

p∈σ
B(p,rp (2α)) 6= 0.

We prove that p0 belongs to this intersection. For each p ∈σ:

dX(p, p0) < rp (α)+ rp0 (α) ≤ 2 rp (α) =
√

(2α)2 −4w2
p ≤ rp (2α).

Hence p0 ∈ B(p,rp (2α)).

5.1.2 Stability
The persistence diagram of a weighted Rips filtration {Rα(P, w)} is stable under small perturba-

tions of the set P . It can thus be used in applications like signatures in the spirit of [23]. In order

to speak about the persistence diagram of a weighted Rips filtration, we first need to verify

that the filtration is q-tame. This is always the case when the set P is compact. Remark that

we are not restricted to finite point sets. We first consider the persistence modules associated

with the weighted Rips filtrations and show that these modules are closely interleaved when

the sets P and Q are close.
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5.1. Weigthed Rips filtration

Lemma 5.4 Let P, Q be two subsets of a metric space X and let w : X → R be a t-Lipschitz

function. Then H∗({Rα(P, w)}) and H∗({Rα(Q, w)}) are ǫ-interleaved for ǫ=
p

1+ t 2dH (P,Q).

Proof: We need to show that there exists ǫ-homomorphisms πP∗ and πQ∗ such that πP∗πQ∗ =
12ǫ

H∗(Rα(P,w)) and πQ∗πP∗ = 12ǫ
H∗(Rα(Q,w)).

To do so, we need three steps. First, we build simplicial maps Rα(P, w) → Rα+ǫ(Q, w) and

Rα(Q, w) → Rα+ǫ(P, w) for every α. The construction is not necessarily unique but the sim-

plicial maps are contiguous and hence induce the same homomorphism. Finally, we show

that the simplicial maps in Figure 5.1 are contiguous and thus the persistence modules are

ǫ-interleaved.

Rβ+ǫ(Q, w)Rα+ǫ(Q, w)

Rα(P, w) Rβ(P, w)

j
β+ǫ
α+ǫ

i
β
α

πQ
α+ǫ
α πQ

β+ǫ
β

Rβ(Q, w)Rα(Q, w)

Rα+ǫ(P, w) Rβ+ǫ(P, w)

j
β
α

i
β+ǫ
α+ǫ

πP
α+ǫ
α πP

β+ǫ
β

Rα−ǫ(P, w) Rα+ǫ(P, w)

Rα(Q, w)

iα+ǫα−ǫ

πQ
ǫ
α−ǫ πP

α+ǫ
α

Rα−ǫ(Q, w) Rα+ǫ(Q, w)

Rα(P, w)

jα+ǫα−ǫ

πP
α
α−ǫ πQ

α+ǫ
α

Figure 5.1 – Diagrams with contiguous simplicial maps between Rips filtrations

The simplicial maps i
β
α : Rα(P, w) → Rβ(P, w) and j

β
α : Rα(Q, w) → Rα(Q, w) for α < β are

the canonical inclusions. We consider two maps πP : Q → P and πQ : P → Q such that

dX(p,πQ (p)) ≤ dH (P,Q) and dX(q,πP (q)) ≤ dH (P,Q) for any p ∈ P and q ∈ Q. By definition

of the Hausdorff distances, such maps always exist1. Let us show that these maps induce

simplicial maps.

Let us consider the function πP and let us fix α > 0. Let (q ′, q ′′) be an edge of Rα(Q, w). It

means that B(q ′,rq ′(α))∩B(q ′′,rq ′′(α)) 6= ;. Lemma 4.9 implies that for any q ∈Q, B(q,rq (α)) ⊂
B(πP (q),rπP (q)(α+

p
1+ t 2dH (P,Q))). Thus, (πP (q ′),πP (q ′′)) is an edge of Rα+ǫ(P, w) because:

B(πP (q ′),rq ′(α+ǫ))∩B(πP (q ′′),rq ′′(α+ǫ)) ⊃ B(q ′,rq ′(α))∩B(q ′′,rq ′′(α)) 6= ;.

As Rα(P, w) is a clique complex for any α, this is sufficient to prove that πP induce a family of

simplicial maps {πP
α+ǫ
α }. The roles of P and Q are symmetric. Therefore, the result holds for

πQ as well.

Notice that the construction of πP and πQ is not unique. However, we now show that if πP

and π′
P are simplicial maps verifying dX(q,πP (q)) ≤ dH (P,Q) and dX(q,π′

P (q)) ≤ dH (P,Q) for

1Strictly speaking, such points may not exist if P or Q are not compact. However, we can replace dH (P,Q) by
any η> dH (P,Q) in the whole proof and finally go to the limit to obtain the same result.
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Chapter 5. Persistence of power distance functions approximation

any q ∈Q, then they are contiguous. πP therefore induce a canonical homomorphism at the

homology level thanks to Theorem 2.11.

Letαbe a parameter and (q, q ′) be an edge of Rα(Q, w). By definition, B(q,rq (α))∩B(q ′,rq ′(α)) 6=
;. Moreover, using Lemma 4.9,

B(πP (q),rπP (q)(α+ǫ))∩B(π′
P (q),rπ′

P (q)(α+ǫ)) ⊃ B(q,rq (α))

and thus

B(πP (q),rπP (q)(α+ǫ))∩B(π′
P (q),rπ′

P (q)(α+ǫ))

∩B(πP (q ′),rπP (q ′)(α+ǫ))∩B(π′
P (q ′),rπ′

P (q ′)(α+ǫ) 6= ;.

Hence the simplex generated by {πP (q),πP (q ′),π′
P (q),π′

P (q ′)} belongs to the complex Cα+ǫ(P, w).

A fortiori it belongs to Rα+ǫ(P, w) and Lemma 2.12 implies the contiguity of πP and π′
P . Again,

the same can be applied after exchanging P and Q.

Thus we can choose two arbitrary projections πP and πQ as they all induce the same canonical

homomorphisms πP∗ and πQ∗. To prove that πP∗πQ∗ = 12ǫ
H∗(Rα(P,w)), we now prove that the

diagrams from Figure 5.1 commute with contiguous maps. Taking advantage of the symmetry

of the problem, we only prove the two diagrams from the first line.

Let us fix α<β. The first diagram commutes if and only if πQ
β+ǫ
β

◦ I dP
β
α and I dQ

β+ǫ
α+ǫ ◦πQ

α+ǫ
α

are contiguous. The two functions are equal and thus contiguous because πQ
α+ǫ
α and πQ

β+ǫ
β

are induced by the same function πQ .

Let us now prove that πP
α+ǫ
α ◦πQ

α
α−ǫ and iα+ǫα−ǫ are contiguous for any α. Let us fix α and let

(p, p ′) be an edge of Rα−ǫ(P, w). By definition, B(p,rp (α−ǫ))∩B(p ′,rp ′(α−ǫ)) 6= ;. Moreover,

using Lemma 4.9 we get:

B(p,rp (α−ǫ)) ⊂ B(πQ (p),rπQ (p)(α)) ⊂ B(πP ◦πQ (p),rπP◦πQ (p)(α+ǫ)).

The same holds for p ′ and thus:

B(p,rp (α+ǫ))∩B(πP ◦πQ (p),rπP◦πQ (p)(α+ǫ))

∩B(p ′,rp ′(α+ǫ))∩B(πP ◦πQ (p ′),rπP◦πQ (p ′)(α+ǫ)) 6= ;.

Thus the simplex generated by {iα+ǫα−ǫ (p), iα+ǫα−ǫ (p ′),πP
α+ǫ
α ◦πQ

α
α−ǫ(p),πP

α+ǫ
α ◦πQ

α
α−ǫ(p ′)} is in

Cα+ǫ(P, w) ⊂ Rα+ǫ(P, w). Lemma 2.12 guarantees that πP
α+ǫ
α ◦πQ

α
α−ǫ and iα+ǫα−ǫ are contiguous.

From before, {πP
α+ǫ
α ◦πQ

α
α−ǫ} induces the 2ǫ-homomorphism πP∗πQ∗. By definition, {iα+ǫα−ǫ }

induces 12ǫ
H∗(Rα(P,w)). Using Theorem 2.11, we have πP∗πQ∗ = 12ǫ

H∗(Rα(P,w)).

By symmetry of the roles of P and Q, {Rα(P, w)} and {Rα(Q, w)} are ǫ-interleaved.

From this lemma, we derive that the weighted Rips filtration associated with a pair (P, w),

where P is compact, is q-tame and hence has a well defined persistence diagram.

Proposition 5.5 Let P be a subset of a metric spaceX and let w : X→R be a t-Lipschitz function.

If P is compact, then {Rα(P, w)}α∈R is q-tame.
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5.1. Weigthed Rips filtration

Proof: We show that, for any ǫ > 0, we can build a finite persistence module which is ǫ-

interleaved with the persistence module of {Rα(P, w)}. A finite persistence module is a fortiori

locally finite and [26, Theorem 4.19] induces the q-tameness of {Rα(P, w)}.

Fix ǫ > 0. P is compact. As a consequence, there exists a finite point set Q of P such that

dH (P,Q) ≤ ǫp
1+t 2

. The persistence module of {Rα(Q, w)} is finite and therefore locally finite.

Moreover, using Lemma 5.4, {Rα(Q, w)} and {Rα(P, w)} are ǫ-interleaved. Hence {Rα(P,α)} is

q-tame using [26, Theorem 4.19].

Talking about different filtrations, we can relate the persistence diagrams of the weighted Rips

filtration through the following stability theorem.

Theorem 5.6 Let P and Q be two compact subsets of a metric space X. Let w : X → R be a

t-Lipschitz function. Then,

dB (Dgm({Rα(P, w)}),Dgm({Rα(Q, w)})) ≤
√

1+ t 2dH (P,Q).

Proof: P and Q are two compact sets and thus the diagrams are well-defined thanks to

Proposition 5.5 that guarantees the q-tameness of the filtrations. Lemma 5.4 implies that

H∗({Rα(P, w)}) and H∗({Rα(Q, w)}) are
p

1+ t 2dH (P,Q)-interleaved. The relation between the

persistence diagrams is obtained by applying Theorem 2.23.

The embedding of both P and Q in the same space is not required to work with the Rips filtra-

tions. It is possible to compare the diagrams using the notion of ǫ-correspondence from [27].

Definition 5.7 Let P and Q be two points sets in metric spaces X and X
′. Let C be a subset of

P ×Q. C is an ǫ-correspondence if:

∀p ∈ P, ∃q ∈Q, (p, q) ∈C

∀q ∈Q, ∃p ∈ P, (p, q) ∈C

∀p, p ′ ∈ P, ∀q, q ′ ∈Q, (p, q) ∈C ∧ (p ′, q ′) ∈C =⇒ |dX(p, p ′)−dX′(q, q ′)| ≤ ǫ

Theorem 5.8 Let X and X
′ be two metric spaces, P and Q be two finite point sets of X and X

′

respectively. Let C be an ǫ-correspondence between P and Q. Let wX : X→R and wX′ : X′ →R

be two t-Lipschitz functions such that if (p, q) ∈C then |wX(p)−wX′(q)| ≤ tǫ. Then:

dB (Dgm({Rα(P, wX)}),Dgm({Rα(Q, wX′)})) ≤ (1+ t )ǫ

Proof: Let us remark that the proof of Lemma 5.4 is valid when considering correspondences.

We can build maps πQ and πP in the same way. For any p ∈ P , we choose πQ among the q

such that (p, q) ∈C . All the different maps we can build this way are contiguous, adapting the

proof of Lemma 5.4 and thus the construction is canonical at the homology level. Moreover,

the proof of interleaving can be adapted to get that H∗({Rα(P, w)}) and H∗({Rα(Q, w)}) are

ǫ-interleaved. Proposition 5.5 guarantees the tameness of the filtrations and the relation

between persistence diagrams is given by Theorem 2.23.
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Chapter 5. Persistence of power distance functions approximation

Persistence diagrams can thus be used as signatures on a wider class of objects. This makes

the weighted Rips filtration useful for other application than the computation of approximate

persistence diagrams.

5.1.3 Approximation of dµ,m

To use the weighted Rips filtration to approximate the persistence diagram of the distance

to a measure, we need to restrict the class of spaces considered. If the intersection of any

finite number of balls in X is either contractible or empty, X is said to have the good cover

property. Then the Nerve Theorem [69, 4G.3] guarantees that the Čech complex, which is the

nerve of a union of balls, has the same homology as this union. We can also compute the

persistence diagram thanks to the Persistent Nerve Lemma [35]. We obtain an approximation

of Dgm(dµ,m) using the weighted Rips filtration. Remark that not all metric spaces, like the

sphere Sd , have the good cover property.

Theorem 5.9 Let X be a triangulable metric space with the good cover property and let P be a

finite point set of X. Considering the empirical measure µ over P and m ∈ [0,1[ a mass parameter,

we obtain on a logarithmic scale:

d
log
B (Dgm(dµ,m),Dgm({Rα(P,d P

µ,m)})) ≤ ln(2
p

5).

Proof: Given that X is triangulable, the sub-level sets filtration of dµ,m is q-tame by Proposi-

tion 4.18. The persistence diagram Dgm(dµ,m) is thus well-defined. Recall that dµ,m is a 1-

Lipschitz function from Corollary 3.16. P is a compact subset ofX and therefore Dgm(Rα(P,d P
µ,m))

is well-defined according to Proposition 5.5.

We approximate dµ,m with d P
µ,m . The result of Theorem 4.12 gives a

p
5 multiplicative inter-

leaving. For any α ∈R,

dµP ,m(]−∞,α]) ⊂ d P
µP ,m(]−∞,

p
2α]) ⊂ dµP ,m(]−∞,

p
10 d P

µP ,m]).

So, Theorem 2.23 implies

d
log
B (Dgm(dµ,m),Dgm(d P

µ,m)) ≤ ln(
p

5).

By the Persistent Nerve Lemma, the sub-level sets filtration of d P
µ,m , which is a union of balls,

has the same persistent homology as the filtration of its nerve, {Cα(P, w)}. Thus, Proposition 5.3

and Theorem 2.23 imply

d
log
B (Dgm(d P

µ,m),Dgm({Rα(P,dµ,m)}) ≤ ln(2).

The triangle inequality for the bottleneck distance gives the desired result.

5.2 Weighted Rips induced metric
Considering a weighted Rips filtration, we look at the apparition time of vertices and edges. As

a Rips filtration is a clique complex, this completely defines the filtration. When the parameter
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5.2. Weighted Rips induced metric

of the filtration tend to+∞, all possible edges belongs to the filtration. We can use the parmeter

at which they first appear as a pseudo-distance.

Definition 5.10 Let (P, w) be a weighted point set in a metric space X. Given (p, q) ∈ P 2, we

define the pseudo-distance f :

f (p, q) =

√√√√ w2
p +w2

q

2
+

dX(p, q)2

4
+

(w2
p −w2

q )2

4dX(p, q)2
if |w2

p −w2
q | < dX(p, q)2

max(wp , wq ) otherwise

Proposition 5.11 Let (P, w) be a weighted point set in a metric space X. Given (p, q) ∈ P 2 and

α≥ 0, the edge (p, q) belongs to Rα(P, w) if and only if f (p, q) <α.

Proof: We are looking for the first time α the two weighted balls around p and q intersect.

Recall that their radii for a parameter α is given by rp (α) =
√

α2 −w2
p if α≥ wp and the ball is

empty otherwise. If p = q , then the balls intersect as soon as they exists, i.e. for α= wp . Let

us consider the case p 6= q . The radii are continuous with respect to the parameter α. Thus,

there exist two ways for balls to intersect for the first time as shown in Figure 5.2. Either the

two balls grow and become tangent or one of them is empty until after its centre is covered by

the other one.

(a) Tangent balls (b) Enclosed ball

Figure 5.2 – The two kind of first intersection between balls

Let us start with the second case. Assuming without loss of generality that wp < wq , it means

that the ball centred in q appears at a time when the ball centred in p contains q . Id est, there

exists an α such that wq ≥α and rp (α) > dX(p, q). In other words w2
q −w2

p > dX(p, q)2. In this

case the two balls intersect as soon as the ball centred in q appears, which happens for α= wq .

Relaxing the assumption wq > wp , this implies that if |w2
q −w2

p | > dX(p, q)2, then the balls

intersect for α≥ max(wp , wq ).

Let us get back to the case of tangent balls. Two balls will intersect for the first time by being

tangent for parameter α such that α≥ wp and α≥ wq . The relation between radii and distance
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Chapter 5. Persistence of power distance functions approximation

can be written as rp (α)+ rq (α) = dX(p, q).

dX(p, q) =
√

α2 −w2
p +

√
α2 −w2

q

dX(p, q)2 = 2α2 − (w2
p +w2

q )+2
√
α4 −α2(w2

p +w2
q )+w2

p w2
q

(dX(p, q)2 −2α2 + (w2
p +w2

q ))2 = 4(α4 −α2(w2
p +w2

q )+w2
p w2

q )

(
dX(p, q)2 + (w2

p +w2
q )

)2
+4α4 −4α2(dX(p, q)2 +w2

p +w2
q ) = 4α4 −4α2(w2

p +w2
q )+4w2

p w2
q

4α2dX(p, q)2 = dX(p, q)4 + (w2
p +w2

q )2 +2dX(p, q)2(w2
p +w2

q )−4w2
p w2

q

4α2dX(p, q)2 = dX(p, q)4 +2dX(p, q)2(w2
p +w2

q )+ (w2
p −w2

q )2

α2 =
dX(p, q)2

4
+

(w2
p +w2

q )2

2
+

(w2
p −w2

q )2

4dX(p, q)2

Remark that, assuming wp ≥ wq , if dX(p, q)2 = |w2
p −w2

q | 6= 0, then

√√√√ w2
p

2
+

w2
q

2
+

dX(p, q)2

4
+

(w2
p −w2

q )2

4dX(p, q)2
= wp .

Hence Definition 5.10 is coherent.

Finally, consider (p, q) ∈ P 2. Then (p, q)2 ∈Rα(P, w) if and only if B(p,rp (α))∩B(q,rq (α)) 6= 0,

which is equivalent to f (p, q) <α.

The expression of the time of first intersection gives an easy way to compute the apparition

time of edges in the weighted Rips filtration. In addition to its interest for computing the

filtration, it provides the function f that has some interesting properties. It is almost a metric

on the full Rips complex. The function is symmetric and positive but does not possess the

relation f (p, p) = 0. In fact, p 6= q implies that f (p, q) > 0 but the other direction does not hold.

Two approaches are then possible to use it. Either, we can force f (p, p) to be equal to 0 or we

can use directly f to interpolate a metric on the complex. In both cases, we need f to respects

the triangle inequality.

Theorem 5.12 Let (P, w) be a weighted point set and f the function induced by the weighted

Rips filtration. Then,

∀a,b,c ∈ P, f (a,c) ≤ f (a,b)+ f (b,c)

The proof, rather long and purely technical, is detailed in Appendix A.

5.3 Sparse weighted Rips
The weighted Rips filtration has the desired approximation guarantees to be used for persis-

tence computation, but like the classic Rips filtration for points, it usually becomes too large

to be computed in full. Several approaches have been proposed to reduce this complexity in
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5.3. Sparse weighted Rips

the case without weights. One can try to simplify the simplicial complexes while guaranteeing

its topology [6] or looks for a complex that approximates closely the Rips complex [51, 88].

Here, we consider a construction of the latter form.

In [88], it was shown how to construct a filtration {Sα}, called the sparse Rips filtration, that

gives a provably good approximation to the Rips filtration and has size linear in the number

of points for metrics with constant doubling dimension. Specifically, for a user-defined

parameter ǫ, the log-bottleneck distance between the persistence diagrams of the Sparse Rips

filtration and the Rips filtration is at most ǫ. The goal of this section is to extend that result to

weighted Rips filtrations.

The sparsification technique cannot be used directly here, since the power distance does not

exactly induce a metric. The fact that points does not appear immediately in the filtration, ex-

pressed by the fact that the induced function f (p, p) can be non zero, can create phenomenon

where the weighted point set has a greater doubling dimension than the point set without

weights. For example, consider the case of points regularly located on a cycle. The intrinsic

dimension of the object is 1 and thus the sparse Rips filtration has a size linear in the number

of points n times C where C is a constant depending on ǫ. If the intrinsic dimension, the size

is O(C l n). However, if we set weights at all points to be some large constant, then all points are

now at the same distance from each other and the doubling dimension becomes logn. Thus

the size of the sparse Rips filtration applied on the weighted setting will be quadratic in n.

In this chapter, we show that it is possible to approximate the weighted Rips filtration by using

the sparse Rips filtration for the case without weights and changing the time of apparition

of simplices. This guarantees that the size will be the same as the one from [88] while ap-

proximating the weighted Rips filtration. For the rest of this section, we fix a weighted point

set (P, w) in a metric space X, where the weight function w : X→ R is t-Lipschitz, for some

constant t . To simplify notation, we let Rα denote the weighted Rips complex Rα(P, w).

Definition 5.13 Given a weighted point set (P, w) in a metric space X, the sparse weighted Rips

filtration {Tα} of (P, w) is defined as

∀, α ∈R, Tα = Sα∩Rα,

where {Sα} is the sparse Rips filtration of P and {Rα} is the weighted Rips filtration of (P, w).

The sparse Rips filtration {Sα} captures the underlying metric space and the weighted Rips

filtration {Rα} captures the structure of the sub-level sets of the power distance function. Com-

puting {Tα} can be done in O(n2) by first computing {Sα} and then reordering the simplices

according to the birth time in {Rα}. This is equivalent to filtering the complex S∞. Note that

the sparsification depends only on the metric, and not on the weights. Thus, the same sparse

Rips complex can be used as the underlying complex for different weight functions.

The technical challenge is to relate the persistence diagram of this new filtration to the persis-

tence diagram of the weighted Rips filtration as in the following theorem.

Theorem 5.14 Let (P, w), be a finite, weighted subset of a metric space X with t-Lipschitz

weights. Let ǫ ∈]0,1[ be a fixed constant used in the construction of the sparse weighted Rips
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filtration {Tα}. Then,

d
log
B (Dgm({Tα}),Dgm({Rα})) ≤ ln

(
1+

p
1+ t 2 ǫ

1−ǫ

)

.

Since these filtrations are not interleaved, the only hope is to find an interleaving of the

persistence modules, which requires finding suitable homomorphisms between the homology

groups of the different filtrations. After detailing a new construction of the sparse Rips filtration

from [88], which uses a furthest point sampling instead of the original net tree structure, the

rest of this section proves Theorem 5.14.

5.3.1 Sparse Rips complexes
Let (p1, . . . , pn) be a greedy permutation of the points P in a finite metric space X. That is,

p1 is chosen arbitrarily and pi = argmaxp∈P\Pi−1
dX(p,Pi−1), where Pi−1 = {p1, . . . , pi−1} is the

(i −1)st prefix. We define the insertion radius λpi of point pi to be

λpi = dX(pi ,Pi−1).

To avoid excessive subscripts, we write λi in place of λpi when we know the index of pi . We

adopt the convention that λ1 =∞ and λn+1 = 0. The greedy permutation has the nice property

that each prefix Pi is a λi -net in the sense that

1. dX(p,Pi ) ≤λi for all p ∈ P .

2. dX(p, q) ≥λi for all p, q ∈ Pi .

We extend these nets to an arbitrary parameter γ:

Nγ = {p ∈ P |λp > γ}.

Nγ = {p ∈ P |λp ≥ γ}.

Note that for all p ∈ P , dX(p, Nγ) ≤ γ and dX(p, Nγ) < γ.

One way to get a sparse Rips-like filtration is to take a union of Rips complexes on the nets Nγ.

However, this can add noise to the persistence diagram compared to the Rips filtrations as

illustrated in Figure 5.3. It shows two different sub-level sets of the distance to the points. On

the left, there is no sparsification. As soon as the four balls form a connected set, the homology

is trivial for the rest of their growth. On the right, after the four balls connect, we sparsify

naively by removing the central point, which is covered by the other balls. However, the light

sub-level set has now a non-trivial homology in dimension 1.

This phenomenon can be avoided by a careful perturbation of the distance. For a point p, the

perturbation varies with the scale and is defined as follows:

sp (α) =






0 if α≤ λp

ǫ

α− λp

ǫ if
λp

ǫ <α< λp

ǫ(1−ǫ)

ǫα if
λp

ǫ(1−ǫ) ≤α
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Figure 5.3 – Topological noise induced by naive sparsification

α

sp (α)

0
0

λp

ǫ

λp

ǫ(1−ǫ)

sp = ǫα

Figure 5.4 – Perturbation in function of α

Note that sp is 1-Lipschitz. The resulting perturbed distance is defined as

fα(p, q) = dX(p, q)+ sp (α)+ sq (α).

For any fixed p and q , the Lipschitz property of sp and sq implies that for all α≤β:

fα(p, q) ≤ fβ(p, q)+2(β−α).

Definition 5.15 Given the nets Nγ and the distance function fα, we define the sparse Rips

complex at scale α as

Qα = {σ⊂ N ǫ(1−ǫ)α | ∀p, q ∈σ, fα(p, q) < 2α}.

On its own, the sequence of complexes {Qα} does not form a filtration. Some simplices

disappear as α grows.

Definition 5.16 The sparse Rips filtration is defined as:

Sβ =
⋃

α≤β
Qα.
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Chapter 5. Persistence of power distance functions approximation

5.3.2 Projection onto Nets
To relate sparse Rips complexes with Rips complexes, we build a collection of projections of

the points onto the nets.

πα(p) =





p if p ∈ Nǫ(1−ǫ)α

argminq∈Nǫα
dX(p, q) otherwise

For any scale α, the projection πα maps the points of P to the net Nǫ(1−ǫ)α. Note that πα is

specifically defined to be a retraction onto Nǫ(1−ǫ)α. One could wish to use fα as the distance

to define the projection, but it is not known if this yields a retraction.

We present three lemmas about the perturbed distance functions and projections. The projec-

tions are used extensively to induce maps between simplicial complexes.

First, we prove that edges do not disappear as the filtration grows.

Lemma 5.17 If fα(p, q) < 2α≤ 2β then fβ(p, q) < 2β.

Proof: The proof follows from the definitions fα and fβ, the Lipschitz property of the perturba-

tions sp and sq , and the hypothesis.

fβ(p, q) = dX(p, q)+ sp (β)+ sq (β)

≤ dX(p, q)+ sp (α)+ (β−α)+ sq (α)+ (β−α)

= fα(p, q)+2(β−α)

< 2α+2(β−α)

= 2β.

Next, we show that the distance between a point and its projection is at most the change in

the perturbed distance.

Lemma 5.18 For all q ∈ P, dX(q,πα(q)) ≤ sq (α)− sπα(q)(α), and in particular, dX(q,πα(q)) ≤
ǫα.

Proof: Both statements are trivial if q ∈ Nǫ(1−ǫ)α, because that would imply that πα(q) = q . So,

we may assume that πα(q) is the nearest point to q in Nǫα It follows that

dX(q,πα(q)) ≤ ǫα.

Moreover, λq ≤ ǫ(1−ǫ)α, and thus sq (α) = ǫα. Also, since πα(q) ∈ Nǫα, it must be that λπα(q) >
ǫα and so sπα(q) = 0. Combining these statements, we get

dX(q,πα) ≤ ǫα= sq (α)− sπα(q)(α).

Now, we prove that replacing a point with its projection does not increase the perturbed

distance.
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Lemma 5.19 For all p, q ∈ P and all α≥ 0, fα(p,πα(q)) ≤ fα(p, q).

Proof: The statement follows from the definition of fα, the triangle inequality and Lemma 5.18.

fα(p,πα(q)) = dX(p,πα(q))+ sp (α)+ sπα(q)(α)

≤ dX(p, q)+dX(q,πα(q))+ sp (α)+ sπα(q)(α)

≤ dX(p, q)+ sp (α)+ sq (α)

= fα(p, q).

5.3.3 Sometimes the projections induce contiguous simplicial maps

In this section, we consider the maps between simplicial complexes that are induced by the

projection functions πα. We are most interested in the case when a pair of projections πα

and πβ induces contiguous simplicial maps between sparse Rips complexes (Lemma 5.22)

or weighted Rips complexes (Lemma 5.23). First, we need a couple lemmas that describe

the effect of different projections on the endpoints of an edge in sparse or weighted Rips

complexes.

Lemma 5.20 Let α, β, γ, and i be such that λi+1
ǫ(1−ǫ) ≤α≤β≤ γ≤ λi

ǫ(1−ǫ) . If an edge (p, q) is in Qρ

for some ρ ≤ γ then the edge (πα(p),πβ(q)) ∈Qγ.

Proof: The conditions on α, β, γ, and i imply that πα(p) and πβ(q) are in N ǫ(1−ǫ)γ, which is the

vertex set of Qγ.

πα(p) ∈ Nǫ(1−ǫ)α =⇒ λπα(p) > ǫ(1−ǫ)α≥λi+1

=⇒ λπα(p) ≥λi ≥ ǫ(1−ǫ)γ

=⇒ πα(p) ∈ Nǫ(1−ǫ)γ

The same holds for πβ(q), and hence it will suffice to prove that fγ(πα(p),πβ(q)) < 2γ given

that fρ(p, q) < 2ρ. Next we consider three cases depending on the value of ρ in relation to α

and β.

Case 1: If α,β≤ ρ then πα(p) = p and πβ(q) = q . So, using Lemma 5.17 and the assumption

ρ ≤ γ, we see that fγ(πα(p),πβ(q)) = fγ(p, q) < 2γ.

Case 2: If α≤ ρ <β then πα(p) = p and Lemma 5.17 implies that fβ(p, q) < 2β.

fγ(πα(p),πβ(q)) = fγ(p,πβ(q))

≤ fβ(p,πβ(q))+2(γ−β)

≤ fβ(p, q)+2(γ−β)

< 2γ.
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Case 3: If ρ <α,β then Lemma 5.17 implies that fα(p, q) < 2α.

fγ(πα(p),πβ(q)) ≤ fβ(πα(p),πβ(q))+2(γ−β)

≤ fβ(πα(p), q)+2(γ−β)

≤ fα(πα(p), q)+2(γ−β)+2(β−α)

≤ fα(p, q)+2(γ−β)+2(β−α)

< 2γ.

Lemma 5.21 Let (p, q) be an edge of Rδ with α,β ≤ δ
1+ǫ , then (πα(p),πβ(q)) ∈ Rκδ, where

κ= 1+
p

1+t 2 ǫ
1−ǫ .

Proof: First, note that the projection functions satisfy the following inequalities.

dX(p,πα(p)) ≤ ǫα≤
ǫδ

1−ǫ

dX(q,πβ(q)) ≤ ǫβ≤
ǫδ

1−ǫ

Applying the triangle inequality, the definition of an edge in Rδ, and Lemma 4.9, we get,

dX(πα(p),πβ(q)) ≤ dX(p, q)+
2ǫδ

1−ǫ

<
(
rp (δ)+

ǫδ

1−ǫ

)
+

(
rq (δ)+

ǫδ

1−ǫ

)

≤ rπα(p)

(

δ+
p

1+ t 2ǫ

1−ǫ
δ

)

+ rπβ(q)

(

δ+
p

1+ t 2ǫ

1−ǫ
δ

)

≤ rπα(p)(κδ)+ rπβ(q)(κδ).

This is precisely the condition sufficient to guarantee that (πα(p),πα(q)) ∈ Rκδ as desired.

The following two lemmas follow easily from repeated application of the preceding lemmas.

Lemma 5.22 Two projections πα and πβ induce contiguous simplicial maps from Qρ to Qβ

whenever ρ ≤β and there exists i so that λi+1
ǫ(1−ǫ) ≤α≤β≤ λi

ǫ(1−ǫ) .

Proof: Fix ρ ≤ β and take (p, q) an edge from Qρ . Given that Qρ and Qβ are cliques com-

plexes, we show that the simplex σ generated by {πα(p),πα(q),πβ(p),πβ(q)} is in Qβ and apply

Lemma 2.12. We only need to prove that all edges of σ belongs to Qβ.

We apply Lemma 5.20, while replacing γ by β and β by α. Thus we obtain (πα(p),πα(q)) ∈Qβ.

Let us repeat this operation with α=β= γ and we get (πβ(p),πβ(q)) ∈Qβ. The last two edges

are given by replacing γ by β and choosing correctly the role of p and q .

Lemma 5.23 Two projections πα and πβ induce contiguous simplicial maps from Rδ → Rκδ

for any δ ∈R, where κ= 1+
p

1+t 2 ǫ
1−ǫ whenever α,β≤ δ

1−ǫ .

Proof: The result is obtained by replacing Lemma 5.20 by Lemma 5.21 in the previous proof.
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5.3.4 Sparse filtrations and power distance functions
We now show that {Tα} approximates {Rα} in terms of persistent homology by proving Theo-

rem 5.14. To do this we demonstrate a multiplicative interleaving between these filtrations,

where the interleaving constant is

κ= 1+
p

1+ t 2 ǫ

1−ǫ
.

Specifically, we show that for all α≥ 0, the diagrams in Figure 5.5 commutes at the homology

level.

Rα Rκα

Tα Tκα

Rα Rκα

Tα Tκα

π α
1−ǫ

Figure 5.5 – Diagrams with contiguous simplicial maps between {Rα} and {Tα}

The diagrams on the left is commutative as the only maps involved are inclusions. For the

diagram on the right, we first need to check that the projection π α
1−ǫ

indeed induces a simplicial

map from Rδ to Tκδ.

Lemma 5.24 For all α> 0, the projection π α
1−ǫ

induces a simplicial map from Rα → Tκα, where

κ= 1+
p

1+t 2 ǫ
1−ǫ .

Proof: We show that for each edge (p, q) ∈ Rα, there is a corresponding edge (π α
1−ǫ

(p),π α
1−ǫ

(q)) ∈
Rκα∩Q α

1−ǫ
. Since the latter complex is a clique complex, this will imply that for all σ ∈ Rα,

we have π α
1−ǫ

(σ) ∈ Rκα∩Q α
1−ǫ

⊆ Tκα as desired. First, (π α
1−ǫ

(p),π α
1−ǫ

(q)) ∈ Rκα as a direct conse-

quence of Lemma 5.23.

Next, we show that (π α
1−ǫ

(p),π α
1−ǫ

(q)) ∈Q α
1−ǫ

. It suffices to prove that f α
1−ǫ

(π α
1−ǫ

(p),π α
1−ǫ

(q)) < 2α
1−ǫ .

We use Lemma 5.19 at the first line and the fact that (p, q) ∈ Rα for the fourth line.

f α
1−ǫ

(π α
1−ǫ

(p),π α
1−ǫ

(q)) ≤ f α
1−ǫ

(p, q)

= dX(p, q)+ sp (
α

1−ǫ
)+ sq (

α

1−ǫ
)

≤ dX(p, q)+
2ǫα

1−ǫ

< 2α+
2ǫα

1−ǫ

=
2α

1−ǫ

Now, we give conditions for when two projections induce contiguous simplicial maps between

the sparse weighted Rips complexes Tδ and Tκδ.
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Lemma 5.25 Two projections πα and πβ induce contiguous simplicial maps from Tδ → Tκδ,

where κ= 1+
p

1+t 2 ǫ
1−ǫ whenever α,β≤ δ

1−ǫ and there exists i so that λi+1
ǫ(1−ǫ) ≤α≤β≤ λi

ǫ(1−ǫ) .

Proof: We simply observe for any σ ∈ Tδ, that σ ∈Qρ for some ρ ≤ δ. If ρ ≤β then Lemma 5.22

implies πα(σ)∪πβ(σ) ∈ Qβ. Otherwise πα(σ)∪πβ(σ) = σ ∈ Qρ . So in either case, we have

πα(σ)∪πβ(σ) ∈ Sκδ. Now, by Lemma 5.23, we have πα(σ)∪πβ(σ) ∈ Rκδ. So, we have πα(σ)∪
πβ(σ) ∈ Rκδ∩Sκδ = Tκδ as desired.

We can now give the proof of the interleaving which will imply the desired approximation of

the persistent homology.

Lemma 5.26 For all α> 0, the diagrams in Figure 5.5 commutes at the homology level.

Proof: By Lemma 5.23, the projection π α
1−ǫ

and the inclusion π0 are contiguous and thus

produce identical homomorphisms at the homology level thanks to Theorem 2.11. For the

lower triangle it will suffice to show that homomorphism induced by π α
1−ǫ

commutes with

the one produced by the inclusion π0. Let φi = π λi
1−ǫ

for i = 1, . . . ,n +1. Now, Lemma 5.25

implies that φi and φi+1 are contiguous. So, choosing k such that λk ≤ ǫα < λk−1, we can

apply Lemma 5.25 repeatedly to conclude that

π0∗ =φn+1∗ =φn∗ = ·· · =φk∗ =π α
1−ǫ∗

where φi∗ is the homomorphism induced by φi .

The commutativity of these diagrams at the homology level is equivalent to the existence of a

κ multiplicative interleaving between the two persistence modules. Theorem 5.14 is obtained

by applying Corollary 2.25.

5.4 Experimental illustration
The algorithm using the distance to a measure and the sparse weighted Rips to compute

persistence diagrams has been implemented. We used the ANN library [82] for the k-nearest

neighbours search and code from Zomorodian following [99] for the persistence. The topol-

ogy of the union of balls is acquired through the α-shapes implementation from the CGAL

library [43].

We illustrate our results from three different perspectives: the quality of the approximation, the

stability of the diagrams with respect to noise, and the size of the filtration after sparsification.

Datasets

For the first two parts, we consider the set of points in R
3 obtained by sampling regularly the

skeleton of the unit cube with 116 points. Then we add four noise points in the centre of four

of its faces such that two opposite faces are empty. This is the example given in Section 1.2.

We would like to compute the persistence diagram of the skeleton of the cube. We write

this diagram Dgm(Skel ). It contains five homology generators in dimension 1 and one in

dimension 2. Its barcode representation is given in Figure 5.7.

For sparsification, we use a slightly bigger dataset composed of 10000 points regularly dis-

tributed on a curve rolled around a torus. The point set is shown in Figure 5.8.
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Figure 5.6 – Skeleton of a cube with outliers

Figure 5.7 – Persistence diagram of a cube skeleton without outliers

Approximation We work on the cube skeleton with a mass parameter m such that k = mn =
5. We consider the empirical measure µ on the point cloud. The persistence diagram of dµ,m

is given in Figure 5.9.

The diagrams obtained with our various approximations have very similar looks. We only

show the one obtained with the sparse Rips filtration with a parameter ǫ= 0.5 in Figure 5.10.

To compare diagrams, we use the bottleneck distances between the diagrams. Figure 5.11

shows the distance matrix between the various diagrams, while Figure 5.12 shows some bot-

tleneck distances between persistence diagrams of different dimensions. Note that Dgm(dP )

corresponds to the diagram obtained by using the distance function to the point cloud.

The largest difference is between Dgm(Skel ) and Dgm(dµ,m). This is partly due to an effect of

shifting while using the distance to a measure. After this initial shift, the distance are small

compared to the theoretical bounds. Notice that the different steps of the approximation do

not have the same effect on all dimensions.

All diagrams obtained by the different approximations are closer to Dgm(Skel ) than the

persistence diagram of the distance to the point cloud, Dgm(dP ) given in Figure 5.13. For

inference purposes, one crucial parameter is the signal-to-noise ratio. We define it as the ratio

between the smallest lifespan of topological feature we aim to infer and the longest lifespan

of noise features. A ratio of 1 corresponds to a signal that is not differentiable from the noise

and ∞ corresponds to a noiseless diagram. In our example, only the dimensions 1 and 2 are

relevant as the dimension 0 diagram corresponding to connected components has only one

relevant feature and its lifespan is infinite. Results are listed in Figure 5.14.

Signal-to-noise ratios are clearly better than the one of Dgm(dP ). Some of the approximation

steps improve the ratio. This is due to two phenomena.

When one goes from dµ,m to d P
µ,m , the filtration eliminates the cells of the k th order Voronoi
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Figure 5.8 – Spiral on a torus

Figure 5.9 – Dgm(dµ,m) for the cube skeleton with outliers with k = 5

diagram that are far from the point cloud. These cells induce local minima that produce noise

features in the diagrams. Removing them cleans parts of the diagram. The same phenomenon

happens with the witnessed k-distance previously mentioned.

Using the Rips filtration instead of the Čech also reduces some noise. It eliminates artefacts

from simplices that are introduced and almost immediately killed in the Čech complex due to

balls that have pairwise intersections but no common intersection.

Stability

The weighted Rips filtration is stable with respect to noise. We illustrate this by studying the

effect of an isotropic Gaussian noise on our skeleton of a cube. We consider three different

standard deviations for our noise. Figure 5.15 shows the bottleneck distances between the

persistence diagram of the sparse weighted Rips structure with the Gaussian noise and the

one without Gaussian noise.

Unsurprisingly, the bottleneck distance is increasing with standard deviation of the noise. The

signal-to-noise ratio shown in Figure 5.16 is more interesting.

Inferring correctly the homology of the cube skeleton is possible with standard deviation 0.05

and 0.1. Figure 5.17 shows the persistence diagram obtained with a standard deviation of 0.1.

The ∞ in the 0.5 case in dimension 2 is not relevant as there is no noise but the feature is too

small compared to the rest of the diagram as shown in Figure 5.18. Note that 0.5 corresponds to

half the side of the cube, and thus, it is logical to be unable to retrieve any useful information.

Some structure appears even with standard deviation as large as 0.5. The three bigger features

in dimension 1 are relevant. However, we miss two elements and it is difficult to decide where

to draw the frontier between relevant and irrelevant features.
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Figure 5.10 – Dgm({Tα}) for the cube skeleton with outliers with k = 5 and ǫ= .5

Dgm(Skel ) Dgm(dµ,m) Dgm(d P
µ,m) Dgm(Rα) Dgm(Tα) Dgm(dP )

Dgm(Skel ) 0 .1528 .1473 .1473 .1817 .25
Dgm(dµ,m) .1528 0 .09872 .0865 .1183 .2543
Dgm(d P

µ,m) .1473 .09872 0 .0459 .1084 .2642
Dgm(Rα) .1473 .0865 .0459 0 .1128 .2598
Dgm(Tα) .1817 .1183 .1084 .1128 0 .2484
Dgm(dP ) .25 .2543 .2642 .2598 .2484 0

Figure 5.11 – Matrix of distances for the bottleneck distance

Sparsification efficiency

We introduced sparsification in Section 5.3.4 to reduce the size of the Rips filtration. The

method introduced a new parameter ǫ, and the size of the filtration depends heavily on ǫ. The

evolution of the size of the filtration depending on the parameter ǫ is given in Figure 5.19 for

the sampling of the spiral.

The minimum size is reached around ǫ= .83. This minimum depends on the structure of the

dataset. For example, considering a set of points uniformly sampled in a square, we obtain a

size that is monotonic.

The filtration size is nearly constant after a rapid decrease. In this example, the size is of order

107 simplices for an input of 105 vertices. Computing persistent homology is tractable for any

value in this range.

Finally, we illustrate the dependence on the intrinsic dimension. Figure 5.20 shows the

number of simplices in the sparse Weighted Rips filtration for different values of ǫ and number

of sample points in R
2. On the left, the points are sampled uniformly in a unit square and

hence have intrinsic dimension 2. On the right, the points are sampled uniformly on a unit

circle and thus have intrinsic dimension 1. The lower intrinsic dimension of the second

example explains the difference of size between the two sparsified filtrations.
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Chapter 5. Persistence of power distance functions approximation

Dgm(A) Dgm(B) dim 0 dim 1 dim 2
Dgm(Skel ) Dgm(dµ,m) .05202 .1528 .1495
Dgm(dµ,m) Dgm(d P

µ,m) .09872 .0195 .0972
Dgm(d P

µ,m) Dgm(Rα(P,dµ,m)) .0007 .0044 .0459
Dgm(Rα(P,dµ,m)) Dgm(Tα(P,dµ,m)) .0872 .1128 .0026

Dgm(Skel ) Dgm(d P
µ,m) .0405 .1473 .0982

Dgm(Skel ) Dgm(Tα(P,dµ,m)) .1026 .1817 .098
Dgm(Skel ) Dgm(dP ) .25 .2071 .1481

Figure 5.12 – Bottleneck distances between diagrams

Figure 5.13 – Dgm(dP ) for the cube skeleton with outliers

Diagram dim 1 dim 2
Dgm(Skel ) ∞ ∞
Dgm(dµ,m) 247 2.74
Dgm(d P

µ,m) 69.8 43
Dgm(Rα(P,dµ,m)) ∞ ∞
Dgm(Tα(P,dµ,m)) 132 ∞

Dgm(dP ) 5.66 1

Figure 5.14 – Signal to noise ratios

Standard deviation .05 .1 .5
db in dimension 1 .1469 .2261 .2722
db in dimension 2 .047 .0914 .1046

Figure 5.15 – db between Dgm({Tα}) with and without Gaussian noise

Standard deviation 0 .05 .1 .5
Ratio in dimension 1 132 8.27 3.17 1.04
Ratio in dimension 2 ∞ ∞ 100.2 ∞

Figure 5.16 – Signal to noise ratio of Dgm({Tα}) depending on noise intensity
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5.4. Experimental illustration

Figure 5.17 – Persistence diagram of {Tα} with k = 5, ǫ= 0.5 and a Gaussian noise with standard
deviation 0.1

Figure 5.18 – Persistence diagram of {Tα} with k = 5, ǫ= .5 and a Gaussian noise with standard
deviation .5
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Figure 5.19 – Size of the filtration depending on ǫ for the spiral
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(b) Points sampled on a circle

Figure 5.20 – Size of the filtration depending on the number of input points
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6 Specific noise conditions for the dis-

tance to a measure

Most results in topological data analysis are obtained under the condition that two sets are

close with respect to the Hausdorff distance or that two measures are close with respect to the

Wasserstein distance. Previous results for the distance to a measure relied on the Wasserstein

distance. However, this distance is not always tight to indicate the proximity of distance to

measure functions. In this chapter, we discuss the interest of using Wasserstein distances and

their limitations. Then, we introduce new set of noise conditions and motivate them with the

example of clutter noise. Finally, we show how these new conditions relate to other classical

conditions and translates into guarantees on persistence diagrams.

6.1 Counter examples for the Wasserstein noise condition
Stability results for the distance to a measure were originally stated using the Wasserstein

distance. This is well-suited to objects that are probability measures. However, the classical

setting for topological data analysis is not built upon a measure. We usually consider an object

M as the ground truth. In most theoretical results, this object is assumed to be a compact set

or a Riemannian submanifold.

The object M represents what we want to find at the end of our analysis. For example, this can

be a human body. We scan it and obtain a point cloud which is a representation of this body,

with the possible presence of noise and defects in the scan, and we want to reconstruct the

shape of the body. We aim to reconstruct a shape having the same topology as the human

body and being as close as possible to M, for example in the Hausdorff distance.

The simplest condition on a sampling to obtain good results in reconstruction is that the input

point cloud P lies close to the ground truth M in the Hausdorff distance. This distance is

very sensitive to outliers. Only one misplaced point is necessary to have a large Hausdorff

distance. The Wasserstein distance aims to take into account that some points can be bad, but

it presents two major difficulties.

First, the Wasserstein distance is a distance between probability measures. The setting is

different and we have to adapt assumptions. A natural way to handle the point cloud P is to

take the empirical measure on it. For M, it is more difficult, especially if we do not have a

generative model for P . If M is a compact Riemannian submanifold of Rd , we can for example
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Chapter 6. Specific noise conditions for the distance to a measure

take the uniform measure on M. However, if the sampling is strongly uneven, we could end up

with a large Wasserstein distance, while the topological analysis algorithm would work well

and the Hausdorff distance would be small.

Figure 6.1 – Uneven sampling of a circle

Figure 6.1 shows a circle with an uneven sample. The ground truth is the circle M and we only

have access to the point cloud P . In this case, the Hausdorff distance between P and M is

small and given by half the largest gap ǫ between two consecutive points on the circle. The

Wasserstein distance between the empirical measure on P and the uniform measure on M is

much bigger due to the difference of sampling density, and it can be arbitrarily close to 2
p

2πr ,

where r is the radius of the circle. At the limit, all the mass is at one point on the circle and

the Wasserstein distance between the Dirac δ−1,0 and the uniform measure on the circle µC is

given by:

W2(δ(−1,0),µC ) = 2

√

r 2

∫π

0
si n2(θ)+ (1+ cos(θ))2dθ = 2

√∫π

0
2r 2(1+ cos(θ))dθ = 2

p
2πr.

The second difficulty is that two measures can be arbitrarily far from each other in the Wasser-

stein distance, while the relative difference between distances to them is arbitrarily small. Let

us consider the metric space R and the Dirac measure δ0 at the origin. Now, consider the

sequence of measures νn = n−1
n δ0 + 1

nδn
3
2

for n ≥ 2. This means that we take a small mass

and send it further and further away, more quickly than the moved mass decreases. If the

mass considered for the distance to the measures is positive and fixed, then the relative error

between dδ0,m and dνn ,m tends to 0.

ν2

ν3

ν4

ν5

Figure 6.2 – First νn for n ≥ 2, where the size of a circle corresponds to the mass at its centre

There exists an unique transport plan between δ0 and νn . The Wasserstein distance has value

W2(δ0,νn) = n. Consider a mass m ∈]0,1[ and an integer n such that m > 1
n . Then, for any
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6.1. Counter examples for the Wasserstein noise condition

x ≤ n
3
2

2 , dδ0,m(x) = dνn ,m(x) = |x| and for x ≥ n
3
2

2 , dδ0,m(x) = x and

dνn ,m(x) =
√

1
m

((
m − 1

n

)
x2 + 1

n (n
3
2 −x)2

)
. Hence:

dδ0,m(x)−dνn ,m(x)

dδ0,m(x)
=

x −
√

x2 − 2n
1
2

m x + n2

m

x

≤ 1−

√

1−
(

4

mn
+

2

mn

)

=
3

mn
+o

(
1

n

)

Thus, when n tends to ∞, the relative error between the functions tends to 0. This is due

to the fact that the Wasserstein distance is only worst-case tight for distances to measures.

The relation ||dµ,m −dν,m ||∞ ≤ 1p
m

W2(µ,ν) is an equality only in some worst-case example

contrarily to ||dP ,dK ||∞ = dH (P,K ) which is always tight as shown in Lemma 2.29.

In the presence of background noise, the Wasserstein distance and current stability results

present another drawback. The sub-level sets of the distance to a measure can be trivial

topological balls due to the background noise before recovering all features.

Consider a mixture of two measures. For the first one, consider the uniform measure µM

on eight circles of radius 1 regularly centred on a circle of radius 10. The support of µM is a

manifold M and constitutes the ground truth. However, we have a uniform noise materialised

by a measure µB uniform on the square of side 1000. We only have access to µ=λµM+(1−λ)µB

for some λ ∈ [0,1].

Figure 6.3 – Example with eight circles, the bounding box being reduced

M has two structures in dimension 1. First, there is the set of eight circles. At larger scales, it
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Chapter 6. Specific noise conditions for the distance to a measure

becomes the larger circle. However, due to the background noise µB , we are unable to recover

anything using the distance to the support of the mixed measure µ. Using the distance to µ

with a small mass parameter m and if λ is sufficiently large, we can build a persistence diagram

containing features for every small circle but not for the large one. Figure 6.4 shows the value

of dµ,m along a line crossing the centres o1 and o2 of two neighbouring small circles. Example

of values for λ and m are given in Section 6.3.1.

dµ,m

o1 o2

Figure 6.4 – Value dµ,m along a line between two neighbouring centres

Using the distance to a measure, we are unable to recover a good approximation of the whole

persistence diagram. The sub-level sets of dµ,m have the topology type of the eight small

circles at the beginning, but as we reach the value where dµ,m is constant, the topology of

the sub-level sets becomes the topology of a ball. The large cycle does not appear but we

can recover the part of the persistence diagram corresponding to low scales, id est, small

values of the filtration parameter. Our new noise conditions aim at guaranteeing such an

approximation.

6.2 New noise conditions for distances to measures
We introduce a new set of noise conditions to correct the above flaws. Our noise conditions

consider the point set as a measure and relates it to the ground truth M using two parameters

and distance to measure functions.

Definition 6.1 Let M ⊂ R
d be a manifold and let µ be a probability measure. For a fixed

m ∈ [0,1[, µ is an (ε,r )-sample of M if:

ε≥ sup
x∈M

dµ,m(x)

r ≤ sup{ℓ ∈R|∀x ∈R
d , dµ,m(x) < ℓ =⇒ d(x,M) ≤ dµ,m(x)+ε}

By extension, if P ⊂ R
d is a point set, we say that P is an (ǫ,r )-sample of M if the empirical

measure on P is an (ǫ,r )-sample of M.
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6.3. Relation to other noise conditions

The parameter ε captures the distance to the empirical measure for points in M and thus tells

us how dense the sampling measure is around the manifold M. The parameter r tells us how

far away we can go from the manifold without having the noise mask relevant information.

Remark that if a point set is an (ǫ,r )-sample of M then it is an (ǫ′,r ′)-sample for any ǫ′ ≥ ǫ

and r ′ ≤ r . Be careful that this (ǫ,r )-sampling condition is different from the classical (ǫ,δ)

condition [37] where δ is a packing condition.

For convenience, denote the distance function to the manifold M by dM : Rn →R, x 7→ d(x,M).

We have the following interleaving between the sub-level sets of dµ,m and dM.

Lemma 6.2 Let µ be an (ǫ,r )-sample of a manifold M. Then,

∀α< r −ε, d−1
M

(]−∞,α]) ⊂ d−1
µ,m(]−∞,α+ε]) ⊂ d−1

M
(]−∞,α+2ε]).

Proof: Let x be a point such that d(x,M) ≤ α. There exists y ∈M such that d(y, x) ≤ α. By

definition of ǫ, dµ,m(y) ≤ ε. Given that the distance to a measure is a 1-Lipschitz function,

dµ,m(x) ≤ ε+α.

Let now x be a point such that dµ,m(x) ≤ α+ ε ≤ r . By definition of r , we have d(x,M) ≤
dµ,m(x)+ε≤α+2ε which concludes the argument.

This provides a partial interleaving between the sub-level sets of the distance to µ and the

offsets of the manifold M. Observe that this relation is very similar to the one obtained in

lemma 2.29 when two compact sets A and B have Hausdorff distance of at most ε:

∀α, d−1
A (]−∞,α]) ⊂ d−1

B (]−∞,α+ε]) ⊂ d−1
A (]−∞,α+2ε])

Various results on inference are given for point sets that are close to the underlying manifold

in the Hausdorff distance. An algorithm, using the distance to P and requiring dH (P,M) ≤ ǫ,

has the same guarantee using the distance to a measure and an (ǫ,r )-sample of M as long

as r > 2ǫ. It gives a set of reconstruction methods where we can use existing algorithms, for

example [11, 13, 34, 35, 71], and replace the distance to the input point cloud by the distance

to an empirical measure.

6.3 Relation to other noise conditions
To show the interest of the distance to a measure and of our noise conditions, we study

the relation between other noise conditions and these new ones. We remark that our noise

conditions encompass many other existing noise conditions. While the parameter ε is natural,

the parameter r may appear to be artificial. It bounds the distances at which we can observe

the manifold through the lens of the distance to a measure to obtain guarantees on persistence

diagram inference. In most classical noise conditions, r is equal to ∞ and thus we obtain

exactly the same relation as for the classical Hausdorff condition between the input point

cloud P and the manifold M. One notable noise model where r < ∞ is when there is an

uniform background noise in the ambient space R
d , sometimes called clutter noise. In this

case, r will depend on the density ratio between noise and information.
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Chapter 6. Specific noise conditions for the distance to a measure

6.3.1 Clutter noise
A strong background noise can completely mess up a data analysis. Sometimes called clutter

noise, it corresponds to an uniform background density over the area where we take measure-

ments. We consider a restricted case to have an easier development.

We consider a compact Riemannian submanifold M ⊂ R
d of dimension d ′. Let µM be the

uniform probability measure onM andµB be the uniform probability measure on an Euclidean

ball of radius R, such that the ball largely encloses M. We mean that the centre of mass of M

and the centre of the ball are the same, and that R is much greater than the diameter of M.

The measure we observe is µ=λµM+ (1−λ)µB , where λ ∈ [0,1].

Theorem 6.3 Given a compact Riemannian submanifold M⊂R
d with positive reach rM, posi-

tive strong convexity radius ̺(M), and whose curvature is bounded by cM and a mass parameter

m sufficiently small, there exists ǫ≥ 0 and r > 0, such that µ=λµM+(1−λ)µB is an (ǫ,r )-sample

of M for any λ ∈]0,1].

Proof: Consider a ball B of radius ρ enclosed in the large ball of radius R and that does

not intersect M. Then, there exists C such that µ(B) = (1 −λ)µB (B) = Cρd . Let x be a

point of M. Using Lemma 2.37, for any a ≤ min(̺(M); πp
cM

), µ(B(x, a)) ≥λC
cM
d ′ ad ′ +C ad . Fix

b = min(̺(M); πp
cM

) and m0 = λC
cM
d ′ bd ′ +C bd . For any m ≤ m0, we can thus bound δµ,m(x)

and therefore dµ,m(x). Remark that, when m → 0, dµ,m(x) → 0. We fix m such that m ≤ m0

and dµ,m(x) < rM and we introduce ǫ= supx∈M dµ,m(x).

Now consider a point x such that d(x,M) =
(m

C

) 1
d . Then dµ,m(x) =

√
m1+ 2

d

(1+ 2
d )C

2
d
= r < rM. Let

y be a point such that dµ,m(y) < r . Therefore, d(y,M) <
(m

C

) 1
d and there exists x such that

d(x,M) =
(m

C

) 1
d = d(y,M)+d(x, y). Hence dµ,m(y) ≥ r −d(x, y) = r −d(x,M)+d(y,M). And

d(y,M) ≤ dµ,m(y)+
(m

C

) 1
d − r .

Fixing, ǫ= max(supx∈M dµ,m(x);
(m

C

) 1
d − r ), µ is an (ǫ,r )-sample of M.

Remark that the proof of existence is not enough for inference purposes. We need to have

r > 2ǫ to obtain something interesting in Lemma 6.2. It is necessary to handle the bound case

by case. We present the computation of interesting bounds for the example of Figure 6.3.

Fix λ = 8× 10−4. Then each small circle has mass 10−4 and the measure µB has density

9.9992×10−7 on its support. We use m = 5×10−6. Let x be a point on one of the small circles.

For r ≤ 1,

µ(B(x, a)) ≥λµM(B(x, a)) =
a

π

√

1−
a2

4
×10−4 ≥

a

π
×10−4.

Hence δµ,l (x) ≤πl ×104 for l ≤ m.

dµ,m(x) ≤

√
1

m

∫m

0
π2 ×108l 2dl =

5π×10−2

p
3

≤ 9×10−2

Thus ǫ= 5π×10−2
p

3
works for our noise model. Let y ∈R

2 such that δµ,m(y) ≤ dM(y). It implies

that there exists a ball around y of radius a such that µ(B(x, a)) ≥ m and a ≤ dM(y). The

94



6.3. Relation to other noise conditions

parameter r is greater than the infimum of the possible a for all y . For a ≤ dM(y), µ(B(x, a)) =
πa29.9992×10−7, which implies

a ≥

√
m107

π
=

√
.5

π
≥ .39.

Moreover, such a point y always exist at distance
√

.5
π of M and thus the parameter r is

bounded:

.39 ≤ r ≤
√

.5

π
+ǫ≤ .5.

6.3.2 Wasserstein noise condition
In the Wasserstein noise condition, the empirical measure µ on P is assumed to be close

to the uniform measure µM on a Riemannian d ′-manifold M in the Wasserstein distance.

Assume that the curvature of M is bounded by cM and that M has a positive strong con-

vexity radius ̺(M). Let b = min( πp
cM

;̺(M)). VM denotes the volume of M while C
cM
d ′ =

4
d ′Γ

(1
2

)d ′
Γ

(
d ′

2

)−1 (p
cM
π

)d ′−1
is a constant. See Lemma 2.37 for details on C

cM
d ′ .

Theorem 6.4 A measure µ with W2(µ,µM) ≤σ is an (ǫ,r )-sample of M for m ≤
C

cM
d ′ bd ′

VM
,

ε≥
1

√
1+ 2

d ′

(
VMm

C
cM
d ′

) 1
d ′

+
σ

p
m

, and r =∞.

Proof: Let µM be the uniform measure on M and µ a measure such that W2(µ,µM) ≤σ. Using

Theorem 3.15, we get ||dµ,m−dµM,m ||∞ ≤ σp
m

. Let us consider a point x ∈M and the ball B(x, a)

centred in x and of radius a. By definition of µM, for any a ≤ b, using Lemma 2.37,

µM(B(x, a)) =
V (x, a)

VM

≥
C

cM
d ′ ad ′

VM

The pseudo-distance δµM,m(x) can be bounded as long as m ≤
C

cM
d ′ bd ′

VM
.

δµM,m(x) ≤ a ≤
π

cM
≤

(
m VM

C
cM
d ′

) 1
d ′

And the relation propagates to the distance to µM.

dµM,m(x) ≤
1

p
m

√√√√
∫m

0

(
VM

C
cM
d ′

l

) 2
d ′

dl

≤
1

√
1+ 2

d ′

(
VMm

C
cM
d ′

) 1
d ′
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Thus:

dµ,m(x) ≤
1

√
1+ 2

d ′

(
VMm

C
cM
d ′

) 1
d ′

+
σ

p
m

The first part of our noise conditions is therefore verified for any ǫ ≥ 1√
1+ 2

d ′

(
VMm
C

cM
d ′

) 1
d ′

+ σp
m

.

Moreover, for any x ∈R
d , dµM,m(x) ≥ d(x,M) because M is the support of µM. Thus:

d(x,M) ≤ dµM,m(x) ≤ dµ,m(x)+
σ

p
m

≤ dµ,m(x)+ǫ

and we have proved that µ is an (ǫ,∞)-sampling of M.

Remark that the minimal value for ǫ is not 0 when σ is 0. To reach 0, we also need to decrease

m in order to make the radius of the smallest ball containing a mass m tend to 0 at any point

x ∈M. From this bound for the Wasserstein noise condition, we derive an immediate result for

the Gaussian noise model. Let us write N (0,σ2) for the normal law on R
d with zero mean and

standard deviation σ and ⋆ for the convolution operator.

Corollary 6.5 The measure µ=µM⋆N (0,σ2) is an (ǫ,r )-sample of M for m ≤
C

cM
d ′ bd ′

VM
,

ε≥
1

√
1+ 2

d ′

(
VMm

C
cM
d ′

) 1
d ′

+
σ

p
m

, and r =∞.

Proof: It suffices to show that W2(µ,µM) ≤σ, and then to apply Theorem 6.4. Denoting X the

probability law corresponding to µM and Y , the law corresponding to N (0,σ2), the probability

measure µ corresponds to the law X +Y . Following [94, Definition 6.1],

W2(µ,µM) = inf{
√

E[||X −Z ||2] | law(X ) =µ, law(Y ) =µM} ≤
√

E[||X −X −Y ||2] ≤σ.

6.3.3 Sampling by empirical measures
Data is usually given by a set P of n points sampled according to a measure µ. As we have seen

previously, we consider the empirical measure µn on P . This measure has convergence prop-

erties to µ in Wasserstein metrics. Intuitively, if we sample more and more points according to

µ, the empirical measure µn will be more and more similar to µ.

More formally, let us consider a probability measureµ onR
d . Let X1, X2, . . . , Xn be independent

identically distributed variables with probability law µ. Let µn = 1
n

∑n
i=1δXi be their empirical

measure. µn converges to µ in the second order Wasserstein metric [73, §1.1]:

Theorem 6.6 Suppose that c =
∫
|u|d+5µ(du) <∞, then there is a constant C depending only

on c and the dimension d such that:

E[W2(µ,µn)2] ≤
C

n
2

d+4

.
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6.3. Relation to other noise conditions

This result can be combined with Theorem 6.4.

Corollary 6.7 Let Pn be a set of n points obtained by an independent identically distributed

sampling according to the uniform measure µM on a compact Riemannian submanifold M⊂
R

d with curvature bounded by cM and positive strong convexity radius ̺(M). For any mass

m ≤
C

cM
d ′ bd ′

VM
where b = min( πp

cM
;̺(M)), there exists a constant C ′ depending only on M and

the dimension d such that, with probability at least 1
2 , µn , the empirical measure on Pn , is an

(ǫ,r )-sample of M for:

ε≥
1

√
1+ 2

d ′

(
VMm

C
cM
d ′

) 1
d ′

+
C ′

n
1

d+4
p

m
, and r =∞.

Proof: Theorem 6.6 implies that, with probability at least 1
2 , W2(µn ,µM) ≤

p
2C

n
1

d+4
. We apply

Theorem 6.4 and write C ′ =
p

2C .

This remark justifies the use of Wasserstein distances when working with empirical measures.

Convergence rates for other orders of the Wasserstein metric exists. We refer the interested

reader to [53, 55, 73] for more details on the behaviour of empirical measures.

6.3.4 Discrete results for Hausdorff noise condition
Given a compact Riemannian manifold M, the set of points P is assumed to be a ρ-sampling

of M. This means that for each point of M, there exists a point of P that is at distance at

most ρ. Assuming that the sampling is lying on the manifold and conditions are given in the

Riemannian metric, we obtain:

Theorem 6.8 Let M be a connected compact Riemannian manifold embedded in R
d and let P

be a Riemannian ρ-sampling of M. Let m ∈ [0,1[ be a mass parameter such that k = m|P |, then

the empirical measure µ on P is an (ǫ,r )-sampling of M for:

ǫ≥ ρ

√
2+k2

3
, and r =∞

Proof: We consider the worst case scenario. Let M′ be the segment centred at 0 and of length

2ρn on the real line embedded in R
d . We construct the sparsest possible ρ-sampling of M′.

This is obtained by putting points at regular intervals 2ρ along the real line. We consider the

empirical measure µ′ on P ′.

0 2ρ−2ρ 2(l −1)ρ−2(l −1)ρ 2lρ−2lρ

Figure 6.5 – The set P ′ sampling the segment [−2lρ,2lρ] when n = 2l +1.

First we prove that M′ is a worst case scenario for the parameter ǫ. It means that for any x ∈M,

we should be able to find a x ′ ∈M′ such that dµ′,m(x ′) ≥ dµ,m(x). Let us consider a point x ∈M.
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Then the nearest neighbour of x in P is p1(x). By hypothesis on P , dM(x, p1(x)) ≤ ρ. Consider

now the point x ′ of coordinate dM(x, p1(x)). Then the nearest neighbour of x ′ is 0 and it is at

distance exactly dM(x, p1(x)).

We want to prove that |P ′ ∩ B(x ′,r )| ≤ |P ∩ B(x,r )| for any r . We built x ′ such that |P ′ ∩
B(x ′,r )| = 0 if r < dM(x, p1(x)). Let us now assume that |P ′∩B(x ′,r )| = i . This implies that

r > (i −1)ρ+dM(x, p1(x)) if i is odd and r > iρ−dM(x, p1(x)) if i is even.

We only prove the result for i odd. Let us consider the Euclidean ball of radius r = (i −1)ρ+
dM(x, p1(x)) and centre x. This Euclidean ball contains the Riemannian ball B with the same

radius and centre. Either this ball contains all M and in this case |P ∩B(x,r )| = n = |P ′|, or

the ball contains two points a and b such that the minimizing geodesic between a and b

is enclosed in the ball and has length 2r , because M is connected. Given that r > (i −1)ρ+
dM(x, p1(x),), we can build a set of i −1 disjoint Riemannian balls of radius ρ included in B

such that none contains the point p1(x). For example, start by putting balls tangent in p1(x).

By the ρ-sampling hypothesis each one of these balls must contain a point of P and hence B

contains at least i points which gives us the result.

A similar reasoning holds for the case i even.

Now, we compute the maximum of dµ′,m over the interval [0,ρ]. Let us fix α ∈ [0,1].

dµ′,m(αρ)2 =
1

k




⌊ k−1

2 ⌋∑

i=0
(α+2i )2ρ2 +

⌊ k
2 ⌋−1∑

i=0
(2i +2−α)2ρ2





=
ρ2

k




⌊ k−1

2 ⌋∑

i=0
(α+2i )2 +

⌊ k
2 ⌋∑

i=1
(2i −α)2





Case k even : Fix k = 2l . Then :

dµ′,m(αρ)2 =
ρ2

2l

(

α2 +
l−1∑

i=1
(2α2 +8i 2)+ (2l −α)2

)

=
ρ2

2l

(

2lα2 −4lα+4l 2 +8
l−1∑

i=1
i 2

)

=
ρ2

2l

(
2lα2 −4lα+4l 2 +

8

6
(l −1)l (2l −1)

)

The maximum of this expression is reached for α= 0. Hence,

dµ′,m(αρ)2 ≤
2ρ2

3
(2l 2 +1)

Case k odd : Fix k = 2l +1. Then:

dµ′,m(αρ)2 =
ρ2

2l +1

(

(2l +1)α2 +8
l∑

i=1
i 2

)
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The maximum is thus obtained for α= 1. Hence,

dµ′,m(αρ)2 ≤
ρ2

2l +1

(
(2l +1)+8

l (l +1)(2l +1)

6

)

≤
ρ2

3
(3+4l (l +1))

≤
ρ2

3
((2l +1)2 +2)

When we combine both results, we obtain the general relation for k ≥ 1 :

dµ,m(x) ≤ dµ′,m(αρ)2 ≤
ρ2

3
(2+k2)

Thus we conclude :

ǫ≤ ρ

√
2+k2

3

Remark that our sampling condition is without noise. Thus all points of P are on M and hence

dµ,m(x) ≥ d(x,M) for any x in the ambient space, which implies r =∞.

Remark that some of the hypotheses are clearly not necessary. The assumption that M is

connected is not needed. In fact, we only need an upper bound of dµ,m on M. This can be

obtained as soon as each of the connected components of M is sampled with at least k points.

Moreover, the value of ǫ can be improved depending on the dimension of M. These results do

not interest us here as we only want to show that the notion of (ǫ,r )-sampling is relevant and

encompasses the previous noise conditions.

If we assume that points can move from their original position within a bounded range σ, we

still obtain an Euclidean ρ′-sampling of M, where ρ′ = ρ+σ. The same construction gives

an (ǫ,r )-sampling, where ǫ= ρ′
√

2+k2

3 and r =∞. In fact, remark that d(x,M) ≤σ+d(x,P ) ≤
ǫ+dµ,m(x) for any x ∈R

d .

6.4 Consequences on persistence diagrams
The (ǫ,r )-sampling hypothesis yields partial guarantees on the persistence diagram. ǫ is a

parameter giving the precision of the approximation we obtain, while r indicates the range

at which we can see the data. Intuitively, this means that as we look at the data at a larger

scale, the noise, for example coming from a scatter noise, will completely mask the useful

information.

Consider a compact Riemannian submanifold M ⊂ R
d and µ an (ǫ,r )-sample of M. If r <

∞, the interleaving needed to apply Theorem 2.23 will not be obtained for all values of

the filtration parameter. However, we can get some guarantees on parts of the persistence

diagrams.

Definition 6.9 Given a filtration {Fα}, where Fα is a subset of Rd for all α, and given δ ∈R, we

define the δ-collapsed filtration {F̃α} such that F̃α = Fα for all α< δ and F̃α =R
d otherwise.
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r

r

ǫ

ǫ

ǫ

?

Figure 6.6 – Partition of the persistence diagrams according to the theoretical guarantees

Theorem 6.10 Let µ be an (ǫ,r )-sample of a compact Riemannian submanifold M ⊂ R
d .

The (r + ǫ)-collapsed filtrations F̃ = {F̃α} of {d−1
M

([0,α])} and G̃ = {G̃α} of {d−1
µ,m([0,α])} are

ǫ-interleaved and therefore:

db(Dgm(F̃ ),Dgm(G̃ )) ≤ ǫ.

Proof: Consider α < r . Then Lemma 6.2 implies that F̃α ⊂ G̃α+ǫ and G̃α ⊂ F̃α+ǫ. Moreover,

if α ≥ r then F̃α+ǫ = G̃α+ǫ = R
d . Therefore F̃α ⊂ G̃α+ǫ and G̃α ⊂ F̃α+ǫ. Hence F̃ and G̃ are

ǫ-interleaved and Corollary 2.27 applies.

Following the first steps of the proof of [26, Theorem 5.1], the persistence diagram Dgm(F̃ )

of the r -collapsed filtration is identical to the persistence diagram of the original filtration

Dgm(F ) in the quadrant ]−∞,r [×]−∞,r [. All points of Dgm(F ) located in ]−∞,r [×[r,∞[ are

projected onto the line R× r . Finally, Dgm(F ) does not contain any element in [r,∞[×[r,∞[.

Theorem 6.10 therefore gives guarantees on parts of the persistence diagrams Dgm(dµ,m)

and Dgm(dM). There exists a partial matching π of Dgm(dµ,m) with Dgm(dM) verifying the

following conditions, where ∆ is the diagonal.

1. ∀x ∈ [0,r ] × [0,r ] ∩ Dgm(dµ,m), d∞(x,∆) ≤ ǫ =⇒ x is matched with π(x) such that

||π(x)−x||∞ ≤ ǫ.

2. ∀x = (a,b) ∈ [0,r ]×]r,∞]∩Dgm(dµ,m), d∞(x,∆) ≤ ǫ =⇒ x is matched with π(x) = (a′,b′)
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6.4. Consequences on persistence diagrams

such that |a′−a| ≤ ǫ.

The conditions are also valid if we reverse the roles of Dgm(dµ,m) and Dgm(dM). Intuitively, it

means that the two diagrams are at distance at most ǫ in the bottom left part [0,r ]× [0,r ], that

the difference between them in the upper quadrant [0,r ]×]r,∞] is only bounded horizontally

and nothing is known for the remaining upper right part.
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7 Scalar field analysis

In [32], Chazal et al. presented an algorithm to analyse the topology of a scalar field using

persistent homology which can handle bounded Hausdorff noise both in geometry and in

observed function values. We build upon the same framework in order to handle unbounded

noise using the distance to a measure.

First, we introduce necessary preliminaries as well as some of the results from [32]. Then, we

show how to handle unbounded functional and geometric noise and present some experi-

mental illustration.

7.1 Scalar field analysis with bounded noise
Given a Riemannian manifold M, the scalar field topology of f : M→ R is studied via the

topological structure of the sub-level sets filtration of f , defined as Fα = f −1(]−∞,α]) for

any α ∈R. The collection of sub-level sets form a filtration F = {Fα}α∈R connected by natural

inclusions Fα ⊆ Fβ for any α≤β. Our goal is to approximate the persistence diagram Dgm(F )

from the observed scalar field f̃ : P →R, where P is a set of measure points. We first describe

the results of [32] for approximating Dgm(F ) when P is a geodesic ε-sampling of M.

To simulate the sub-level sets filtration {Fα} of f , we introduce Pα = f̃ −1(]−∞,α]) ⊂ P for any

α ∈R. Intuitively, the points in Pα sample the sub-level set Fα. To estimate the topology of Fα

from these discrete samples Pα, we consider the δ-offset Pδ
α of the point set Pα i.e. we grow

balls of radius δ around the points of Pα. It gives us a union of balls that serves as a proxy for

f −1(]−∞,α]) and whose nerve is the Čech complex, Cδ(Pα). For computation purpose, we

use the Vietoris-Rips complex Rδ(Pα), which is related to Cδ(Pα) as shown in Proposition 5.3:

∀δ> 0, Cδ(Pα) ⊂ Rδ(Pα) ⊂C2δ(Pα).

Even though no Vietoris-Rips complex might capture the topology of the manifold M, it was

shown in [35] that a structure of nested complexes can recover it from the filtration {Pα},

using the inclusions Rδ(Pα) ,→ R2δ(Pα). Specifically, for a fixed δ> 0 and α≤β, consider the

following commutative diagram induced by inclusions,

H∗(Rδ(Pβ))H∗(Rδ(Pα))

H∗(R2δ(Pα)) H∗(R2δ(Pβ))

Defining Φα as the image of H∗(Rδ(Pα)) → H∗(R2δ(Pα)), the diagram induces a map φ
β
α : Φα →
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Φβ. As the diagram commutes for all α≤β, {Φα,φ
β
α} defines a persistence module. We call it

the persistent homology module of the filtration of nested pairs {Rδ(Pα) ,→ R2δ(Pα)}α∈R.

Using this construction, one of the main results of [32] is:

Theorem 7.1 (Theorems 2 and 6 of [32]) Let M be a compact Riemannian manifold and let

f : M→ R be a c-Lipschitz function. Let P be a geodesic ε-sampling of M. If ε< 1
4̺(M), then

for any δ ∈
[
2ε, 1

2̺(M)
)
, the persistent homology modules of f and of the filtration of nested

pairs {Rδ(Pα) ,→ R2δ(Pα)} are 2cδ-interleaved. Therefore, the bottleneck distance between their

persistence diagrams is at most 2cδ.

Furthermore, the k-dimensional persistence diagram for the filtrations of nested pairs {Rδ(Pα) ,→
R2δ(Pα)} can be computed in O(|P |kN +N log N +N 3) time, where N is the number of simplices

of {R2δ(P∞)}, and |P | denotes the cardinality of the sample set P.

It has been observed that in practice, the persistence algorithm often has a running time

linear in the number of simplices, which reduces the above complexity to O(|P |+N log N ) in a

practical setting.

We say that f̃ has a precision of ξ over P if | f̃ (p)− f (p)| ≤ ξ for any p ∈ P . This is what we call a

Hausdorff type functional noise and we have:

Theorem 7.2 (Theorem 3 of [32]) Let M be a compact Riemannian manifold and let f :M→R

be a c-Lipschitz function. Let P be a geodesic ε-sampling of M such that the values of f on P

are known with precision ξ. If ε< 1
4̺(M), then for any δ ∈

[
2ε, 1

2̺(M)
)
, the persistent homology

modules of f and of the filtration of nested pairs {Rδ(Pα) ,→ R2δ(Pα)} are (2cδ+ξ)-interleaved.

Therefore, the bottleneck distance between their persistence diagrams is at most 2cδ+ξ.

Geometric noise was considered in the form of bounded noise in the estimate of the geodesic

distances between points in P . It translated into a relation between the measured pairwise

distances and the real ones to obtain:

Theorem 7.3 (Theorem 4 of [32]) 1Let M, f be defined as previously and P be an ǫ-sample of

M in its Riemannian metric. Assume that, for a parameter δ> 0, the Rips complexes Rδ(·) are

defined with respect to a metric d̃(·, ·) which satisfies ∀x, y ∈ P, dM(x,y)
λ ≤ d̃(x, y) ≤ ν+µ

dM(x,y)
λ ,

where λ ≥ 1 is a scaling factor, µ ≥ 1 is a relative error and ν ≥ 0 an additive error. Then, for

any δ≥ ν+2µ ǫ
λ and any δ′ ∈ [ν+2µδ, 1

λ̺(M)], the persistent homology modules of f and of

the filtration of nested pairs {Rδ(Pα) ,→ Rδ′(Pα)} are cλδ′-interleaved. Therefore, the bottleneck

distance between their persistence diagrams is at most cλδ′.

7.2 Unbounded functional noise
In this section, we focus on the case where we only have noise in the observed function f̃ .

Suppose that we have a scalar function f defined on a manifold M embedded in a metric

space X. We are given a geodesic ε-sample P ⊂M, and a noisy observed function f̃ : P → R.

Our goal is to approximate the persistence diagram Dgm(F ) of the sub-level sets filtration

1This is a specific case of Theorem 4 of [32] and was stated in this form in the conference version of the paper.
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7.2. Unbounded functional noise

F = {Fα = f −1((−∞,α])}α from f̃ . We assume that f is c-Lipschitz with respect to the intrinsic

metric of the manifold M. Note that this does not imply a Lipschitz condition on f for the

extrinsic metric.

7.2.1 Functional noise model
Previous work on functional noise usually focuses on Hausdorff-type bounded noise [32]

or statistical noise with zero-mean [74]. However, we observe that there are many practical

scenarios where the observed function f̃ may contain these previously considered types of

noise mixed with aberrant function values. Hence, we propose below a more general noise

model that allows such a mixture.

Motivating examples. First, we provide some motivating examples for the need of handling

aberrant function values in f̃ , i.e. where f̃ (p) at some sample p can be totally unrelated to the

true value f (p). Consider a sensor network, where each node returns some measures. Such

measurements can be imprecise, and in addition to that, a sensor may experience failure and

return a completely wrong measure that has no relation with the true value of f . Similarly, an

image could be corrupted with impulse noise, where there are random pixels with aberrant

function values, such as random white or black dots (see Figure 7.4 for an illustration).

More interestingly, outliers in function values can naturally appear as a result of geometric

noise present in the discrete samples. For example, imagine that we have a process that can

measure the function value f :M→R with no error. However, the geometric location p̃ of a

point p ∈M can be wrong. In particular, p̃ can be close to other parts of the manifold, thereby

although p̃ has the correct function value f (p), it becomes a functional outlier among its

neighbours, due to the wrong location of p̃. Figure 7.1 shows a bone-like structure, where the

function f (x) is given by the distance on the curve between x and the point located at the

middle of the bottom horizontal segment. The two sides of the narrow neck have very different

function values. Consider that the points are sampled uniformly on M and their position is

then convolved with a Gaussian noise in the ambient space. Then points from one side of this

neck can be sent closer to the other side, causing aberrant values in the observed function.

Bone without noise Bone with gaussian noise Bone after magic filter

Figure 7.1 – Bone example after applying Gaussian perturbation and magic filter

In fact, if we assume that we have a “magic filter” that can project each sample back onto

the underlying manifold M, thus obtaining a new set of samples where all points are on the

manifold, we obtain a sampling that can be seen as having no geometric noise, but a functional

noise caused by the original geometric noise. Note that such a magic filter is the goal of many
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geometric denoising methods. This implies that a denoising algorithm, perfect in the sense

of geometric noise, cannot remove or may even cause more aberrant functional noise. This

motivates the need for handling functional outliers in addition to traditional functional noise

as well as processing noise that combines geometric and functional noise together and is

not necessarily centred. Figure 7.1 shows a bone-like curve and a function defined as the

curvilinear abscissa. The Gaussian noise applied to the example creates outliers even after

applying a projection onto the original object.

Another case where our approach is useful concerns missing data. Assuming that some of the

functional values are missing, we can replace them by anything and act as if they were outliers.

Without modifying the algorithm, we obtain a way to handle the local loss of information. This

will be further discussed in Chapter 8.

Functional noise model. To allow both aberrant and more traditional functional noise, we

introduce a new noise model. Given a set of points P and an integer k, we write NNk
P (p) the

set of the k-nearest neighbours of p in P in the extrinsic metric.

Definition 7.4 Let M be a Riemanian manifold in a metric space X and f :M→R a scalar field

on M. Given a geodesic ǫ-sample P of M, a discrete scalar field f̃ : P →R and two integers k and

k ′ such that k ≥ k ′ > k
2 , we say that f̃ is a (k,k ′,∆)-functional-sample of f if

∀p ∈ P,
∣∣∣
{

q ∈ NNk
P (p)

∣∣ | f̃ (q)− f (p)| ≤∆

}∣∣∣≥ k ′ (7.1)

Intuitively, this noise model allows up to k −k ′ samples around a point p to be outliers, i.e.

points whose functional value deviates from f (p) by at least ∆. We now consider several

common functional noise models used in the statistical learning community and look at what

they correspond to in our setting.

Bounded noise model. The standard “bounded noise” model assumes that all observed

function values are within some distance δ away from the true function values, that is, | f̃ (p)−
f (p)| ≤ δ for all p ∈ P . Hence this bounded noise model simply corresponds to a (1,1,δ)-

functional-sample.

Gaussian noise model. Under the popular Gaussian noise model, for any x ∈M, its observed

function value f̃ (x) is drawn from a normal distribution N ( f (x),σ), that is a probability

measure with density g (y) = 1
σ
p
π

e−
(y− f (x))2

σ2 . We say that a point q ∈ P is a-accurate if | f̃ (q)−
f (q)| ≤ a. For the Gaussian noise model, we will first bound the random variable µ(k,k ′)

defined as the smallest value such that at least k ′ out of the k nearest neighbours of p in

NNk
P (p) are µ(k,k ′)-accurate.

Lemma 7.5 With probability at least 1−e−
k−k′

6 , µ(k,k ′) ≤σ
√

ln 2k
k−k ′ .
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Proof: First note that 1p
2π

∫+∞
b e−

t2

2 d t ≤ 1p
2π

e−
b2

2 if b ≥ 1. Introducing I (a) = 1
σ
p
π

∫a
−a e−

x2

σ2 d x,

we get, by a change of variable, for a ≥σ:

1−e−( a
σ

)2
≤ I (a) (7.2)

Now set δ= k−k ′

k < 1
2 and s =σ

√
ln 2k

k−k ′ ≥σ. Let p1, . . . , pk denote the k nearest neighbours of

some point, say p1. For each pi , let Zi = 1 if pi is not s-accurate, and Zi = 0 otherwise. Hence

Z =
∑k

i=1 Zi denotes the total number of points from these k nearest neighbours that are not

s-accurate. By Equation (7.2), we know that

Prob[Zi = 1] = 1− I (s) ≤ e−( s
σ

)2
.

It then follows that the expected value of Z satisfies:

E(Z ) ≤ ke−( s
σ

)2
=

δk

2
.

Now set ρ = δk
2E(Z ) . Since E(Z ) ≤ δk

2 , it follows that (1+ρ)E(Z ) ≤ δk. Using Chernoff’s bound [5],

we obtain

Prob [Z ≥ k −k ′] = Prob [Z ≥ δk] ≤ Prob [Z ≥ (1+ρ)E(Z )]

≤ e−
ρ2

E(Z )
2+ρ = e

− δ2k2

4E(Z )
1

2+ δk
E(Z ) ≤ e−

δ2k2

6δk = e−
k−k′

6 .

We remark that, as we increase the value of s, the probability Prob [Z ≥ k −k ′] of having at

least k −k ′ points not s-accurate decreases.

Next, we convert the value µ(k,k ′) to the value ∆ as in Equation (7.1).

Proposition 7.6 Let f :M→R be a c-Lipschitz scalar field on a Riemannian manifoldM. Given

a sampling P of M and a discrete scalar field f̃ : P → R respecting the Gaussian noise model,

then with probability at least 1−ne−
k−k′
σ , where n = |P |, f̃ is a (k,k ′,∆)-functional-sample for

∆=σ
√

ln 2k
k−k ′ + cλ, where λ is the geodesic diameter of NNk

P (p).

Proof: In particular, being a (k,k ′,∆)-functional-sample means that for any p ∈ P , there are

at least k ′ samples q from NNk
P (p) such that | f̃ (q)− f (p)| ≤∆. Now assume that the furthest

geodesic distance from any point in NNk
P (p) to p is λ. Then since f is a c-Lipschitz function,

we have maxq∈NNk
P (p) | f (q)− f (p)| ≤ cλ.

We note that Lemma 7.5 is valid for any point p of P . Using the union bound, the relation

holds for all points in P with probability at least 1−ne−
k−k′

6 . Note that if k −k ′ ≥ 12lnn, then

this probability is at least 1− 1
n , that is, the relation holds with high probability. Thus, with

probability at least 1−ne−
k−k′

6 , the input function f̃ : P →R under Gaussian noise model is a

(k,k ′,∆)-functional-sample with ∆=σ
√

ln 2k
k−k ′ + cλ.
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7.2.2 Functional denoising
Given a scalar field f̃ : P →R which is a (k,k ′,∆)-functional-sample of f :M→R, we now aim

at computing a denoised function f̂ : P →R from the observed function f̃ , and we will later

use f̂ to infer the topology of the sub-level sets of f : M→ R. Below we describe two ways

to denoise f̃ . One is well-known while the other one is new. As we will see later, these two

treatments lead to similar theoretical guarantees in terms of topology inference. However, they

have different characteristics in practice, which we will discuss in the experimental illustration

of Section 7.2.3.

k-median. In the k-median treatment, we simply perform the following: given any point

p ∈ P , we set f̂ (p) to be the median value of the set of f̃ values for the k-nearest neighbours

NNk
P (p) ⊆ P of p. We call f̂ the k-median denoising of f̃ . The following observation is simple:

Lemma 7.7 If f̃ : P → R is a (k,k ′,∆)-functional-sample of f : M→ R with k ′ ≥ k/2, then we

have | f̂ (p)− f (p)| ≤∆ for any p ∈ P, where f̂ is the k-median denoising of f̃ .

Proof: Given p ∈ P , there exist at least k ′ points xi among its k-nearest neighbours such that

f (xi ) ≥ f (p)−∆. Similarly, there exist at least k ′ points such that f (yi ) ≤ f (p)+∆. Since k ′ > k
2 ,

f (p)−∆≤ f̂ (p) ≤ f (p)+∆.

Discrepancy. In the k-median treatment, we choose a single value from the k-nearest neigh-

bours of a sample point p and set it to be the denoised value f̂ (p). This value, while within

distance ∆ from the true value f (p) when k ′ ≥ k/2, tends to have greater variability among

neighbouring sample points. Intuitively, taking the average, such as k-means, makes the

function f̂ (p) smoother, but it is sensitive to outliers.

The distance to a measure function we used in previous chapters provided an averaging that

was less sensible to outliers. Considering the set N of the k nearest neighbours of a point,

we can look at their functional values and consider the distance to the empirical measure on

f̃ (N ). We look for the minimum of this function and use it as our estimate f̂ (p).

Given a set Y = {x1, . . . , xk ′} of k ′ sample points from P , we define its discrepancy with respect

to f̃ as:

φ(Y ) =
1

k ′

k ′∑

i=1
( f̃ (xi )−µ(Y ))2, where µ(Y ) =

1

k ′

k ′∑

i=1
f̃ (xi ).

µ(Y ) and φ(Y ) are respectively the mean and the variance of the observed function values for

points from Y . Intuitively, φ(Y ) measures how tight the function values ( f̃ (xi )) are clustered.

Now, given a point p ∈ P , we define

Ŷp = argminY ⊆NNk
P (p),|Y |=k ′ φ(Y ), and ẑp =µ(Ŷp ).

That is, Ŷp is the subset of k ′ points from the k-nearest neighbours of p that has the smallest

discrepancy and ẑp is its mass centre. It turns out that Ŷp and ẑp can be computed by the

following sliding-window procedure:
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SLIDING WINDOW PROCEDURE

1. Sort NNk
P (p) = {x1, . . . , xk } according to f̃ (xi ).

2. For every k ′ consecutive points Yi = {xi , . . . , xi+k ′−1} with i ∈ [1,k −k ′+1], compute its

discrepancy φ(Yi ).

3. Set Ŷp = argminYi ,i∈[1,k−k ′]φ(Yi ), and return µ(Ŷp ) as ẑp .

Remark that ẑp is exactly the minimum over R of the distance to the empirical measure on

f (NNk
P (p)) for the mass k ′

k . In the discrepancy-based denoising2 approach, we simply set

f̂ (p) := ẑp as computed above. The correctness of f̂ to approximate f is given by the following

Lemma.

Lemma 7.8 If f̃ : P →R is a (k,k ′,∆)-functional-sample of f :M→R with k ′ ≥ k
2 , then we have

| f̂ (p)− f (p)| ≤
(
1+2

√
k−k ′

2k ′−k

)
∆ for any p ∈ P, where f̂ is the discrepancy-based denoising of f̃ .

In particular, if k ′ ≥ 2
3 k, then | f̂ (p)− f (p)| ≤ 3∆ for any p ∈ P.

Proof: Let Y∆ = {x ∈ NNk
P (p) : | f̃ (x)− f (p)| ≤∆} be the set of points in NNk

P (p) whose observed

function values are at distance at most ∆ away from f (p). Since f̃ is a (k,k ′,∆)-functional-

sample of f , |Y∆| ≥ k ′. Let Y ′
∆
⊂ Y∆ be a subset with k ′ elements, Y ′

∆
= {x ′

i }k ′

i=1. By definition

of Y∆ and Y ′
∆

, | f̃ (x ′
i )−µ(Y ′

∆
)| ≤ 2∆ where µ(Y ′

∆
) = 1

k ′
∑k ′

i=1 f̃ (x ′
i ). This inequality gives an upper

bound of the discrepancy φ(Y ′
∆

),

φ(Y ′
∆

) =
1

k ′

k ′∑

i=1
( f̃ (x ′

i )−µ(Y ′
∆

))2

≤
1

k ′

k ′∑

i=1
(2∆)2

= 4∆2

Recall that Ŷp = argminYi ,i∈[1,k−k ′]φ(Yi ) and ẑp =µ(Ŷp ). Denote A1 = Ŷp ∩Y∆ and A2 = Ŷp \ A1.

Since f̃ is a (k,k ′,∆)-functional-sample of f , the size of A2 is at most k −k ′ and |A1| ≥ 2k ′−k.

If |ẑp − f (p)| ≤ ∆, nothing needs to be proved. Without loss of generality, we assume that

f (p)+∆ ≤ ẑp . Denote δ = ẑp − ( f (p)+∆). The discrepancy of φ(Ŷp ) can be estimated as

follows.

2It has no relation to the discrepancy method [36].
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φ(Ŷp ) =
1

k ′

(
∑

x∈A1

( f̃ (x)− ẑp )2 +
∑

x∈A2

( f̃ (x)− ẑp )2

)

≥
1

k ′

(

|A1|δ2 +
∑

x∈A2

( f̃ (x)− ẑp )2

)

≥
1

k ′

(

|A1|δ2 +
1

|A2|
(

∑

x∈A2

f̃ (x)−|A2|ẑp )2

)

=
1

k ′

(

|A1|δ2 +
1

|A2|
(

∑

x∈A1

f̃ (x)−|A1|ẑp )2

)

≥
1

k ′

(
|A1|δ2 +

1

|A2|
(|A1|δ)2

)

≥
1

k ′δ
2
(

k ′|A1|
|A2|

)

≥
2k ′−k

k −k ′ δ
2

where the third line uses the inequality
∑n

i=1 a2
i ≥

1
n (

∑n
i=1 ai )2, and the fourth line uses the fact

that (|A1|+|A2|)ẑp =
∑

x∈Ŷp
f̃ (x). Since Ŷp = argminYi ,i∈[1,k−k ′]φ(Yi ), φ(Ŷp ) ≤φ(Y ′

∆
). Therefore,

2k ′−k

k −k ′ δ
2 ≤ 4∆2.

Hence δ ≤ 2
√

k−k ′

2k ′−k ∆ and | f̂ (p)− f (p)| ≤
(
1+2

√
k−k ′

2k ′−k

)
∆, since ẑp = f̂ (p). If k ′ ≥ 2

3 k, then

1+2
√

k−k ′

2k ′−k ≤ 1+2 = 3, meaning that | f̂ (p)− f (p)| ≤ 3∆.

Corollary 7.9 Given a (k,k ′,∆)-functional-sample of f :M→R with k ′ ≥ k/2, we can compute

a new function f̂ : P →R such that | f̂ (p)− f (p)| ≤ ξ∆ for any p ∈ P, where ξ= 1 under k-median

denoising, and ξ=
(
1+2

√
k−k ′

2k ′−k

)
under the discrepancy-based denoising.

After the k-median denoising or the discrepancy-based denoising, we obtain a new function

f̂ whose value at each sample point has an error at most ξ∆ from the true function value.

We can now apply the scalar field topology inference framework from [32], as introduced

in Section 7.1, using f̂ as input. In particular, set Lα = {p ∈ P | f̂ (p) ≤ α}, and let Rδ(X )

denote the Rips complex over points in X with parameter δ. We approximate the persistence

diagram induced by the sub-level sets filtration of f :M→R from the filtration of nested pairs

{Rδ(Lα) ,→ R2δ(Lα)}α. It follows from Theorem 7.2 that:

Theorem 7.10 Let M be a compact Riemannian manifold and let f :M→R be a c-Lipschitz

function. Let P be a geodesic ε-sampling of M, and f̃ : P →R a (k,k ′,∆)-functional-sample of

f . Set ξ= 1 if Pα is obtained via k-median denoising, and ξ=
(
1+2

√
k−k ′

2k ′−k

)
if Pα is obtained
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7.2. Unbounded functional noise

via discrepancy-based denoising. If ε < 1
4̺(M), then for any δ ∈

[
2ε, 1

2̺(M)
)
, the persistent

homology modules of f and the filtration of nested pairs {Rδ(Pα) ,→ R2δ(Pα)} are (2cδ+ξ∆)-

interleaved. Therefore, the bottleneck distance between their persistence diagrams is at most

2cδ+ξ∆.

Theoretical results are similar for k-median and discrepancy-based methods with a slight

advantage for the k-median. However, interesting experimental results can be obtained when

the Lipschitz condition on f is removed, for example with images, where the discrepancy

based method shows more robustness to large amounts of noise. Moreover, the approach

through the distance to a measure can be defined for other spaces of functional values than R.

In fact, it can be defined for any metric space X, but the computation of the minimum is a

challenge. The rest of the section presents an illustration of the behaviour of these methods.

7.2.3 Experimental Illustration for functional noise
In this section, we present results obtained by applying our methods to cases where there is

only functional noise. Our goals are to demonstrate the denoising power of both the k-median

and the discrepancy-based approaches and to illustrate the differences between the practical

performances of the k-median and discrepancy-based denoising methods. We compare our

denoising results with the popular k-NN algorithm, which simply sets the function at point p

to be the mean of the observed function values of its k nearest neighbours. Note that, when

k ′ = k, our discrepancy-based method is equivalent to the k-NN algorithm.

Going back to the bone example from section 7.2.1, we apply our algorithm to the 10-nearest

neighbours and k ′ = 8. Using 100 sampling of the Bone with 1000 points each, we compute

the average maximal error made by the various methods. The discrepancy-based method

commits a maximal error of 10% on average, while the median-based method recovers the

values with an error of 2% and the simple k-NN regression gives a maximal error of 16%,

with most error concentrated around the neck region, see Figure 7.2. These results translate

into the persistence diagrams that are more robust with the use of the discrepancy (blue

squares) or the k-median (red diamond) instead of the k-NN regression (green circles), see

Figure 7.3. Both methods retrieve the 1-dimensional topological feature. The k-NN regression

keeps some prominent 0-dimensional feature through the diagram instead of having a unique

component, result obtained by using the discrepancy or the median. The persistence diagram

of the original bone is given in red and contains only one feature.

As indicated by theoretical results, the discrepancy-based method improves the classic k−N N

regression but the median-based algorithm is still better. The discrepancy can however have

a much better behaviour when the noise can have values in between two correct ones and

when the Lipschitz condition is relaxed. This is the case in some other practical applications

like image denoising.

We take the greyscale image Lena as the target scalar field f . In Figure 7.4, we use two ways

to generate a noisy input scalar field f̃ . The first type of noisy input is generated by adding

uniform random noise, also called impulse noise, as follows: with probability p, each pixel will

receive a uniformly distributed random value in range [0,255] as its function value; otherwise,

it is unchanged. Results under random noises are in the second and third rows of Figure 7.4.
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Bone without noise Bone after projection and k-NN

Bone after projection and discrepancy Bone after projection and median

Figure 7.2 – Bone example after applying Gaussian perturbation, magical filter and a regression

Figure 7.3 – Persistence diagrams in dimension 0 for the Bone example

We also consider what we call outlier noise, similar to the so-called salt and pepper noise: with

probability p, each pixel will be a outlier meaning that its function value is a fixed constant,

which is set to be 200 in our experiments. This outlier noise is to simulate the aberrant function

values caused a broken sensor for example. The denoising results under the outlier-noise are

shown in the last row of Figure 7.4.

First, we note that the k-NN approach tends to smooth out function values. In addition to

the blurring artifact, its denoising capability is limited when the amount of noise is high i.e.

where imprecise values become dominant. As expected, both k-median and discrepancy

based methods outperform the k-NN approach. Indeed, they demonstrate robust recovery of

the input image even with 50% amount of random noise are added.

While both k-median and discrepancy based methods are more resilient against noise, there

are interesting differences between their practical performances. From a theoretical point of
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Original Lena The 0-th persistence diagram

10% random noise k-NN: k = 9 k-median, k = 9 discrepancy, k = 9,k ′ = 5

50% random noise k-NN: k = 25 k-median, k = 25 discrepancy, k = 25,k ′ = 13

40% outlier noise k-NN: k = 25 k-median, k = 25 discrepancy, k = 25,k ′ = 13

Figure 7.4 – The denoised images after k-NN, k-median, and discrepancy denoising ap-
proaches. The first row shows the original image and its 0-th persistence diagram. Second
and third rows are under random noise of input, while fourth row are under outlier-noise as
described in the text. The fifth row provides the 0-th persistence diagrams on images in the
fourth row, which are computed by the scalar field analysis algorithm from [32] .
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view, when the input scalar field is indeed a (k,k ′,∆)-functional-sample, the k-median method

gives a slightly better error bound than the discrepancy based method, see Theorem 7.10.

However, when the (k,k ′,∆)-functional-sample condition is not satisfied, the median value

can be quite arbitrary. By taking the average of a subset of points, the discrepancy method

is more robust against large amount of noise. This difference is evident in the third and last

row of Figure 7.4. In this case, the addition of noise creates a bias in the functional values.

When the proportion of noise is sufficiently high and the values of noisy points are in between

two groups of relevant values, for example, when you have a dark and clear parts in an image

and the noise is grey, the median method returns a value in the grey, which is uncorrelated to

relevant information, while the discrepancy-based method can remain closer to the original

information. The main reason for this behaviour comes from the absence of the Lipschitz

property in the image application. More precisely, the Lipschitz constant is too big to provide

meaningful guarantees on the quality of the regression. The same problem also occurs in

presence of random impulse noise. With a high proportion of noise, the median is very often

close to the median of all possible values, while the discrepancy-based method returns a value

close to denser region around relevant information.

Moreover, the application to persistent homology, which was our primary, goal is much cleaner

after the discrepancy-based method. The structure of the beginning of the diagrams is almost

perfectly retrieved by both the median and discrepancy-based methods. However, the median

induces a shrinking phenomenon to the diagram. This means that the width of the diagram is

reduced and so are the lifespans of topological features, making it more difficult to distinguish

between noise and relevant information. Remark that the classic k-NN approach shrinks the

diagram even more, to the point where it is no longer possible to distinguish the information

from the noise.

The standard indicator to measure the quality of a denoising is the Peak Signal over Noise Ratio

(PSNR). Given a grey scale input image I and an output image O with the grey scale between 0

and 255, it is defined by

PSNR(I ,O) = 10log10

(
2562

1
i j

∑
i
∑

j (I [i ][ j ]−O[i ][ j ])2

)

.

Figure 7.5 shows the quality of the denoising for a set of Lena images with increasing quantity

of noise. The curves are obained using the median (M) and different values of k ′ in the

discrepancy while k is fixed at 25. The median is better when the noise ratio is small but as we

increase the number of outliers, the discrepancy obtains better results. This also shows that

the optimal k ′ depends on the noise ratio. It also depends on the image we consider and thus

makes it difficult to find an easy way to choose it automatically. Heuristically, it is better to

take k ′ around 2
3 k, especially when there is a lot of noise.

State of the art results in computer vision obtain better experimental results (e.g. [54, 79,

96]). However, these results assume that the noise model is known and they can start by

detecting and removing noisy points before rebuilding the image. Our methods are free from

assumptions on the generative model of the image. The algorithms do not change depending
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Figure 7.5 – PSNR for Lena images depending on the choice of k ′ and the quantity of noise

on the type of noise.

7.3 Scalar field analysis with unbounded geometric noise
For the rest of the chapter, we assume that M is a manifold with curvature bounded by cM and

positive reach rM. Moreover, we assume that the input P is an (ε,r )-sample of M, where

ε≤
rM
6

and r > 2ε (7.3)

We assume that there is no intrinsic functional noise in the sense that for any p ∈ P , the

observed function value f̃ (p) = f (π(p)) is the same as the true value for the projectionπ(p) ∈M
of this point. Remark that π(p) is not always well-defined. If there is an ambiguity, we choose

arbitrarily among the possible projections.

Taking advantage of the interleaving from Lemma 6.2, we can use the distance to the empirical

measure to filter the points of P . In particular, we consider the set

L = P ∩d−1
µ,m(]−∞,η]) where η≥ 2ǫ.

We then use a similar approach as the one from [32] for this set L. The optimal choice for the

parameter η is 2ǫ. However, any value with η≤ r and η+ǫ< ρM works as long as there exist δ

and δ′ satisfying the conditions stated in Theorem 7.3.

Let L̄ = {π(x)|x ∈ L} denote the orthogonal projection of L onto M. To simulate sub-level sets,

consider the restricted sets Lα := L∩ ( f ◦π)−1(]−∞,α]) and let L̄α =π(Lα). By our assumption

on f̃ , we have: Lα = {x ∈ L| f̃ (x) ≤α}.

Let us recall a result about the relation between Riemannian and Euclidian metrics [50]. For

any two points x, y ∈M with d(x, y) ≤ rM
2 ,

d(x, y) ≤ dM(x, y) ≤
(

1+
4d(x, y)2

3r 2
M

)

d(x, y) ≤
4

3
d(x, y). (7.4)
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As a direct consequence of the noise model, for any point x ∈M, there exists a point y ∈ L at

distance less than 2ǫ. We will use the extrinsic Vietoris-Rips complex to infer the scalar field

topology. Using the previous relation, we obtain that for points in L, the Euclidean distance

for nearby points approximates the Riemannian metric on M.

Proposition 7.11 Let λ = 4
3

rM
rM−(η+ε) with η+ ǫ ≤ rM. For ∀(x, y) ∈ L×L, d(x, y) ≤ rM

2 − η+ε
2

implies
dM(π(y),π(x))

λ
≤ d(x, y) ≤ 2(η+ε)+dM(π(x),π(y)).

Proof: Let x and y be two points of L such that d(x, y) ≤ rM
2 − η+ε

2 . As dµ,m(x) ≤ η≤ r , and µ is

an (ǫ,r )-sample of M, d(π(x), x) ≤ η+ǫ. Therefore d(π(x),π(y)) ≤ rM
rM−(η+ǫ) d(x, y) [61, Theorem

4.8,(8)]. This implies d(π(x),π(y)) ≤ rM
2 and following (7.4), dM(π(x),π(y)) ≤ 4

3 d(π(x),π(y)).

Theorem 7.12 Let M, f , L be defined as previously. Then, for any δ≥ 2η+6ε and any δ′ ∈[
2η+2ε+ 8

3
rM

rM−(η+ε)δ, 3
4

rM−(η+ε)
rM

̺(M)
]

,

H∗( f ) and H∗(Rδ(Lα) ,→ Rδ′(Lα)) are 4
3

crMδ′

rM−(η+ε) -interleaved.

Proof: First, note that L̄ is a 2ǫ-sample of M in its Riemannian metric. This is because for

any point x ∈M, we know that there exists some p ∈ L such that d(x, p) ≤ dµ,m(x) ≤ ε. Hence

d(x,π(p)) ≤ d(x, p)+d(p,π(x)) ≤ 2d(x, p) ≤ 2ε. Now we apply Theorem 7.3 to L̄ by using

d̃(π(x),π(y)) := d(x, y); and setting λ = µ = 4
3

rM
rM−(η+ε) , ν = 2(η+ ε): the requirement on the

distance function d̃ in Theorem 7.3 is satisfied due to Proposition 7.11.

Since M is compact, f is bounded due to the Lipschitz condition. We can look at the limit

when α→∞. There exists a value T such that for any α≥ T , Lα = L and f −1(]−∞,α]) =M.

The above interleaving means that H∗(M) and H∗(Rδ(L)) ,→ Rδ′(L)) are interleaved. However,

both objects do not depend on α and this gives the following inference result:

Corollary 7.13 H∗(M) and H∗(Rδ(L)) ,→ Rδ′(L)) are isomorphic.

7.4 Scalar field analysis with both functional and geometric noise
Our constructions can be combined to analyze scalar fields in a more realistic setting. Assum-

ing that the point set P is an (ǫ,r )-sampling of M, we adapt the condition of Definition 7.4 to

take into account the geometry and we assume that there exist η and s such that:

∀p ∈ d−1
µ,m(]−∞,η, ]), |{q ∈ N Nk (p)| | f̃ (q)− f (π(p))| ≤ s}| ≥ k ′ (7.5)

Note that we are using f (π(p)) as the “true" function value at a sample p which is off the

manifold M. The condition on the functional noise is only for points close to the manifold

and hence with small distance to measure. Combining the methods from the previous two

sections, we obtain the combined noise algorithm where η is a parameter greater than ǫ.

We propose the following 3-steps algorithm. It starts by handling outliers in the geometry then

it makes a regression on the function values before running the existing algorithm for scalar

field analysis [32] on the filtration L̂α = {p ∈ L| f̂ (p) ≤α}.
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COMBINED NOISE ALGORITHM

1. Compute L = P ∩d−1
µ,m(]−∞,η]).

2. Replace functional values f̃ by f̂ using either k-median or discrepancy based method.

3. Run the scalar field analysis algorithm from [32] on (L, f̂ ).

Theorem 7.14 Let M be a manifold, f a c-Lipschitz function on M. Let P be an (ǫ,r )-sampling

of M and f̃ functional values such that (7.5) is satisfied, where η ≥ ǫ The combined noise

algorithm has the following guarantees.

For any δ ∈
[

2η+6ǫ, ̺(M)
2

]
and any δ′ ∈

[
2η+2ǫ+ 8

3
rM

rM−(η+ǫ)δ, 3
4

rM−(η+ǫ)
rM

̺(M)
]

, H∗( f ) and

H∗(Rδ(L̂α) ,→ Rδ′(L̂α)) are
(

4
3

crMδ′

rM−(η+ǫ) +ξs
)
-interleaved where ξ= 1 if we use the median and

ξ=
(
1+2

√
k−k ′

2k ′−k

)
if we use the discrepancy.

Notice that while this theorem assumes a setting where we can ensure theoretical guarantees,

the algorithm can be applied in a more general setting and still produce good results. Beware

that Theorems 7.10 and 7.12 do not combine directly. Applying either of them will make it

impossible to guarantee that the hypotheses of the other one are still verified. It is necessary

to directly combine parts of the proofs.

Proof: First, consider the two filtration {Fα} and {Lα} where Lα = {x ∈ L| f (π(x)) ≤ α}. Using

Theorem 7.12, for any δ≥ ν+2µβ
λ and any δ′ ∈

[
2η+2ǫ+ 8

3
rM

rM−(η+ǫ)δ, 3
4

rM−(η+ǫ)
rM

̺(M)
]

, H∗( f )

and H∗(Rδ(Lα) ,→ Rδ′(Lα)) are 4
3

crMδ′

rM−(η+ǫ) -interleaved.

Consider L̂α = {p ∈ L| f̂ (p) ≤ α}. Our algorithm returns H∗(Rδ(L̂α) ,→ Rδ′(L̂α)). Fix α and let

(x, y) be an an edge of Rδ(Lα). Then d(x, y) ≤ 2δ, f (π(x)) ≤α, f (π(y)) ≤α. Corollary 7.9 can be

applied to f ◦π due to hypothesis (7.5). Hence | f̂ (x)− f (π(x))| ≤ ξs and | f̂ (y)− f (π(y))| ≤ ξs.

Thus (x, y) ∈ Rδ(L̂α+ξs). One can reverse the role of f̂ and f and get an ξs-interleaving of

{Rδ(Lα)} and {Rδ(L̂α)}. We have two filtrations of the same metric space that are interleaved.

All parts of the diagram in Figure 7.6 commute as all the arrows are induced by inclusions.

Thus the nested filtrations are interleaved and we obtain that H∗(Rδ(Lα) ,→ Rδ′(Lα)) and

H∗(Rδ(L̂α) ,→ Rδ′(L̂α)) are ξs-interleaved.

We now provide a practical example as a proof of concept. We consider an elevation map of an

area near Corte in the French island of Corsica. The true measures of elevation are given in

Figure 7.7. The topography can be analysed by looking at the function minus-altitude. We add

random faulty sensors that give false results with a 20% probability to simulate malfunctioning

equipment. The area covers a square of 2 minutes of arc in both latitude and longitude. We use

the algorithm taking k = 9, k ′ = 7, η= .05 minute and δ= .025 minute. We show the recovered

diagrams in Figure 7.8, where the prominent peaks of the original image are highlighted. The

gap is the ratio between the shortest living relevant feature and the longest feature created by

the noise.
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H∗(Rδ(Lα)) H∗(Rδ(Lα+2ξs)) H∗(Rδ(Lα+4ξs))

H∗(Rδ(L̂α+ξs)) H∗(Rδ(L̂α+3ξs)) H∗(Rδ(L̂α+5ξs))

H∗(Rδ′(Lα)) H∗(Rδ′(Lα+2ξs)) H∗(Rδ′(Lα+4ξs))

H∗(Rδ′(L̂α+ξs)) H∗(Rδ′(L̂α+3ξs)) H∗(Rδ′(L̂α+5ξs))

Figure 7.6 – Commutative diagram at homology level

Without noise With 20% background noise

Figure 7.7 – Elevation map around Corte

Remark that the gap in the case of the noisy point cloud is less than 1. This means that

one relevant topological feature has a shorter lifespan than one caused by noise. It is then

impossible to recover the correct structure. The three methods are doing the scalar field

analysis after a denoising of the functional values. In the case of the k-NN regression, the

topological feature are in the right order. However, the prominence given by the gap is

significantly smaller than the one from the original point cloud. Both the discrepancy based

method and the median provides gaps on par with the non-noisy input and thus allow a good

recovery of the correct topology.
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Without noise With 20% background noise After kNN regression with k = 9

2500
0

0

−∞

gap=2.91
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0
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After Discrepancy regression with k = 9, k′ = 7 After median regression with k = 9

Figure 7.8 – Persistence diagrams of Corte Elevation map
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8 Regression and incomplete data

The discrepancy introduced for the scalar field analysis can also be seen as a regression

estimator. In this chapter, we explore the properties of this estimator from a statistical point of

view and provide convergence rates for the discrepancy regression. Then, we introduce the

problem of incomplete data as a direction for further research. We present an empirical way

of using the regression estimator to tackle it.

8.1 Discrepancy is a regression estimator
First, we study the regression for the impulse noise model used in Section 7.2. Then, we

discuss how it can be related to other noise models. Given a probability measure µ on R
d and

a bounded t-Lipschitz function f : Supp(µ) →R, we consider (Xi ,Yi )i∈[1,n] independent and

identically distributed variables obtained according to the law µ for Xi and conditionally to

Xi :

Yi =
{

f (Xi ) with probability 1−ρ

Zi with probability ρ

where ρ < 1
2 and Zi has a distribution νx conditionally to Xi = x. Moreover, we assume that

there exists C such that for all x ∈ Supp(µ), Supp(νx ) ⊂ [−C ,C ]. We introduce K = max(||C −
f ||∞,maxx,x ′ | f (x)− f (x ′)|) <∞.

8.1.1 The discrepancy regression
We use the discrepancy based estimator defined in Section 7.2.2 to obtain a regression estima-

tor. We write B j the set of permutations of [1, j ]. Given a point x, we index the Xi such that

X(i ,n) is the i th nearest neighbour of x when we have picked n couples (Xi ,Yi ).

Definition 8.1 Given an integer kn ≤ n and α ∈]0,1], the discrepancy regression estimator is

defined as

fn(x) = argminz∈R min
σ∈Bkn

1

⌈αkn⌉

⌈αkn⌉∑

i=1
||Y(σ(i ),n) − z||2

Our aim is to recover the function f . Remark that this is not the classical case of a regression

mixture where we want to recover E[Y |X ], which is, writing ν̄x the mean of νx ,

E[Y |X = x] = (1−ρ) f (x)+ρν̄(x).
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Chapter 8. Regression and incomplete data

We consider the asymptotic behaviour of the estimator when:






n → ∞
kn → ∞
kn
n → 0

We separate points in two groups, the good points and the outliers.

Definition 8.2 Given s ∈ R, kn ≤ n and x ∈ X, the set of good points among the kn nearest

neighbours of x is:

G s
(kn ,n)(x) = {X(i ,n)(x)|i ≤ kn and |Y(i ,n) − f (X(i ,n))| ≤ s}

Points that are not good for all x ∈X are called outliers. We bound the probability for any x to

have more than (1−α)kn outliers among its kn nearest neighbours.

Lemma 8.3 Given x ∈X and 1
2 <α< 1−ρ,

PB =P

[
|G0

(kn ,n)|
kn

<α

]

< e−2(1−α−ρ)2kn

Proof:

PB =P

[
|G0

(kn ,n)|
kn

<α

]

=P

[

1−ρ−
|G0

(kn ,n)|
kn

> 1−ρ−α

]

Hence, using Hoeffding inequality for a Bernoulli law, PB < e−2(1−α−ρ)2kn .

8.1.2 Convergence rate for discrepancy
Restricting ourselves to the case where the dimension d of the ambient space is greater than 3,

we introduce [68, Lemma 6.4].

Lemma 8.4 Assume that X is bounded and d ≥ 3 then there exists a constant c̃ such that:

E
[
||X(1,n)(X )−X ||2

]
≤

c̃

n
2
d

In our setting, we obtain the convergence rate:

Theorem 8.5 For any x ∈ Supp(µ) and 1
2 <α< 1−ρ,

E( fn(x)− f (x))2 ≤ e−2(α+ρ−1)2kn K 2 +
(

1+
√

1−α

2α−1

)2

c̃ t 2
(

1+2kn

n

) 2
d

Proof: Let x be a point of Supp(µ). We will split occurrences in two categories. Either we have

more than (1−α)kn outliers in the kn nearest neighbours of x or not. If we have too many

outliers, we simply bound | fn(x)− f (x)| by the constant K . In the other case, we locally have a
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8.1. Discrepancy is a regression estimator

(kn ,αkn , t ||X(kn ,n) −x||)-functional-sample of f and apply Lemma 7.8.

E( fn(x)− f (x))2 ≤ PB K 2 + (1−PB )

(

1+
√

1−α

2α−1

)2

t 2
E
[
||X(kn ,n) −x||2

]
= I1(x)+ I2(x)

Now split the data X1, . . . , Xn into 2kn+1 segments such that the first 2kn segments have length

⌊ n
2kn

⌋ and let X̃ x
j be the nearest neighbour of x from the j th segment. Then X̃ x

1 , . . . X̃ x
2kn

are 2kn

different elements of {X1, . . . Xn} which implies:

||X(kn ,n) −n|| ≤
1

2kn

2kn∑

i=1
||X(i ,n) −x|| ≤

1

2kn

2kn∑

i=1
||X̃ x

i −x||

Noticing that 1
l

(∑l
i=1 ai

)2 ≤
∑l

i=1 a2
i and using Jensen inequality:

I2(x) ≤
(

1+
√

1−α

2α−1

)2

t 2
E

[(
1

2kn

2kn∑

j=1
||X̃ x

j −x||
)2]

≤
(

1+
√

1−α

2α−1

)2
t 2

2kn

kn∑

j=1
E

[
||X̃ x

j −x||2
]

=
(

1+
√

1−α

2α−1

)2

t 2
E
[
||X̃ x

1 −x||2
]

=
(

1+
√

1−α

2α−1

)2

t 2
E

[
||X̃(1,⌊ n

2kn
⌋) −x||2

]

Using Lemma 8.4,

I2(x) ≤
(

1+
√

1−α

2α−1

)2
t 2c̃

⌊
n

2kn

⌋ 2
d

8.1.3 Convergence rate for median
We can also define a regression estimator using the median.

Definition 8.6 Given an integer kn ≤ n, the median regression is defined by f ∆
n (x), the median

of the values (Y(i ,n)) for i ∈ [1,kn].

Theorem 8.7 For any x ∈ Supp(µ),

E( f ∆

n (x)− f (x))2 ≤ e−2( 1
2−ρ)2kn K 2 + c̃ t 2

(
1+2kn

n

) 2
d

Proof: We apply the same kind of proof as for the discrepancy convergence rates. We separate

the cases whether at least half the points are good or not. The probability to have more than

half the points that are outliers is given by the probability PH obtained by applying Hoeffding
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Chapter 8. Regression and incomplete data

inequality:

PH =P

[
|G s

(kn ,n)|
kn

<
1

2

]

≤P

[

1−ρ−
|G s

(kn ,n)|
kn

>
1

2
−ρ

]

≤ e−2( 1
2−ρ)2kn

In the case where at least half the points are good, we can use the Lipschitz condition on f to

bound the error. It will be at most t ||x −X(kn ,n)||.

E( f ∆

n (x)− f (x))2 ≤ PH K 2 + (1−PH )t 2
E||x −X(kn ,n)||2

The result is then obtained through Lemma 8.4 and the same proof as in Theorem 8.5.

8.1.4 Relaxing the noise model

Our noise model is not a classical one. It highlights the kind of problem that can be found with

k-NN regression for example. We try to recover a value that is not the conditional expectation

of Y knowing X and thus the k-NN regression can present a bias.

We consider more classical noise models. We do not change the probability law for Xi and

Yi = f (Xi )+ǫi where ǫi has probability distribution ν.

Theorem 8.8 Given α ∈]0,1], if argmin
R

(dν,α) = {0} and
∫
R
|z|3ν(dz) < ∞, then for any x ∈

Supp(µ) and ǫ> 0,

lim
kn→∞; kn

n →0
P

[
| fn(x)− f (x)| > ǫ

]
= 0

Proof: Using Lemma 8.4, we know that

E
[
||X̃ x

i −x||2
]
≤

c̃
⌊

n
kn

⌋ 2
d

.

We denote ν̃ the translated probability measure f (x)+ν, yn the empirical measure 1
kn

∑kn

i=1 Ỹ x
i

and ν̂n = yn − f (x). Given that f is t-Lipschitz and thanks to Theorem 6.6:

E
[
W2ν̃, yn)2]≤ 2E

[
1

kn

kn∑

i=1
|| f (x)− Ỹ x

i ||2
]

+2E[W2(ν, ν̂n)2]

≤ 2t 2
E[||X̃ x

i −x||2]+2E[W2(ν, ν̂n)2]

≤ 2t 2 c̃
⌊

n
kn

⌋ 2
d

+2
C

k
2
5
n

for some constant C . Hence E[||dν̃,α−dyn ,α||∞] ≤ 1p
α
E[W2(ν̃, yn)] → 0. Furthermore, dν̃,α is

proper as shown in the proof of Proposition 4.18 and argmin
R

dν̃,α = f (x). Therefore, there

exists a sequence of positive real numbers {ǫn}n>0 and N > 0 such that limn→∞ ǫn = 0 and for
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8.1. Discrepancy is a regression estimator

any n ≥ N , d−1
ν̃,α([0, f (x)+ 1

n ]) ⊂ [−ǫn ,ǫn]. Using Markov inequality:

P

[
||dν̃,α−dyn ,α||∞ >

ǫn

2

]
≤

2E[||dν̃,α−dyn ,α||∞]

ǫn

Given that fn(x) = argmin
R

dyn ,α and f (x) = argmin
R

(dν̃,α),

P
[
| fn(x)− f (x)| > ǫn

]
≤

2E[||dν̃,α−dyn ,α||∞]

ǫn
.

This can be in particular applied to the popular Gaussian noise model whereν is the probability

measure of the normal law N (0,σ2).

Corollary 8.9 If ν is the probability measure of the normal law N (0,σ2), then for any x ∈
Supp(µ), ǫ> 0 and α ∈]0,1],

lim
kn→∞; kn

n →0
P

[
| fn(x)− f (x)| > ǫ

]
= 0

Proof: We show that argmin(dν,m) = 0 for any mass m > 0 and is uniquely defined. In fact, for

any radius r > 0 and x 6= 0, ν(B(x,r )) < ν(B(0,r )). Moreover, ν is a measure with density and

thus δν,l (0) > δν,l (x), because ν(B(x,r +ǫ)) → ν(B(x,r )) when ǫ→ 0. Hence, dν,m(0) < dν,m(x).

Therefore argmin(dν,m) and is uniquely defined and is zero.

Moreover the third moment of N (0,r ) is bounded and Theorem 8.8 applies.

However, argmin
R

dν,α is not always uniquely defined for some usual noise models, the tubular

noise model for example. In this case, we can guarantee that fn(x) is a good approximation of

f (x).

Theorem 8.10 If ν is the uniform probability measure on [−δ,δ] for some δ> 0, then for any

x ∈ Supp(µ) and α ∈]0,1],

E
[
( fn(x)− f (x))2]≤

(

1+
√

1−α

2α−1

)2 (

c̃ t 2
(

1+2kn

n

) 2
d

+δ2

)

Proof: The proof is identical to the one of Theorem 8.5 when PB = 0 and replacing the

local (kn ,αkn , t ||X(kn ,n) − x||)-functional-sample of f by a local (kn ,αkn , t ||X(kn ,n) − x|| +δ)-

functional-sample. The added δ comes from the uncertainty created by the tubular noise.

If the support of µ is embedded in a Riemannian manifold, we can adapt the proofs as long as

there exists a property similar to Lemma 8.4. This is the case for Riemannian submanifold of

R
d . Moreover, if we have Riemannian submanifold of Rd with positive reach and bounded

curvature, we can use Proposition 7.11 to guarantee that the regression estimator will converge

even if we only know the extrinsic metric.
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Chapter 8. Regression and incomplete data

8.2 Application to incomplete data

In this section, we propose an example where the data is incomplete. Consider a set of points

in high dimension where some of the coordinates are missing. The missing coordinates are

not the same for every point and we hope to recover the value of those missing coordinates

and the structure of the underlying data by using the discrepancy regression.

This situation happens in real cases. During a poll, some people can forget to answer certain

question or do not wish to answer them. Assuming that the troublesome questions are not

the same for everyone, we obtain a set with incomplete data. Similarly, if we try to help for

medical diagnosis, not every patient will have undergone the whole set of available tests. Each

patient is represented as a point whose coordinates are the results of medical tests. Some of

the patients miss certain tests. Therefore, we have an incomplete data case.

This section aims to illustrate how tools used in the scalar field analysis of Chapter 7 can be

adapted to the setting of incomplete data.

8.2.1 Algorithm for recovery of incomplete data

We showed in Section 7.2.3 how the discrepancy-based method could be used to recover

images with aberrant values. Missing coordinates can be seen directly as aberrant values

and, for example, be replaced by a random value before applying the scalar field algorithm.

However, we want to try to take advantage of knowing which coordinates are missing.

Consider a set of points P ∈R
d . We assume that there exists a t-Lipschitz function f : Rd ′ →R

d

and a point set Q ∈R
d ′

such that P = f (Q). The dimension d ′ can be smaller than d and is the

intrinsic dimension of our point cloud.

Our algorithm starts by normalising all dimensions in order to give them the same weight.

Then, we introduce a notion of distance between two points x = (x1, . . . , xd ) and y = (y1, . . . , yd ).

The distance is the average of the sum of squares for the known coordinates common to x

and y . If the coordinates xi1 , xi2 , yi1 and yi3 are missing coordinates. Then the distance d̃(x, y)

between x and y is defined as:

d̃(x, y) =
√

1

d −3

∑

i∈[1,d ]\{i1,i2,i3}
|xi − yi |2

Given this notion of distance, we use the discrepancy with two parameters k and k ′ to infer a

value for the missing coordinate. Consider a missing coordinate xi of the point x. Among the

k-nearest neighbours of x, we consider the set of points whose i th coordinates is known. If

the cardinality of this set is more than k ′, then we apply the discrepancy method. Otherwise,

we take the mean of these values.

The algorithm is elementary and tries to take into account the information at our disposal.

It is able to handle some noise. Remark that in some cases, some missing values can not

be recovered. We kept this algorithm simple and it should be taken as a first step into an

extension of the methods from Chapter 7.
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8.2. Application to incomplete data

MISSING COORDINATES RECOVERY

1. Normalise the point cloud P .

2. Compute the distance matrix of P .

3. For every missing value xi :

(a) Compute the set of points among the k-nearest neighbours of x whose i th is
known.

(b) If this set empty, indicate that we cannot recover the value, otherwise compute the
new value.

8.2.2 Illustration on a synthetic example

We give some experimental results on a synthetic example. We consider a point set in R
10 with

intrinsic dimension 3. It is obtained by sampling uniformly the square [−10,10]3 and applying

the function f : R3 7→R
10 defined for any q = (x, y, z) by,

f (q) = ( f1(q), . . . f10(q))

f1(q) = |x + y −2z|

f2(q) =
√

|x2 − y2|

f3(q) = |x − z|

f4(q) = 5x +3y +2z

f5(q) = cos(x)+ sin(y)

f6(q) = e
−(x−y)2

100

f7(q) = l n(1+|z −x|)

f8(q) = Re(

√

1+
x + y −x2

4
)

f9(q) =
(
x7 + y7 + z7) 1

7

f10(q) = x sin(z)− y sin(z)

We ran our algorithm on input datasets of 10000 points and using k = 50. The graphics of

Figure 8.1 show the relative error on the recovered coordinates for various choices of the ratio
k ′

k . Missing coordinates are obtained by removing each coordinate with probability p between

.01 and .35. In the noisy case, we added impulse noise. It means that we replaced 25 percent of

the initial coordinates by a random value uniformly picked inside [−1,1] after normalisation.

We recover the missing data with a relative error of 10 percent when the proportion of missing

coordinates is less than 15 percent. The quality decreases with more missing data. Note that,
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(b) With impulse noise

Figure 8.1 – Average relative error on recovered coordinates

in presence of noise, the larger the ratio k ′

k , the more important is the influence of the noise.

The missing data start to influence notably the quality of the recovery when the proportion of

missing data is around the same as the proportion of noisy points for ratios k ′

k of .9 or 1.

These experiments give an insight for the possible use of distance to a measure based methods,

such as the discrepancy, for the treatment of data with missing coordinates. A more theoretical

approach would need a more precise model for incomplete data and the way it influences the

computation of the distance matrix.
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9 Conclusion

In this thesis, we provided a complete method to approximate the persistence diagram of the

distance to a measure with tractable complexity. Thus, it is now possible to use persistent

homology in practice with data containing outliers and theoretical guarantees on the results.

Furthermore, we introduced a new regression operator using the distance to a measure in order

to analyse scalar fields and incomplete data. Some interesting questions are still unanswered.

Identifiability of measures We showed results on the identifiability of measures from dis-

tances to measures. The amount of information required is quite large. It seems that the

reconstruction algorithms from a finite number of points could be adapted into a proof of

the identifiability of a measure µ in R
d knowing the distance to µ at d +2 points. Moreover,

the knowledge of the distance to a measure on the whole space for only one mass parameter

might be sufficient to identify the measure.

These possible results are still qualitative. There exists no constant c such that ||dµ,m −
dν,m ||∞ ≥ cW2(dµ,m ,dν,m) in all generality Such a result would have a huge impact on the

use of the distance to a measure for signature purposes. The way to do this restriction is not

obvious and would help to better understand the relation between distances to measures and

Wasserstein distances.

Approximation of the distance to a measure Our work relies on power distances to approx-

imate distances to measures. Lower bounds for distance to a measure approximation by

power distances [80] are not reached by our approximations. A deterministic algorithm to

attain an arbitrarily additive approximation of the distance to a measure could help reach the

lower bounds and offer a useful control mechanism. Possible tools to build such an algorithm

include furthest point sampling and incrementally introducing points using the structure of

the measure.

Incomplete data framework Analysing incomplete data, as presented in Chapter 8, is very

interesting for applications. No theoretical framework currently exists out of a linear setting to

properly define the problem. We need to build a reasonable model for incomplete data before

we can produce theoretical guarantees. Remark that our approach uses a very naive way of
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computing the distance between two points. Improvements in this direction are without

doubt possible.

A slight variation of this problem which may be easier to solve concerns missing distances.

Forgetting about the coordinates, we can consider a set of points and the distance matrix

between those points. Persistent homology can be used without knowing the coordinates, just

the distances. Assume now that some of these distances are unknown. The question of how to

do topological data analysis on this partial distance matrix is open. Again, it will need a well

defined model of how the distances are missing from the matrix.

Statistical behaviour of persistent homology Considering persistence landscapes [16] in-

stead of persistence diagrams makes it possible to look at persistent homology from a statis-

tical point of view. Recent work uses this approach to derive convergence rates [30, 31] and

confidence bounds [60]. It is also possible to design subsampling methods [28] or use boot-

strapping [29]. These results are a first step towards the elaboration of a statistical framework

for persistence diagrams and landscapes, but much remains to be done in order to have usable

statistical models about persistent homology.
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A Proof of Theorem 5.12

Proof: Let us fix three distinct points a, b and c . We will show that whatever weights are put on

these three points, the three relations of the triangle inequality hold.

General remarks: First, we consider some general remarks used through the proof. Due to

the metric structure of X, we have the triangle inequality:

dX(a,b) ≤ dX(a,c)+dX(b,c) (A.1)

Remark also that the function f is never less than half the distance in the metric space X.

Intuitively, this is a consequence of the definition as an intersection of two balls. Even with zero

weights, the union of ball has to cover the space between the points and thus the sum of their

radii need to be at least equal to the distance between the two points. Due to our definition of

the power distance, the parameter α is always smaller than the radii. This translates in more

formal language, for any (a,b) ∈ P 2,

f (a,b) ≥
dX(a,b)

2
(A.2)

Let us assume that |w2
a −w2

b | < dX(a,b)2. Then, by definition:

f (a,b) ≥

√
dX(a,b)2

4
=

dX(a,b)

2
.

If our assumption is not correct, then, choosing a and b such that wb ≥ wa , we get:

f (a,b) = wb ≥
√

w2
b −w2

a ≥ dX(a,b)2.

We will now explore the different cases for the expression of f . We say that a pair of points (a,b)

is saturated if |w2
a −w2

b | ≥ dX(a,b)2. This implies that the distance f (a,b) = max(wa , wb).

All saturated First, we consider the case where all pairs of points are saturated. Without

loss of generality, we assume that wc ≥ wb ≥ wa . Then, f (a,b) = wb and f (a,c) = f (b,c) = wc .
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Appendix A. Proof of Theorem 5.12

The triangle inequality for f is given by:

f (a,b) ≤ f (a,c) ≤ f (a,c)+ f (b,c)

f (b,c) = f (a,c) ≤ f (a,c)+ f (a,b)

f (a,c) = f (b,c) ≤ f (b,c)+ f (a,b)

All saturated but one We now release one of the pair. Without loss of generality, we assume

that c is the common point to the two saturated pairs and that wb ≥ wa . This gives the three

following relations:

w2
b −w2

a < dX(a,b)2 (A.3)

|w2
c −w2

a | ≥ dX(a,c)2 (A.4)

|w2
c −w2

b | ≥ dX(b,c)2 (A.5)

To complete the proof, we need to consider the three possible cases for the ordering of wa , wb

and wc .

Case 1.1: wc ≥ wb ≥ wa

Let us remark that f (a,c) = f (b,c). Then, we only need to check that f (a,b) ≤ 2 f (a,c) =
2wc .

f (a,b)2 =
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2

≤
w2

c

2
+

w2
c

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
wc ≥ wb ≥ wa

≤ w2
c +

2

4
(dX(a,c)2 +dX(b,c)2)+

(w2
b −w2

a)2

4dX(a,b)2
(A.1); (x + y)2 ≤ 2(x2 + y2)

≤ w2
c +

dX(a,c)2

2
+

dX(b,c)2

2
+

w2
b −w2

a

4
(A.3)

≤ w2
c +

w2
c

2
+

w2
c

2
+

w2
b −w2

a

4
(A.4); (A.5)

≤ 2w2
c +

w2
c

4
wb ≤ wc

≤ 4w2
c
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Case 1.2: wb ≥ wa ≥ wc

Given the hypothesis, we have the relations:

f (a,c) = wa

f (b,c) = wb

Immediately we can deduce the first inequality:

f (a,c) ≤ f (b,c) ≤ f (b,c)+ f (a,b)

Let us consider f (a,b):

f (a,b)2 =
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2

≤
w2

a

2
+

w2
b

2
+

(dX(a,c)+dX(b,c))2

4
+

w2
b −w2

a

4
(A.1; A.3)

≤
w2

a

4
+

3w2
b

4
+

(wa +wb)2

4
(A.4; A.5)

≤
w2

a

2
+w2

b +
wa wb

2
≤ (wa +wb)2 = ( f (a,c)+ f (b,c))2

We now work on the last inequality. We want to show that f (b,c) ≤ f (a,b)+ f (a,c). Consider
the function g1(wb) = ( f (a,b)+ f (a,c))2 − f (b,c)2. We need to show that g1(wb) ≥ 0 for wb

between wa and
√

dX(a,b)2 +w2
a due to relation (A.3).

g1(wb) =
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
+w2

a +2wa

√
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
−w2

b

≥
3w2

a

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
+2wa

√
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
−

dX(a,b)2 +w2
a

2

≥ w2
a +

(w2
b −w2

a)2

4dX(a,b)2
+2wa

√
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
−

dX(a,b)2

4
= h1(wb)

The function h1(wb) is increasing with respect to wb as wb ≥ wa . Thus, we only need to show

that h(wa) ≥ 0. Remark that (A.1) gives dX(a,b)2 ≤ 2(dX(a,c)2 +dX(b,c)2) = 2(w2
a +w2

b). As

wb = wa here, we gets 4w2
a ≥ dX(a,b)2.

h1(wa) = w2
a +2wa

√

w2
a +

dX(a,b)2

4
−

dX(a,b)2

4
≥ w2

a +2w2
a −w2

a ≥ 0

Hence,

f (b,c) ≤ f (a,c)+ f (a,b)

133



Appendix A. Proof of Theorem 5.12

Case 1.3: wb ≥ wc ≥ wa

This case is very similar to the previous one. We now have the relations:

f (a,c) = wc

f (b,c) = wb

As in the previous section, we can deduce that:

f (a,c) ≤ f (b,c) ≤ f (b,c)+ f (a,c)

Considering f (a,b), the proof is almost the same replacing wa by wc :

f (a,b)2 =
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2

≤
w2

a

2
+

w2
b

2
+

(dX(a,c)+dX(b,c))2

4
+

w2
b −w2

a

4
(A.1; A.3)

≤
w2

a

4
+

3w2
b

4
+

(wc +wb)2

4
(A.4; A.5)

≤
w2

c

2
+w2

b +
wc wb

2
wa ≤ wc

≤ (wc +wb)2 = ( f (a,c)+ f (b,c))2

We consider g2(wb) = ( f (a,b)+ f (a,c))2 − f (b,c)2. We need to show that g2(wb) ≥ 0 for wb

between wc and
√

dX(a,b)2 +w2
a .

g2(wb) =
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
+w2

c +2wc

√
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
−w2

b

≥
3w2

a

2
−

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
+2wa

√
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2

= g1(wb)

Using the development on g1 from Case 1.2, which do not use wc , we have g2(wb) ≥ 0 for

wb ∈ [wc ,
√

dX(a,b)2 +w2
a] ⊃ [wc ,

√
dX(a,b)2 +w2

a]

Thus:

f (b,c) ≤ f (a,c)+ f (a,b).

One saturation We now release another pair. We hence have only one saturated pair. With-

out loss of generality, we assume that b is the common point to the unsaturated relations and

that wc ≥ wa . Then we have f (a,c) = wc and the following relations hold:

|w2
b −w2

a | < dX(a,b)2 (A.6)
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|w2
c −w2

a | ≥ dX(a,c)2 (A.7)

|w2
c −w2

b | < dX(b,c)2 (A.8)

First, we consider f (a,c) ≤ f (a,b)+ f (b,c) and introduce:

I = ( f (a,b)+ f (b,c))2 − f (a,c)2

= w2
b +

w2
a +w2

c

2
+

dX(a,b)2 +dX(b,c)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
+

(w2
c −w2

b)2

4dX(b,c)
+2 f (a,b) f (b,c)−w2

c

≥ w2
b −

w2
c

2
+

dX(b,c)2

4
+

(w2
c −w2

b)2

4dX(b,c)
= g3(wc )

In order to show that I ≥ 0, we need to prove that g3(wc ) ≥ 0 for wc ∈ [0,
√

dX(b, x)2 +w2
b[,

using (A.8). g3 is derivable and we obtain:

g ′
3(wc ) = wc

(
w2

c −w2
b

dX(b,c)
−1

)

Due to relation (A.8) and wc ≥ 0, g ′
3(wc ) ≤ 0. The minimum for g3 is thus reached for the

greatest possible value of wc and using (A.8) again, we have w2
c ≤ dX(b,c)2 +w2

b .

g3(dX(b,c)2 +w2
b) = w2

b −
w2

b +dX(b,c)2

2
+

dX(b,c)2

4
+

(w2
b +dX(b,c)2 −w2

b)2

4dX(b,c)2
=

w2
b

2
≥ 0

Thus we can deduce that:

f (a,c) ≤ f (a,b)+ f (b,c)

For the second inequality, we consider the relation:

I = ( f (a,b)+ f (a,c))2 − f (b,c)2

=
w2

a +w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
+w2

c +2wc f (a,b)−
w2

b +w2
c

2
−

dX(b,c)2

4
−

(w2
c −w2

b)2

4dX(b,c)2

≥
w2

a

2
+

w2
c

2
+

dX(a,b)2

4
−

dX(b,c)2

4
+

(w2
b −w2

a)2

4dX(a,b)2
−

(w2
c −w2

b)2

4dX(b,c)2
+wc dX(a,b) = g4

Consider g4 as a function of dX(b,c), we can derive:

g ′
4(dX(b,c)) =

(w2
c −w2

b)2

2dX(b,c)3
−

dX(b,c)

2

Given the relation (A.8), we have g ′(dX(b,c)) ≤ 0 on our domain of interest ]
√

|w2
c −w2

b |,dX(a,b)+
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dX(a,c)]. Thus:

g4 ≥ g (dX(a,b)+dX(a,c))

=
w2

a

2
+

w2
c

2
+wc dX(a,b)+

dX(a,b)2 − (dX(a,b)+dX(a,c))2

4
+

(w2
b −w2

a)2

4dX(a,b)2
−

(w2
c −w2

b)2

4(dX(a,b)+dX(a,c))2

≥
w2

a

2
+

w2
c

4
+

wc dX(a,b)

2
+

(w2
b −w2

a)2

4dX(a,b)2
−

(w2
c −w2

b)2

4(dX(a,b)+dX(a,c))2
= h4 (A.7)

Now, considering h4 as a function of wa , h4 is derivable and h′
4(wa) = wa

(
1− w 2

b−w 2
a

dX(a,b)2

)
. Us-

ing (A.6), we have h′
4(wa) ≥ 0 on our domain. We thus consider wa as small as possible. There

are two cases to consider. If wb ≤ dX(a,b) then the minimum is reached for wa = 0. Otherwise,

the minimum is reached for wa =
√

w2
b −dX(a,b)2.

Case 2.1:wb ≤ dX(a,b)

h4(0) =
w2

c

4
+

wc dX(a,b)

2
+

w4
b

4dX(a,b)2
−

(w2
c −w2

b)2

4(dX(a,b)+dX(a,c))2
= i4(wb)

Deriving i4, we get:

i ′4(wb) = wb

(
w2

b

dX(a,b)2
+

w2
c −w2

b

(dX(a,b)+dX(a,c))2

)

≥ 0

As wb ≥ 0, it suffices to check:

i4(0) =
w2

c

4
+

wc dX(a,b)

2
−

w4
c

4(dX(a,b)+dX(a,c))2

≥
w2

c

4

[
1−

w2
c

(dX(a,b)+dX(a,c, ))2

]
≥ 0

Case 2.2:wb > dX(a,b)

h4(
√

w2
b −dX(a,b)2) ≥

w2
c

4
+

wc dX(a,b)

2
+

dX(a,b)2

4
−

(w2
c −w2

b)2

4(dX(a,b)+dX(a,c))2

≥
w2

c

4
+

dX(a,c)dX(a,b)

2
+

dX(a,b)2

4
−

(dX(a,b)+dX(a,c))2

4
(A.7; A.8; A.1)

≥ 0 (A.7)

We thus have proved that:

f (b,c) ≤ f (a,b)+ f (a,c)
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Let us now get to the last inequality. The proof is similar to the previous one:

I = ( f (b,c)+ f (a,c))2 − f (a,b)2

= w2
c +2wc f (b,c)+

w2
c +w2

b

2
+

dX(b,c)2

4
+

(w2
c −w2

b)2

4dX(b,c)2
−

w2
a +w2

b

2
−

dX(a,b)2

4
−

(w2
b −w2

a)2

4dX(a,b)2

≥ w2
c +dX(a,c)dX(b,c)+

dX(b,c)2

4
+

(w2
c −w2

b)2

4dX(b,c)2
−

dX(a,b)2

4
−

(w2
b −w2

a)2

4dX(a,b)2
= g5

g5 considered as a function of dX(a,b) is derivable and:

g ′
5(dX(a,b)) =

dX(a,b)

2

(
(w2

b −w2
a)2

dX(a,b)4
−1

)

≤ 0

using the relation (A.6). Thus:

g5(dX(a,b) ≥ g5(dX(a,c)+dX(b,c))

= w2
c +dX(a,c)dX(b,c)+

dX(b,c)2 − (dX(a,c)+dX(b,c))2

4
+

(w2
c −w2

b)2

4dX(b,c)2
−

(w2
b −w2

a)2

4(dX(a,c)+dX(b,c))2

≥
3w2

c

4
+

dX(a,c)dX(b,c)

2
+

(w2
c −w2

b)2

4dX(b,c)2
−

(w2
b −w2

a)2

4(dX(a,c)+dX(b,c))2
= h5 (A.7)

Consider h5 as a function of wc .

h′
5(wc ) = wc

(
3

2
+

w2
c −w2

b

dX(b,c)2

)

Knowing that w2
c ≥ w2

b −dX(b,c)2 due to (A.8) and that wc ≥ 0, we have h′(wc ) ≥ 0. We thus

have two cases to consider:

Case 3.1:w2
b −dX(b,c)2 ≥ 0 We look at h5(

√
w2

b −dX(b,c)2):

h5(
√

w2
b −dX(b,c)) ≥

w2
c

2
+

w2
b

4
−

dX(b,c)2

4
+

dX(b,c)2

4
−
|w2

b −w2
a |

4

≥
w2

c

2
+

w2
b

4
−

w2
b

4
−

w2
a

4
≥

w2
c

4
≥ 0
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Case 3.2:w2
b −dX(b,c)2 ≤ 0 We know that w2

c ≥ dX(a,c)2 +w2
a due to (A.7). Thus:

h5(wc ) ≥ h5(dX(a,c)2 +w2
a)

=
3dX(a,c)2

4
+

3w2
a

4
+

dX(a,c)dX(b,c)

2
+

(dX(a,c)2 +w2
a −w2

b)2

4dX(b,c,) 2
−

(w2
b −w2

a)2

4(dX(a,c)+dX(b,c))2

≥
3dX(a,c)2

4
+

3w2
a

4
+

dX(a,c)dX(b,c)

2
+

(dX(a,c)2 +w2
a −w2

b)2

4dX(b,c)2
−
|w2

b −w2
a |

4
(A.6)

≥
3dX(a,c)2

4
+

w2
a

2
+

dX(a,c)dX(b,c)

2
+

(dX(a,c)2 +w2
a −w2

b)2

4dX(b,c)2
−

w2
b

4

If w2
b ≤ w2

c = dX(a,c)2 +w2
a , then h5(wc ) ≥ 0. Otherwise we can use the relation (A.8) to state

that w2
c −w2

b >−dX(b,c)2. Thus:

h(wc ) ≥
3dX(a,c)2

4
+

w2
a

2
+

dX(a,c)dX(b,c)

2
−

dX(a,c)2 +w2
a −w2

b

4
−

w2
b

4

≥
dX(a,c)2

2
+

w2
a

4
≥ 0

This conclude our proof and we have:

f (a,b) ≤ f (b,c)+ f (a,c)

No saturation Finally, we need to consider the case where no pair is saturated. This means

that the three following relations are verified:

|w2
b −w2

a | < dX(a,b)2 (A.9)

|w2
c −w2

a | < dX(a,c)2 (A.10)

|w2
c −w2

b | < dX(b,c)2 (A.11)

Remark that the three points are distinct. We want to show that f (a,b) ≤ f (b,c)+ f (a,c). Let

us consider the square of the relation:

f (a,b)2 =
w2

a

2
+

w2
b

2
+

dX(a,b)2

4
+

(w2
b −w2

a)2

4dX(a,b)2

and:

( f (b,c)+ f (a,c))2 = f (b,c)2 + f (a,c)2 +2 f (a,c) f (b,c)

Remark that f (a,c) f (b,c) ≥ dX(a,c)dX(b,c)
4 . Hence,

( f (b,c)+ f (a,c))2 ≥
w2

b +w2
c

2
+

dX(b,c)2

4
+

(w2
c −w2

b)2

4dX(a,b)2
+

w2
a +w2

c

2
+

dX(a,c)2

4
+

(w2
c −w2

a)2

4dX(a,c,) 2
+2

dX(b,c)

2

dX(a,c)

2
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Multiplying the relation by 4 and using w2
c ≥ 0, it is then sufficient to prove that:

dX(a,b)2 +
(w2

b −w2
a)

dX(a,b)2
≤ dX(a,c)2 +dX(b,c)2 +2dX(a,c)dX(b,c)+

(w2
c −w2

b)2

dX(b,c)2
+

(w2
c −w2

a)2

dX(a,c)2

We fix:

g6(dX(a,b)) = (dX(a,c)+dX(b,c))2 −dX(a,b)2 +
(w2

c −w2
b)2

dX(b,c)2
+

(w2
c −w2

a)2

dX(a,c)2
−

(w2
b −w2

a)2

dX(a,b)2

Given relations (A.9) and (A.1), we need to study g6 for dX(a,b) in the interval

I =]
√

|w2
b −w2

a |,dX(a,c)+dX(b,c)] and g6 is derivable. Thus:

g ′
6(dX(a,b)) = 2

(w2
b −w2

a)2

dX(a,b)3
−2dX(a,b)

Remark that g ′
6 is equal to 0 for dX(a,b) =

√
|w2

b −w2
a | and is negative on I . Thus the minimum

of g6 is reached for dX(a,b) = dX(a,c)+dX(b,c).

g6(dX(a,b)) ≥ g6(dX(a,c)+dX(b,c))

=
(w2

c −w2
b)2

dX(b,c)2
+

(w2
c −w2

a)2

dX(a,c)2
−

(w2
b −w2

a)2

(dX(a,c)+dX(b,c))2
= h6(wc )

Let us study h6 on R+. h6 is differentiable and:

h′
6(wc ) = 2wc

(
w2

c −w2
b

dX(b,c)2
+

w2
c −w2

a

dX(a,c)2

)

h′
6 = 0 if wc = 0 or w2

c = w 2
a dX(b,c)2+w 2

b dX(a,c)2

dX(a,c)2+dX(b,c)2 = x2 and h′
6 is negative on [0,x] and positive for

wc > x. Thus the minimum of h is reached for wc = x.

h6(x) =

(
w 2

a dX(b,c)2−w 2
b dX(b,c)2

dX(a,c)2+dX(b,c)2

)2

dX(b,c)2
+

(
w 2

b dX(a,c)2−w 2
a dX(a,c)2

dX(a,c)2+dX(b,c)2

)2

dX(a,c)2
−

(w2
b −w2

a)2

(dX(a,c)+dX(b,c))2

= (w2
b −w2

a)2
(

dX(b,c)2

(dX(a,c)2 +dX(b,c)2)2
+

dX(a,c)2

(dX(a,c)2 +dX(b,c)2)2
−

1

(dX(a,c)2 +dX(b,c)2)2

)

= (w2
b −w2

a)2
(

1

dX(a,c)2 +dX(b,c)2
−

1

dX(a,c)2 +dX(b,c)2

)
= 0

Consequently, h6(wc ) ≥ 0 for all wc in R+ and this means g6(dX(a,c,+)dX(b,c)) ≥ 0. We can

hence conclude that:

f (a,b) ≤ f (a,c)+ f (b,c)
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B Résumé en français

B.1 Introduction
La collecte de données est aujourd’hui une partie intégrante de la vie quotidienne. Des

entreprises qui collectent des informations sur leurs clients et leurs employés aux services de

renseignement, en passant par les instituts de sondage, la quête d’information est partout

présente. Les données sont traitées comme une ressource qu’il faut amasser et utiliser afin

d’améliorer son efficacité. Les gouvernements espèrent encourager la croissance économique

par ce biais, comme en témoignent les nombreuses initiatives de type données ouvertes [1, 2,

3]. Cependant, les données elles-mêmes sont inutiles. Il est nécessaire de les interpréter et de

les transformer en information.

L’interprétation est souvent réalisée grâce à une visualisation. Dans le cas d’objets en deux

ou trois dimensions, l’être humain est capable de les visualiser. Cependant, les données sont

souvent obtenues comme un nuage de points dans un espace de grande dimension. Par

exemple, une image en niveaux de gris est un point dans un espace dont la dimension est

son nombre de pixels. De tels espaces de grande dimension sont impossibles à visualiser

directement et nécessitent un prétraitement avant leur interprétation.

De nombreux problèmes font partie de cette interprétation. Le clustering [41, 59, 78, 95] et

la segmentation [98] tentent de séparer les points en différents groupes. La reconstruction

essaye de construire un objet continu à partir des points de données, généralement sous la

forme d’une triangulation [21, 47]. La réduction de dimension projette les données sur un

espace de plus petite dimension en utilisant les paramètres les plus pertinents pour décrire

ces données [62, 93], ce qui peut rendre la visualisation et l’analyse plus aisées.

Dans cette thèse, nous considérons l’analyse topologique des données et plus précisément

l’inférence de topologie. Nous cherchons à extraire de la structure à partir des données en

inférant la topologie sous-jacente. Cette information peut nous guider dans la résolution des

problèmes mentionnés ci-dessus. Si nous connaissons le nombre de composantes connexes

alors nous connaissons le nombre de groupes que nous devrions obtenir par clustering. Si

nous connaissons la dimension intrinsèque des données alors nous connaissons la dimension

de l’espace dont nous avons besoin pour une réduction de dimension. Ces dernières années,

l’homologie persistante a été un des outils les plus populaires de l’analyse topologique des

données. Cet outil analyse les données à toutes les échelles.

Il ne faut pas oublier que les données disponibles en pratique sont presque toujours bruitées,
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que ce soit à cause d’erreurs de mesures ou de modélisations imparfaites. L’analyse topologique

des données a besoin d’être robuste au bruit. Les algorithmes existants fonctionnent générale-

ment bien lorsque le bruit est borné. Cependant, la présence de valeurs aberrantes est

courante dans les données. Un appareil de mesure défectueux ou une erreur peuvent créer

des points qui n’ont aucune relation avec le reste des données et qui sont difficiles à gérer,

entraînant la malfonction des algorithmes.

Récemment, l’homologie persistante a été utilisée dans de nombreux domaines. Une première

application est la définition de signatures pour les données. Dans ce cadre, l’homologie persis-

tante fournit une information topologique qui discrimine différentes classes de phénomènes.

Cela a été utilisé pour classifier des images de différentes pathologies [4, 38], pour analyser des

électroencéphalogrammes [97] ou différencier des formes tridimensionnelles [23]. De plus,

elle peut fournir une méthode pour la segmentation et le clustering des données [33, 85, 90].

L’étape suivante est la recherche de motifs pour la détection et l’identification de phénomènes,

ce qui a été appliqué à des images [77], à des sous-types de cancer [84] et à des motifs cycliques

du génome [46].

L’homologie persistante fournit également une manière de mieux comprendre la structure

des objets et de la visualiser, de la structure de la matière en astrophysique [91, 92] aux

matériaux à granularité dense [75], réseaux complexes [72, 86] et systèmes dynamiques [10].

En biologie, elle peut expliquer la compressibilité des protéines [65] et décrire les structures

de racines [57]. Elle a également été utilisée pour étudier la propagation de gènes codant des

résistances antibiotiques [58]. La reconstruction elle-même peut être réalisée [35], fournissant

une structure pour le pistage [9] et une visualisation des structures corticales [76, 89].

Le produit de l’homologie persistante est généralement un diagramme de persistance, struc-

ture qui est peu adaptée à un contexte statistique. Par exemple, nous ne savons pas définir

la moyenne de deux diagrammes. Cependant, l’introduction de paysages persistants [16] a

rendu possible l’utilisation d’analyses statistiques pour la topologie, comme cela a été fait

pour des données orthodontiques [64, 70].

B.2 Homologie persistante
Étant donné une famille d’espaces topologiques indexés par un paramètre α ∈ R, F = {Fα},

l’homologie persistante étudie l’évolution de la topologie de ces espaces tandis que α évolue

de −∞ à ∞. En analyse de données, la méthode la plus usuelle pour construire une suite

d’espaces topologiques est de faire grossir des boules. Étant donné un nuage de point P , cela

signifie considérer les sous-niveaux de la distance à P . Supposant que P est un échantillonnage

d’un objet sous-jacent K , nous espérons que certains des sous-niveaux ont la même topologie

que K . La topologie des sous-niveaux est souvent stable pour un intervalle de valeurs. Dans

cette thèse, nous ne considérons que des paramètres définis sur R.

Par topologie, nous entendons homologie. Intuitivement, cela correspond aux composantes

connexes en dimension 0, aux trous ou cycles en dimension 1, aux cavités en dimension

2 et ainsi de suite. Considérons la figure B.1. Nous avons un ensemble de points P qui

échantillonne avec bruit les arêtes S d’un carré. Nous voulons inférer la topologie de S qui a

une composante connexe et un cycle. Pour α< 0, le sous-niveau de la distance à P est vide.
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Quand α= 0, le sous-niveau est exactement P et nous avons donc 14 composantes connexes,

une pour chaque point de P . Quand α croît et que les boules grossissent, nous obtenons un

sous-niveau qui a la même topologie que S. Remarquons que cette topologie est stable pour

un certain intervalle de valeurs de α.

Figure B.1 – Croissance des boules pour la persistance

L’information topologique obtenue en utilisant la persistance est usuellement représentée

par un diagramme de persistance. Un élément topologique, par exemple un cycle, apparaît

dans un des espaces topologiques Fα ∈ F . α est appelée la date de naissance de l’élément

topologique. Cet élément existe alors dans un certain nombre de Fγ tels que α < γ < β et

disparaît dans les Fδ pour δ>β pour un certain β. β est appelé la date de mort de l’élément

topologique. Notons qu’un des éléments de dimension 0, id est, une composante connexe ne

meurt pas et a ainsi une date de mort infinie. Le diagramme de persistance de dimension d de

F est le multi-ensemble composé des paires de points (x, y) où x est la date de naissance d’un

élément topologique de dimension d et y est la date de mort de cet élément. Les diagrammes

de persistance peuvent être représentés, soit par un multi-ensemble de R2, soit par un code-

barre. Dans le premier cas, chaque paire (x, y) est représentée par un point. Dans le second

cas, (x, y) est représentée par une barre commençant en x et finissant en y . La figure B.2

montre les deux représentations obtenues pour les éléments topologiques de dimension 1, les

cycles, dans l’exemple de la figure B.1.

Figure B.2 – Diagramme de persistance en dimension 1

L’idée derrière la persistance est que les éléments topologiques correspondant à la structure

de l’objet sous-jacent K sont stables sur un intervalle de valeurs du paramètres. Ainsi, ils ont
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une plus grande durée de vie que les éléments topologiques créés par le bruit. Dans notre

exemple, nous voyons qu’un élément de dimension 1 a une plus grande durée de vie que les

autres. Il correspond au cycle de S. Les deux barres plus petites représentent de petits cycles,

assimilés à du bruit, apparaissant lors de la croissance des boules.

La persistance est multi-échelle. Nous considérons l’ensemble des valeurs de α et nous

observons ainsi les données à toutes les échelles. Cela signifie que nous pouvons détecter et

inférer la topologie d’objets qui ont une topologie qui diffère selon l’échelle considérée. Par

exemple, le nuage de point de la figure B.3 échantillonne une spirale enroulée sur un tore.

Quand nous regardons ce nuage de très près, nous avons un objet de dimension 1, la spirale.

À une distance intermédiaire, nous avons le tore qui est un objet de dimension 2. L’homologie

persistante est capable d’analyser correctement cette différence de topologie dépendant de

l’échelle.

Figure B.3 – Spirale enroulée sur un tore

Un bon diagramme de persistance pour l’inférence topologique est un diagramme où le

rapport entre la plus petite durée de vie d’un élément topologique pertinent et la plus longue

durée de vie d’un élément dû au bruit, appelé fossé, est grand. Les diagrammes de persistance

sont stables par rapport à de petites variations de la fonction utilisée pour définir les sous-

niveau. Lorsque la distance à P approxime la distance à K , nous obtenons un bon diagramme.

Le calcul des diagrammes de persistance n’échappe pas à la malédiction de la dimension. Le

calcul fonctionne bien en petite dimension mais pas en grande dimension en raison d’une ex-

plosion de la complexité. La technique classique pour calculer les diagrammes de persistance

d’une famille F d’unions de boules est de construire une famille croissante de complexes

simpliciaux G . Un complexe simplicial est un ensemble de points, arêtes, triangles, tétraèdres

et ainsi de suite. La famille G approxime la topologie de F . L’algorithme classique [57] calcule

l’homologie persistante en temps O
(
N 3

)
, où N est le nombre de simplexes du complexe maxi-

mum dans G . Cependant, si F est décrit en utilisant n boules dans un espace de dimension

d , nous devons construire le complexe simplicial maximum de dimension d . Sa taille est
(n

d

)
.

Ainsi, la complexité sera de l’ordre de O
(
n3d

)
ce qui rend impossible son utilisation en grande

dimension.

Des approches récentes cherchent à obtenir une complexité qui dépend de la dimension

intrinsèque de l’objet au lieu de la dimension extrinsèque. Par exemple, cela a été obtenu pour

les complexes de Vietoris-Rips [88]. Cela signifie qu’un objet de petite dimension plongé dans

un espace de dimension plus grande peut être analysé sans payer le coût de complexité de

l’espace ambiant. C’est une façon de contourner la malédiction de la dimension.
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B.3 Le problème du bruit aberrant
La présence de valeurs aberrantes crée des problèmes lors du calcul des diagrammes de

persistance. Considérons le 1-squelette d’un cube, c’est-à-dire l’ensemble de ses arêtes. En

entrée, nous avons un ensemble de point qui échantillonne le squelette et contient quatre

points aberrants situés au centre de quatre des faces du cubes, de telle sorte que les deux faces

vides soient opposées, comme dans la figure B.4. Ces points de bruit perturbent le diagramme

de persistance de manière significative et rendent l’inférence topologique impossible.

Figure B.4 – Échantillonnage du squelette d’un cube avec points aberrants

Nous souhaitons inférer le diagramme de persistance du squelette de cube de la figure B.5,

c’est-à-dire le diagramme de persistance des sous-niveaux de la distance au squelette du cube.

Cet objet a une unique composante connexe naissant en 0 et existant pour toute les valeurs

positives du paramètre α. Au début, nous avons 5 éléments topologiques de dimension 1,

ou cycles, car le cube a six faces et l’une d’entre elle est la somme des cinq autres. Lorsque

le paramètre grandit, les faces sont remplies et les éléments de dimension 1 disparaissent,

remplacés par un élément de dimension 2 correspondant à la cavité à l’intérieur du cube.

Figure B.5 – Diagramme de persistance du squelette de cube

La présence de bruit aberrant brouille le diagramme de persistance. Le diagramme de per-

sistance obtenu pour la filtration des sous-niveaux de la distance au nuage de points est

donné dans la figure B.6. Notons que le diagramme de dimension 1 a maintenant un plus

petit fossé mais nous pouvons encore inférer la bonne structure. Cependant, en dimension 2,

l’homologie persistante est complètement différente et le fossé est de 1, ce qui signifie que

nous ne pouvons plus différencier le signal du bruit. Nous avons deux éléments topologiques

de même durée de vie. Chacun correspond à la moitié du cube. Quand les faces sont remplies

par la croissance des boules, une connexion s’opère également au milieu du cube, créée par

145



Appendix B. Résumé en français

les quatre points aberrants.

Figure B.6 – Diagramme de persistance obtenu en utilisant l’échantillonnage avec bruit aber-
rant

Inférer le diagramme complètement est particulièrement utile lorsque l’homologie persistante

est utilisée pour obtenir des signatures. Des différences dans les parties tardives des dia-

grammes peuvent fournir des informations intéressantes pour discriminer les objets. Cepen-

dant, les points aberrants peuvent complètement changer l’aspect des diagrammes.

B.4 La distance à la mesure
Afin de gérer le bruit et en particulier les points aberrants, l’idée est de remplacer la distance

au nuage de points P par une autre fonction. Une telle fonction doit avoir deux propriétés.

Elle doit être stable par rapport à de petites variations dans les données et ses sous-niveaux

doivent être facilement calculables.

Nous utilisons la distance à la mesure. Étant donné un ensemble de n points P dans un

espace métrique X et un paramètre de masse m = k
n , où k est un entier, la distance à la mesure

empirique µ sur P est la fonction définie sur X par

dµ,m(x) =

√√√√ 1

k

k∑

i=1
dX(x, pi (x))2

où pi (x) est le i ème plus proche voisin de x dans P et dX(x, pi (x)) est la distance entre x et

pi (x). Dans un contexte plus général, la distance à une mesure µ en x quantifie le coût du

meilleur plan de transport pour amener une masse m depuis µ jusqu’à x. Cette fonction est

stable [25] et peut-être aisément calculée dans les espaces euclidiens [67]. C’est donc un bon

candidat pour inférer la topologie.

Revenons au squelette de cube. Le diagramme de persistance de la distance à la mesure

empirique sur P pour une masse correspondant à 5 points est donnée dans le figure B.7. Le

diagramme contient encore du bruit mais il y a une nette différence entre les durées de vie des

éléments pertinents et des éléments dus au bruit en dimension 1 et 2.

L’utilisation du diagramme de persistance de la distance à la mesure sur des données réelles

est confrontée à un problème majeur. En dehors des espaces euclidiens, les sous-niveaux de

la distance à la mesure ne sont pas nécessairement calculables. Dans les espaces euclidiens,

les sous-niveaux sont des unions de boules [67]. Cependant, le nombre de boules nécessaires
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Figure B.7 – Diagramme obtenu en utilisant la distance à la mesure empirique pour le squelette
de cube

pour décrire cette union est identique au nombre de cellules de Voronoi d’ordre k qui sont non-

vides et qui peut être de l’ordre de O
(
n

⌊
d+1

2

⌋
k

⌈
d+1

2

⌉)
[39]. Il est donc nécessaire d’approximer

les sous-niveaux avant de pouvoir les utiliser en pratique. Une approximation avec un nombre

linéaire de boules a été proposée dans [67] et des bornes inférieures sur le nombre minimal de

boules nécessaires sont données dans [80]. Malheureusement, ces résultats sont limités aux

espaces euclidiens et ne peuvent être étendus à d’autres espaces métriques.

Cette approximation n’est pas suffisante pour traiter des données en grande dimension. La

grande taille des complexes simpliciaux utilisés pour le calcul des diagrammes de persistance

existe toujours. Les résultats de [88] supposent que pour un Fα ∈ F , toutes les boules ont

même rayon. Les boules dans les sous-niveaux de dµ,m ne vérifient pas cette propriété et la

méthode de [88] a besoin d’être adaptée.

B.5 Contenu de la thèse
Cette thèse étudie la complexité du calcul de l’homologie persistante et la manière dont

nous pouvons gérer le bruit et en particulier les valeurs aberrantes. Notre but est de rendre

l’homologie persistante robuste au bruit et utilisable en pratique pour des données de petite

dimension intrinsèque, éventuellement plongées dans un espace de grande dimension. Nous

proposons une méthode d’approximation des diagrammes de persistance de la distance à

la mesure. Nous introduisons également de nouvelles conditions d’échantillonnage mieux

adaptées à l’utilisation de la distance à la mesure. Cela nous permet d’élargir l’ensemble des

applications possibles.

B.5.1 Distance à la mesure
La distance à une mesure µ était définie dans les espaces euclidiens [25]. Sa stabilité est

garantie si deux mesures sont proches en distance de Wasserstein. La définition et la stabilité

de la distance à la mesure peuvent être étendues trivialement au cas des espaces métriques.

Théorème B.1 1 Soient µ et ν deux mesures de probabilité sur un espace métrique X et m ∈]0,1[

alors :

||dµ,m −dν,m ||∞ ≤
1

p
m

W2(µ,ν).

1Théorème 3.15
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Une fois établie la stabilité de la distance à une mesure, la question de l’identifiabilité se

pose naturellement. Cette question est notamment cruciale pour l’utilisation de la distance

à la mesure pour la construction de signatures. Une bonne signature doit être capable de

discriminer entre différents objets. Nous fournissons de nouveaux résultats dans les espaces

euclidiens dans la section 3.5. En particulier, la distance à la mesure considérée pour toutes

les valeurs de m permet d’identifier une mesure de probabilité.

Théorème B.2 2 Soient µ et ν deux mesures de probabilités sur Rd , alors :

(
∀x ∈R

d , ∀m ∈ [0,1[, dµ,m(x) = dν,m(x)
)
⇔µ= ν.

La restriction à des mesures empiriques définies sur un nuage fini de points permet de réduire

les condition sur m.

Théorème B.3 3 Soient f : Rd → R une fonction, d ≥ 2, et m ∈ [0, 1
2 [. S’il existe un nuage fini

de points P tel que la mesure empirique µ sur P vérifie f = dµ,m et pour tout x ∈R
d , µ(x) ≤ m,

alors la mesure µ est définie de manière unique.

L’utilisation de la distance à la mesure dans le cadre de l’homologie persistante nécessite

également de pouvoir facilement calculer ses sous-niveaux. Lorsque la mesure considérée

est une mesure empirique sur un nuage de n points, des travaux précédents ont proposé

une approximation par une distance de puissance, appelée witnessed k-distance [67]. Cette

approximation a une taille linéaire par rapport au nombre de points du nuage original, c’est-

à-dire que les sous-niveaux sont décrits par une union d’au plus n boules. Cependant, elle

repose sur l’existence de barycentres, ce qui limite son utilisation aux espaces euclidiens. De

plus elle introduit de nouveaux points comme support de l’approximation ce qui peut s’avérer

problématique pour l’analyse de champs scalaires. Enfin, elle n’est pas applicable au cas des

mesures dont le support n’est pas fini. Reprenant l’idée d’une approximation par une distance

de puissance, nous introduisons une nouvelle fonction d’approximation.

Définition B.4 4 Soient µ une mesure de probabilité sur un espace métrique X et m ∈ [0,1[ un

paramètre de masse. Étant donné un sous-ensemble P de X, nous définissons d P
µ,m Comme la

distance de puissance associé à (P,dµ,m):

d P
µ,m(x) =

√
min
p∈P

dµ,m(p)2 +dX(p, x)2.

Cette fonction est définie dans tout espace métrique. Nous montrons que si l’ensemble P

est un échantillonnage suffisamment dense du support de la mesure µ alors d P
µ,m approxime

dµ,m . En particulier, si µ est une mesure empirique sur un nuage de n points et que P est ce

nuage alors nous obtenons une fonction dont les sous-niveaux sont dénies par une union

d’au plus n boules, comme la witnessed k-distance. Cette fonction approxime la distance à

2Théorème 3.17
3Théorème 3.24
4Définition 4.11
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µ dans n’importe quel espace métrique. De plus, les techniques de preuve utilisées permet-

tent d’améliorer les bornes d’approximation de la witnessed k-distance dW
µ,m qui deviennent

équivalentes à celles de d P
µ,m .

Théorème B.5 5 Soient P un ensemble fini de points d’un espace métrique X, µ la mesure

empirique sur P et m ∈ [0,1[ un paramètre de masse alors les bornes suivantes sont optimales :

1
p

2
dµ,m ≤ d P

µ,m ≤
p

5 dµ,m .

De plus, si l’espace X est euclidien alors les bornes deviennent :

1
p

2
dµ,m ≤ d P

µ,m ≤
p

3 dµ,m

et pour la witnessed k-distance :

dµ,m ≤ dW
µ,m ≤

p
6 dµ,m .

B.5.2 Structures de données pour la persistance des distances de puissance
L’approximation de la distance à la mesure a permis de se ramener à une distance de puissance

définie par un nombre linéaire de boules. Cependant, la difficulté du calcul de son diagramme

de persistance existe toujours. Une adaptation naturelle de la méthode basée sur le nerf des

boules, permet de définir une version pondérée de la filtration de Vietoris-Rips Rα. Cette

structure est stable et induit une métrique sur le complexe ainsi défini.

Théorème B.6 6 Soient (P, w) un nuage de points pondéré et f la fonction induite par le Rips

pondéré. Alors,

∀a,b,c ∈ P, f (a,c) ≤ f (a,b)+ f (b,c)

Cependant, la taille de la filtration conserve les défauts du cas non pondéré. En particulier, elle

explose lorsque la dimension augmente. Nous adaptons la méthode de Rips parcimonieux Sα

développée par Don Sheehy [88]. Remplacer la métrique euclidienne par la nouvelle métrique

du Rips pondéré ne permet pas de conserver les garanties de taille que nous recherchons. Il

est nécessaire de construire le Rips parcimonieux dans le cas non pondéré puis d’intersecter

ce dernier avec le Rips pondéré Rα. Cela défini un complexe Tα pour tout paramètre α

et une filtration {Tα}. Le calcul de ce complexe est relativement aisé. De plus, une fois

calculé la filtration {Sα}, un changement des poids définissant Rα correspond à un simple

réordonnancement de l’apparition des arêtes dans {Sα}. En définitive, nous obtenons une

filtration qui conserve les propriétés de parcimonie de {Sα}, à savoir une taille en O(C l n) où n

est la taille de P , C une constante et l la dimension intrinsèque de l’objet échantillonné par P .

De plus, le diagramme de persistance de {Tα} approxime bien celui de {Rα} :

5Corollaire 4.13 et théorèmes 4.7 et 4.15
6Théorème 5.12
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Théorème B.7 7 Soit (P, w), un sous-ensemble pondéré fini d’un espace métrique X dont les

poids sont t-Lipschitz. Soit ǫ ∈]0,1[ un paramètre fixé pour la construction de la filtration

parcimonieuse {Tα}. Alors,

d
log
B (Dgm({Tα}),Dgm({Rα})) ≤ ln

(
1+

p
1+ t 2 ǫ

1−ǫ

)

.

La combinaison de l’approximation de la distance à la mesure et l’utilisation de la filtration du

Rips pondéré parcimonieux permet de rendre le calcul du diagramme de persistance utilisable

en pratique pour des données de petite dimension intrinsèque mais éventuellement plongées

dans un espace de grande dimension.

B.5.3 Nouvelles conditions d’échantillonnage pour la distance à la mesure
Notre incapacité à montrer la capacité discriminante de la distance à la mesure par rapport à la

distance de Wasserstein peut indiquer que les conditions basées sur la distance de Wasserstein

ne sont pas optimales. En effet, il est possible de construire des suites de mesures (µn) et

(νn) telles que la distance de Wasserstein W2(µn ,νn) converge mais l’erreur relative entre

dµn ,m et dνn ,m diverge. Nous montrons par ailleurs que la présence de bruit ambiant rend

parfois impossible d’exprimer des conditions d’échantillonnage en fonction de la distance

de Wasserstein alors que l’utilisation de la distance à la mesure permet d’inférer, au moins

partiellement, le diagramme de persistance de l’objet. Nous définissons donc de nouvelles

conditions d’échantillonnage.

Définition B.8 8 Soit M⊂R
d une sous-varitété riemannienne et soit µ une mesure de probabil-

ité. Pour un m ∈ [0,1[ fixé, µ est un (ε,r )-échantillon de M si :

ε≥ sup
x∈M

dµ,m(x)

r ≤ sup{ℓ ∈R|∀x, dµ,m(x) < ℓ =⇒ d(x,M) ≤ dµ,m(x)+ε}

Par extension, si P ⊂R
d est un nuage de points, nous dirons que P est un (ǫ,r )-échantillon de M

si la mesure empirique sur P est un (ǫ,r )-échantillon de M.

Ces conditions ont la même structure que celles données en utilisant la distance de Hausdorff

lorsque la distance au nuage de point est utilisée. Nous montrons que la plupart des conditions

d’échantillonnage standard induisent une expression sous cette forme et donnons les valeurs

des paramètres. Définissant la notion de filtration δ-effondrée F̃ qui correspond à une

troncature de la filtration F au niveau du paramètre δ, c’est-à-dire le remplacement, pour α>
δ, de Fα par l’espace ambiant, nous pouvons exprimer une inférence partielle des diagrammes

de persistance.

Théorème B.9 9 Soit µ un (ǫ,r )-échantillon d’une sous-variété riemannienne compacte M⊂
7Théorème 5.14
8Définition 6.1
9Théorème 6.10
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R
d . Les filtrations (r +ǫ)-effondrées F̃ = {F̃α} de {d−1

M
([0,α])} et G̃ = {G̃α} de {d−1

µ,m([0,α])} sont

ǫ-entrelacées et donc :

db(Dgm(F̃ ),Dgm(G̃ )) ≤ ǫ.

B.5.4 Analyse de champs scalaires et données incomplètes
L’homologie persistante a été utilisée pour analyser des champs scalaires [32]. Il s’agit d’étudier

la structure d’une fonction f à valeurs réelles définie sur une variété riemannienne M à partir

d’un échantillonnage fini. Les travaux précédents ont proposé un algorithme réalisant une

analyse robuste dans le cas d’un bruit sur les points borné ou d’une erreur bornée sur les

valeurs fonctionnelles. Nous étendons le champ d’application de l’algorithme aux bruits

aberrants en appliquant un prétraitement.

Le bruit géométrique est traité en utilisant la distance à la mesure. Les nouvelles conditions

d’échantillonnage permettent de garantir une élimination des points aberrants géométrique-

ment et une inférence correcte du support M de la fonction f . La fonction f est estimée à

l’aide d’une méthode construite sur la distance à la mesure. Cette méthode considère les k

plus proches voisins d’un point et recherche parmi ces points, le sous-ensemble de k ′ points

dont les valeurs fonctionnelles présentent la plus petite variance. La valeur estimée est alors la

moyenne de ces k ′ valeurs. L’algorithme obtenu produit des garanties en présence d’un bruit

géométrique et fonctionnel contenant des valeurs aberrantes.

Théorème B.10 10 Soient M une variété riemannienne et f une fonction c-Lipschitz sur M.

Soient P un (ǫ,r )-échantillon de M et f̃ des valeurs fonctionnelles tells que (7.5) est satisfaite,

où η≥ ǫ L’algorithme traitant le bruit combiné a les garanties suivantes :

Pour tout δ ∈
[

2η+6ǫ, ̺(M)
2

]
et tout δ′ ∈

[
2η+2ǫ+ 8

3
rM

rM−(η+ǫ)δ, 3
4

rM−(η+ǫ)
rM

̺(M)
]

, H∗( f ) et

H∗(Rδ(L̂α) ,→ Rδ′(L̂α)) sont
(

4
3

crMδ′

rM−(η+ǫ) +ξs
)
-entrelacés où ξ = 1 en utilisant la médiane et

ξ=
(
1+2

√
k−k ′

2k ′−k

)
en utilisant la nouvelle méthode.

Bien que n’ayant pas de meilleures garanties que certaines méthodes existantes, l’utilisation

de la médiane des valeurs des k plus proches voisins par exemple, notre nouvelle méthode

donnent de meilleurs résultats dans certains cas intéressants, en particulier lorsque la con-

stante de Lipschitz est grande, ou que la fonction n’est pas Lipschitz. Cela s’illustre notamment

dans le débruitage d’images.

Ces résultats sont donnés avec des vitesses de convergences pour notre nouvel estimateur. Ce

dernier permet également d’envisager la reconstruction de jeux de données dont une partie

est manquante et en se plaçant dans des conditions non traitées par les méthodes existantes.

En particulier, nous pouvons considérer des fonctions non linéaires et n’avons pas besoin de

conditions sur la dimension de l’espace couvert par les valeurs.

B.6 Organisation de la thèse
Les travaux présentés dans cette thèse sont en partie le résultat de deux collaborations donnant

lieu à des publications à venir. Les chapitres 2 et 3 introduisent des notions classiques en

10Théoème 7.14
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analyse topologique des données et adaptent simplement les résultats de stabilité de la

distance à la mesure au cas des espaces métriques quelconques. L’exception est la partie 3.5

qui constitue un travail original.

Les chapitres 4 et 5 sont le fruit de la collaboration avec F. Chazal, S. Oudot et D. Sheehy,

publiés prochainement [18], et s’intéressent à l’approximation de la distance à la mesure

d’une part et au calcul du diagramme de persistance des distances de puissance d’autre

part. L’approximation de la distance à la mesure est obtenue par une méthode originale. La

structure de donnée pour le calcul du diagramme de persistance est une adaptation technique

des travaux précédents de D. Sheehy [88].

Le chapitre 7 analysant les champs scalaires est le fruit d’une visite auprès de T. Dey et Y. Wang

à The Ohio State University. Les résultats obtenus en collaborant avec F. Chazal, F. Fan et S.

Oudot constituent une adaptation de [32] à de nouvelles conditions de bruit par l’introduction

d’une estimation originale des valeurs fonctionnelles. Les résultats sont à paraître [17].

Enfin, les chapitres 6 et 8 présentent des travaux connexes analysant les conditions d’échantil-

lonnage utilisées au chapitre 7 et les propriétés de l’estimateur introduit dans ce même

chapitre. Le chapitre 8 présente également une ouverture en direction du traitement des

données incomplètes.
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networks. Journal of Statistical Mechanics: Theory and Experiment, 2009(03):P03034,

2009.

[73] Joseph Horowitz and Rajeeva L Karandikar. Mean rates of convergence of empirical

measures in the wasserstein metric. Journal of Computational and Applied Mathematics,

55(3):261–273, 1994.

[74] Samory Kpotufe. k-nn regression adapts to local intrinsic dimension. In Advances in

Neural Information Processing Systems, pages 729–737, 2011.

[75] M Kramar, A Goullet, L Kondic, and K Mischaikow. Persistence of force networks in

compressed granular media. Physical Review E, 87(4):042207, 2013.

[76] Hyekyoung Lee, Hyejin Kang, Moo K Chung, Bung-Nyun Kim, and Dong Soo Lee. Per-

sistent brain network homology from the perspective of dendrogram. Medical Imaging,

IEEE Transactions on, 31(12):2267–2277, 2012.

[77] Chunyuan Li, Maks Ovsjanikov, and Frederic Chazal. Persistence-based structural recog-

nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1995–2002, 2013.

[78] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions

on, 28(2):129–137, 1982.

[79] Ching-Ta Lu and Tzu-Chun Chou. Denoising of salt-and-pepper noise corrupted im-

age using modified directional-weighted-median filter. Pattern Recognition Letters,

33(10):1287–1295, 2012.

[80] Quentin Mérigot. Lower bounds for k-distance approximation. In Proceedings of the 29th

annual symposium on Symposuim on computational geometry, pages 435–440. ACM,

2013.
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