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FLOW FORCES AND THE TILTING OF SPRING LOADED VALVE PLATES
Part I
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ABSTRACT

Up to the present,s¢ far as the author is
aware, it has been congidered selfevident
that spring loaded valve plates remain
parallel to the seat during valve lift
when nominally symmetrical conditions of
flow and spring force apply. In this paper
it will be shown, that thisg in general is
not the case. In the author's opinion the
problem of instability in valve plate
motion has not been studied because of in-
sufficient knowledge of forces resulting
from flow in valve channels. A complete
theory for flow forces is complex but a
simplified treatment makes clear the fun-
damentals of the phenomenon.

Forces acting on a valve Plate during
opening and closing are discussed. Flow
forces resulting from deflection of the
gas flow coupled with apring forcea govern
valve dynamics, except within small region
near seat and guard. Flow forces increase
considerably (by some 25%) with increasing
lift. This is shownofor the case of a
simple slot with 90 deflection of the
flow by potential flow solution, which
gives a close approximation to the real
flow.

If increase in flow force with lift ex-
ceeds the increase in spring force, valve
Plate motion becomes unstable and degene~
rates to tilted motion.Conditions for sta-
bility are given in +terms of valve para-
meters and discussed in detail.

INTRODUCTION

Seat parallel motion of the valve plate is
very important for valve life time. In the
opinion of the author,failure of wvalve
prlates ig connected closely with tilted
motion and consequent impact.A hypothesis
of the cauge of these failures is pressn--
ted elsewhere in these Proceedings.

Before looking closer at stability we have
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a parallel entrance slot

to discuss the forces acting on a valve
plate. These forces are flow forces and
spring force,fig.1. Flow force on valve
plate ariges solely as a consequence of
deflection in the gas flow, except small
regions near seat and guard. We shall call

this force the impulsive force F..Near the
guard(when opening) there is an + additio-~
nalflow effeet causing a"squeezi force"
quu. This effect is normE%Iy impoTrtant
only for distances leas than 0.2mm between
Plate and guard(in the absence of valve
plate tilt?%ﬁ]. The squeezing force is es-
pecially important for high pressure com-

pressors. It does not occur when steady
state flow force measurements are perfor-

‘med.

When the valve plate is relatively near to
the seat,reattachment of fiow to seat wall
occurs and Causes pressure recovery and
hence increases impulsive force F.. Accor-
ding to [2] reattachment up to y/Fe-b)~0.5
is to be expected.

In computer ealculations of valve dynamicg
a viscous damping force, Proportional to
plate velocity often is introduced. There
is little physical basis in the flow pro—
cess for postulating such a force.The
above mentioned squeezing force becomes
only important in the vicinity of the
guard. Mechanical friction associated
guides or in the bending arms of the
8prings may cause some damping,the magni-
tude of which is difficult to estimate.

with

We may conclude that the impulsive force
governs motion in the main part of valve
lift together with the spring force.

THE IMPULSIVE FORCE

For a basic investigation of the stability
phenomenon it is helpful to begin with a
simple situation, accessible to theoreti-
cal treatment. We start with flow through
of infinite
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FIGURE 1 Porces acting an valve plate

length,deflected by a valve plate normal
to the slot, fig.2. The plate is assumed
wide enough 40 ensure deflection of effec-
tively 90°(this means e.g. ez 1.5b, which
corresponds to real conditions).Quantities
guch as impuleive force, spring force,
valve plate mass etc. are related to unit
length of slot and given the guffix "17.

For this flow problem the theory of jets
of an ideal fluid allows a very good ap-
proach to real fluid flow. Real flow has

a gseparation line along the seat edge and
forms a wake of approximately constant
pressure, which corresponds to the bounda-
ry condition of ideal jet flow. The jet is
concentrating from b to d. Kinetic emergy
of the leaving jet(velocity w,) #ews is
lost. The pressure loss Ap(=pfessuré dif-
ference across the valve) is therefore

Ap = F-pW5 = 650w, (1)
From contlnuity:
wy © 9w, —-—l§= (b/a)? | (2)

Frequently a quantity "flow area" is used
instead of to characterise losses. It 1s
easily seen that flow area is 24 in our
notation.

The concentration of the jet -and hence f -
can be calculated from jet potential flow
theory, see e.g.[3][4]. Table 1_in appen-
dix gives some numerical data. Detailed
data on pressure distribution, jet bounda-
ry etc. are given in [1].

The momentum theorem than offers an easy
way of calculsting impulsive force on the
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FIGURE 2 Jet from infinite slot

valve plate. For a control volume as indi-~
cated in fig.3 we get for the y coordinate

control volume

FIGURE 3 Control volume

putting p2=0 for simpliecity:

Py+2b - F; 4 = m(w2y - W1y) (3)

= ! - 2
Fi,1 = py.2b + 0w, = 2b(p1+9w1)
From Bernoulli's equation we get

Py = %?(wg - "%)

P, 4 = Bp(ws + w3) (4)
The use of Bernoulli's equation is justi-
fied,if boundary layers remain thin com-
pared with b, which holds for practically
all valve channel flows under considera-
tion(see e.g. [1] ). Introducing pressure
loss Ap and its coefficientf s9ee fig.2,
we get finally
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F. 3 = 2b.l}p.(1+ %) (5)

In words:

Impulsive force F, = port area A . (6)
presgure differenke Ap . (1 + 1/'5,)

In this general form equation (6) holds
also for porta of arbitrary form provided
that

e flow deflection is 9¢°

eboundary layers remain thin

*f is a loss coefficient associated
with port velocity Wy

Experimental results indicate good agree-
ment with eq(6).

As f varies between 1 (y = b) andeo (y&b)
the theoretical limits of Fi are

A-Ap <P, < 2AAp (7)

The moat important result for us is that

F, 1increases with valve 1lift y for comst.
z&p. The reascn is evident: a greater valve
1lift y permits higher mass flow and this
—according to the momentum theorem- in-
creases the impulsive force Fi.

The simple model of fig.? idealizes some-

what real flow conditions in valve channels.

Nevertheless it is helpful, to underatand
this simple case in detail, before investi-
gating more complicated devices empirically.

Now lek us consider channel deviges with
2 x 90" deflection of gas flow. Here we
cannot calculate F; from f due to lack of
Jjet flow solutions. So we’use the Following
analogous equation,incorporating a dimen-
sionless force coefficient o_ to be deter-
.. PI
mined empirically

(8)

B, = A.Ap.c

b

On the contrary to some other authors "aA"
stands for the geat port area, not for the
valve plate area(A=J5(Ri-R: ). Prequently

a 80 called "force area Af" is used instead
of A. Evidently it is A= A.c. The author

brefers to use A and ¢_ as most appropriate
because thesge quantiti@s are coherent with
the above given theoretical background.

Fig.4 gives valueg ¢, for a 3-ring plate
valve with 2 x 90° f¥ow deflection, adapted
from meagurements published by Fremkel [5].
Reinisch [6] has published experimental
results for a 2-ring piate valve which
show smaller increage in flow force than
fig.4. In this paper we use the values of
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fig.4 for multi-ring valves.
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FIGURE 4 ¢ for multi-ring plrte valves[s]

The author has estimated Mach pumber in-
fluence by comparison of simple compres-
s8ible and incompressible solutions of jet
flows and finds, that this influence is
smalil, even under sonic outflow condition.

VALVE PLATE AS MASS POINT

Let us first comsider the simple configu-
ration ae given in Fig.1. The equation for
the motion of the valve plate, idealised
as a mass point, gives

ny + ¢y + Eapr,o -Ap.A(O.9+O.39%)=O (9)

In this eq. the linear approximation for
Pi is used as given in appendix. From

eq(9) follows

- _A_
ny + (e~ B—AP.O-39)Y + Fspr,o =0

Using A/b=21 and dividing by*l” results in

m1§ + (c,~0.78Ap)y + F =0 (10)

8pr,o,1

Fopr,o0,1 Stands for the epring preload per

unit length. For constant pressure diffe-
rence Ap across the valve the gemeral
solution of eq(10) iz listed in Table 1,
next page. The constants A,B,C can be cal-
culated, if initial conditions of plate
motion are given. If the soluticn leads to
a motion which is not completely within
the allowed 1ift y=0 to s, repeated reflec-
tions may ocecur with frequencies higher
than natural frequency, fig.5.

The effect ¢f the impulaive force F. is
twofold: +
e lif of steady state equilibrium posi-
tion.yequ of vaive plate



TABLE 1 Solutions of equation (10) for constant pressure difference Ap
Periodic case Yy = A + B.sin®@t + C.conlot symbol: P
Aperiodic case y=4A+ B.e"8% 4 g.et?F gymbol: A (11)
Indifterent case y=A+ Bt + c.t2 symbol: I

4 — . c, — ¢C
wm.‘vrg = 01/::11 ; W = '21—_1——1’-"0;1 AS = "I 1 Fy 1'
1 m,

By = |32, 1 /4y

@ Llowering of natural frequency Y/
to &iexr o valve plate or inverting
veriodic to aperiodic case.

~
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FIGURE 5 Solution with reflections

¥, acts like a spring with negative stiff-
uess (Cq = ~0.7T8AD)

1,1
Now let us consider the case, when Ap =
Ar(t). Eq(9) counld be solved numerically,
again with the plate conslidered as a mass
point.

SPRING FORCE AND IMPULSIVE FORCE AS LIRE-

LOALE

Lot us lLeave tha mwass point idealisation
and regard o simple strip as a valve plate
fig.6. For this we use distributed loads
for spring force and impulsive force(per
urit iength of channel). If we superimpoae
s mmall longitudinal +tilting disturbance
ox $he 1ift of the strip, the lines repre-
senting load distributiona diverge from
parsliel. Fer zmall incelinations we can
negle=ct threedimensional effects on flow
and caleulate ¥, 4 according %o eq(5) with
the locsl 1ifs 7 , mee fig.6.

considering the moment on the tilted plate
we can ges from £ig.6, that there are two
pogsibilities: the resulting moment acts
againgt the tilting disturbance(and is
gtabilising) or it awmplifies the tilting
(i.e.mo¥ion is unstable). This is expreesd

by

F, £

1 ‘Fislﬂ\_\ stable Mres

| fmmmmmm - x
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| MO . «
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spr ‘

FIGURE 6 Forces on inclined strip
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motion (Mm%q (hmﬂ. S 0 c*>078
Btable ay Ap=const or 5y p=const or ey(y)> cFi(YgAP) 4z
(12)7

¢

1
motion -] —— < 0 or Ji L0 or —fi- —|— = 0,
unstable I A< 078
*estimation for simple configuration according to Pig.1; Fi approximated linearly

In these formulas ¢, and Cp in the case

1
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of nonlinear spring and impulsive force
stand for

oF
cy = —._.S.Er_l.ll = 01(3{); Cp_ - aFi 1
(4 i, "'-.5"5;7-—?-
(13) - cFi’«,(Y,AP)

The same conditions for gtability apply e-
vidently for ring and multi-ring plate
valves. The essential criterion is:

does rate of increase in spring force
with valve 1ift ezceed rate of in-
crease in impulgive force or not.

Now let as make a closer look at stability
during the opening and closing motion of
the valve plate.

Opening '

Fig.7 shows a typical curve Ap(t), when
pressure pulsations in plemum are absent.

S

apy

™~

r+

¥

Po—
s

£

FIGURE 7 Typical curves Ap(t). y(t)

The plate opens with rapidly increasing
values Ap(t) and closes with 816ly de-
creasing values 4p(t). So the plate may
enter unstable conditions during the pro-
cegs at a certain valueAp. Fig.8 demon-
strates this for the simple configuration
due to fig.1 with linear approximated Fi—
characteristics.
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oY opening 4 Y
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FIGURE 8 Parameter 1ines(FreaZAp=const

The dots mark the instantaneous positions
along the various parameter lines F s
(for const. values of t and hence ABYS

Let us now consider more realistic condit-
ions. Fig. 9a shows a typical spring
characteristic for a spring with bending
arms. For the impulsive force we use a
typical characteristic for a multi-ri
plate valve as given by fig.4 and eq(§§.

AY by

~

®

TT__qm NN
unsté,ble
&<
0 F

OE.
spr - res
FIGURE 9 Typical parameter lines for
mlti~-ring plate valves

Fig.9b shows typical parameter lines F
for an opening process. Dots again res
mark ingtantaneoug positions Y. of plate on
the corresponding parameter lines. From
£ig.9b it arises that ingtability can de-
velop half way during opening and be fol-
lowed by an end period of stable seat
parallel motion. In this period tilted
positions of plate which may have been
established in previocus period will be



reduced due to high stiffness of gpring in
end period.

Cloeing

Here Ap decreases relatively slowly when
valve plate starts to close(see fig.7).
Pig.10 glives typical parameter lines for
linearised force characteristics as used
previoualy.

unstableA stable

-~

0 FFES
FIGURE 10 Parameter lines, cloging

FFES

7i8.11 shows typical situations for mmlti-
ring valve plates with bending arm springs.
It can be seen that there is a broad

instability region between seat and guard.

AY
S
) “\\fwh

)

v\\ < .

0
Typical parsmeter lines for

multi-ring plate valves(closing)

unstable

PIGURE 11

In Table 1 we have introduced symbols P,A,
I %0 characterize principal conditions of
motion. We can refine this procedure by
adding a second symbol, according to equi-
librium position of characteristic line
(B, =F Y. Table 2 gives this sym-—

hols.

spr —Vequ

TABLE 2 Symbols to characterize equilibri-
um position yequ of parameter lines

8o -Tequ within valve 1lifs

+"°yequ above valve guard

below valve seat

-.w .yequ

Table 3 gives a survey of importan® cases.

If one wants to estimate the stability of
seat parallel motion of a given valve, one
can proceed as followa:

— Find spring stiffness c¢ from valve data;
¢ may not be constant when spring plates
with bending arms are used: c=cly)

—= Calculate spring stiffness per unit
channel length:

cy = ¢/l 1l..total length of channel

For multi~-ring plate valves with given
seat port area A, width 2b of channels:

cq = c.2b/A

— Find pressure difference across valve
Ap(y) during opening or closing period
from computer simulation(with parallel
motion), measurements, or general ex-
perience or loss coefficientf .

—» Form quotient c,/Ap=f(y/b) and enter
diagram for estlmation of stability,
Table 4.

The left hand diagram is derived from
f£luid flow theory and merits a good deal
of confidence. The right hand diagram is
derived from fig.4[5]. According to other
gources the curve ¢_(y/b) for multi-ring
plate valves is mor glat and resembles
the curve with 1 x 90 deflection flow.
As configurations in multi-ring valves
differ considerably, care should be taken
when drawing more than rough conclusions
from the diagram at the right of Table 4.

Diagrams in Table 4 give no values for
y/b <0.2. Beyond this limit reattachment
of flow to seat wall will certainly occur
and this gives atable conditions.

Current practice in spring dimensioning
is based on the requirement +that the
plate begins to close early enough %o
reach the seat even when pressure diffe-
rences are low. This requirement is abso-
iutely necessary; otherwise volumetric
efficiency will decrease and plate impact
velocity become excessively high. So there
is only a restricted margir to take into
consideration the additional requirements
of stability of motion.

In existing valves one finds usually

ey = 0.05 to 0.5 bar

the higher values for high speed compres-—
sors or for high pressures. 1f one com-
pares this with diagrams in Table 4, oxne
would guess that many valves working with
pressures up to, say 10 bar could avoid
unstable motion. On the contrary high
pressure valves are likely to work with
unstable motion conditions.Limiting of
valve 1ift to values as small as O.5mm
allows small tilting esngles in these cases.

HEFERENCES
See Part I1I.
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TABLE 3 Some basic cases of plate motion with Ap = const
, 1Y
Ps Y : y P+ y«;i\ y P_ y , |
E S \ 5 closing
y@?ué‘“ - = , = \
/ =
Fres Fres \ | Fres
ibl i— _
Aoy MRS A ] [ A~y oy
-——§r 220 22 s '
$§ ]
E Ji l,
iy A
Y 4
__-Fres _"t
TABLE 4 (epfing torce o iiae Toag) i1t Of oeat parallel motion
1.6 6
el Cq.
Ap AP
1 1jj —
stable NN stable
RN NN
o N\
SN bee
K UnStable \ UnStable
0'4 N, NN N \_'%‘ 0.4 A NN
A \\\‘\\\\\_ \\ \ \\\ \
AN AN \ N
™
NN NS
j\. \\ ) \\\ \J \ N ""5_ .\\ \ \\
0 04 1T— 0 0. :
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APPENDIX

Infinite slot with 90° deflection flow

Pressure loss Ap and impulsive force Fi, caleulated from potential flow theory
and momentum theorem [1]

2e

Wa IS

y....valve plate distance from seat edge(if edges
chamfered, from lower edge!)

2b...width of slot

2e...width of plate

A....port area; A=2b.l; 1l...length of slot
w,...velocity in slot; w1=?/A, V..volumetric flow rat
9....den=ity of gas

f£.+s.pressure loss coefficient

Ap..pressure difference across valve
Fi.,.impulsive force

Fi’1.impulaive force per unit of length; ?i,1=ri/1
Cc._...force coefficient

d....asymptotic width of leaving jet branch

i

Potential flow theory(jet flow) leads to the following equation, which allows to
calculate d from lift y and from b:

=%+ ﬁ%@ﬁﬂn%ﬁ%} f =2

provided that deflection angle is 90%(e & 3> 1.5b), momentum theorem leads to

e, =1+
P

b TE

and impulsive force is F; = AAp-(14F) = A.%?wﬁ(f +1)

Approximation of cp

From evaluation of above given equation follows:

by a linear function:

o
=
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