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FLOW FORCES AND THE TILTING OF SPRING LOADED VALVE PLATES 

Part I 

L.B5swirth,Prof., 
HCihere Technische Bundes-Lehr- und Versuchsanstal t .M"odling (Federal Technical Colle$e at Moedling) 

A-2340 Moedling(Austria 

ABSTRACT 

Up to the present,so far as the author is 
aware, it has been considered selfevident 
that spring loaded valve plates remain 
parallel to the seat during valve lift 
when nominally symmetrical conditions o~ 
flow and spring force apply. In this paper it will be shown, that this in general is 
not the case. In the author's opinion the 
problem of instability in valve plate 
motion has not been studied because of in­
sufficient knowledge of forces resulting 
from flow in valve channels. A complete 
theory for flow forces is complex but a 
simplified treatment makes clear the fun­damentals of the phenomenon. 

Forces acting on a valve plate during 
opening and closing are discussed. Flow 
forces resulting from deflection of the gas flow coupled with spring forces govern valve dynamics, except within small region near seat and guard. Flow forces increase considerably (by some 25%) with increasing 
lift. This is shown for the case of a 
simple slot with 90° deflection of the 
flow by potential flow solution, which 
gives a close approximation to the real flow. 

If increase in flow force with lift ex­
ceeds the increase in spring force, valve 
plate motion becomes unstable and degene­rates to tilted motion.Conditions for sta­
bility are given in t erma of valve para­
meters and discussed in detail. 

INTRODUCTION 

Seat parallel motion of the valve plate is very important for valve life time. In the 
opinion Of the author,failure of valve 
plates i~ connected closely with tilted motion and consequent impact.A hypothesis 
of the cause of these failures is presen-· ted elsewhere in these Proceedings. 

Before looking closer at stability we have 
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to discuss the forces actins on a valve 
plate. These forces are flow forces and 
spring force,fig.1. Flow force on valve 
plate arises solely as a consequence of 
deflection in the gas flow, except small regions near seat and guard. We shall call this force the impulsive force F .• Near the 
gu~d(when opening) there is an 1 additio­
na..ljl'low effect causing a"arueezing force" 
Fsqu• This effect is norm ly important 
only for distances less than 0.2mm between plate and ~ard(in the absence of valve 
plate tilt) [1]. The squeezing force is es­
pecially important for high pressure com­pressors. It does not occur when steady 
state flow force measurements are perfor--med. 

When the valve plate is relatively near to 
the seat,reattachment of flow to seat wall occurs and causes pressure recovery and 
hence increases impulsive force F .• Accor­
~ing to (2] reattachmen-t up to y/te-b)~o.s 1s to be expected. 

In computer calculations of valve dynamics 
a viscous damping force, proportional to 
~late velocity often is introduced. There 1s little physical basis in the flow pro­cess for postulating such a force.The 
above mentioned squeezing force becomes 
only important in the vicinity of the 
gu~d. Mechanical friction associated with 
gu1~es or in the bending arms of the 
spr1ngs may cause some damping1 the magni­
tude of which is difficult to estimate. 

We may conclude that the impulsive force 
governs motion in the main part of valve 
lift together with the spring force. 

THE IMPULSIVE FORCE 

For a basic investigation of the stability 
phenomenon it is helpful to begin with a 
simple situation, accessible to theoreti­
cal treatment. We start with flow through 
a parallel entrance slot of infinite 



FIGURE 1 Forces acting an valve plate 

length,deflected by a valve plate normal 
to the slot, fig.2. The plate is assumed 
wide enou~ to ensure deflection of effec­
tively 90 (this means e.g. e;e:;.1.5b, which 
corresponds to real conditions).Quantitiee 
such as impulsive force, spring force, 
valve plate mass etc. ar~ related to unit 
length of slot and given the suffix "1". 

For this flow problem the theory of jets 
of an ideal fluid allows a very good ap­
proach to real fluid flow. Real flow has 
a separation line along the seat edge and 
forms a wake of approximately constant 
pressure, which corresponds to the bounda­
ry condition of ideal jet flow. The jet is 
concentrating from b to d. Kinetic energy 
of the leaving jet(velocity w ) frwt is 
lost. The pressure loss ~ p ( =p~essilre dif­
ference acrose the valve) is therefore 

( 1) 

From continuity: 

w2 l•,-.fr= (b/d)2 (2) 

Frequently a quantity "flow area" is used 
instead of f to characterise losses. It is 
easily seen that flow area is 2d in our 
notation. 

The concentration of the jet -and hence f­
can be calculated from jet potential flow 
theory, see e.g. [3],[4]. Table 1 in appen­
dix gives some numerical data. Detailed 
data on pressure distribution, jet bounda­
ry etc. are given in [1]. 

The momentum theorem than offers an easy 
way of calc~ating impulsive force on the 
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2e 
jet 

FIGURE 2 Jet from infinite slot 

valve plate. For a control volume as indi­
cated in fig.3 we get for the y coordinate 

control volume 

~---·-
~-S:_ 

@ 

FIGURE 3 Control volume 

putting p2=o for simplicity: 

p1.2b- F1 , 1 = m(w2y- w1y) 

Fi, 1 = p1.2b + mw1 = 2b(p 1 +~W~) 
From Bernoulli's equation we get 

(3) 

(4) 

The use of Bernoulli's equation is justi­
fied,if boundary layers remain thin com­
pared with b 7 which holds for practically 
all valve channel flows under considera­
tion(see e.g. (1] ). Introducing pressure 
loss .dp and its coefficient f ,see fig.21 
we get finally 



F. 1 = 2b. ~p. (1~ J.) 
~, t 

In words: 

Impulsive force Fi = port area A 
pressure differenoeLlp • (1 + 1/i 

(5) 

(6) 

In this general form equation (6) holds 
also for porta of arbitrary form provided 
that 

• flow deflection is 90° 
•boundary layers remain thin 
•'f is a loss coefficient associated 

with port velocity w
1 

Experimental results indicate good agree­
ment with eq(6). 

As f Tari es between 1 ( y .?::> b) and o0 (~b) 
the theoretical limite of Fi are 

(7) 

The moat important result for us is that 
F increases with valve lift y for conat. 
~p. The reason is evident: a greater valve 
lift y permits higher mass flow and this 
-according to the momentum theorem- in­
creases the impulsive force Fi. 

The simple model of fig.2 idealizes some­
what real flow conditions in valve channels. 
Nevertheless it is helpful1 to understand 
this simple case in detail, before investi­
gating more complicated devices empiricall~ 

Now le~ us consider channel devises with 
2 x 90 deflection of gas flow. Here we 
cannot calculate F from G due i;o lack of 
jet flow solutions~ So we'use the following 
analogous equation1 incorporating a dimen­
sionless force coeffi~ient c ,to be deter-
mined empirically P 

lli'i = A • .6p.cp (8) 

On the contrary to some other authors "A" 
stands for the seat port~, not for the 
valve plate arealA=K~lR~-R~ ). F~equently 
a so called 11force area Ar" is used instead 
of A. Evidently it is Af= A.cp. The author 
prefers to use A and c as most appropriate 
because these quantities are coherent with 
the above given theoretical background. 

Fig.4 gives values c for a 3-ring plate 
Valve with 2 X 90 ffow deflection,adap1ed 
from measurements published by Frenkel [5]. 
Rein1sch [6j has published experimental 
results :for a 2-ring plate valve which 
show smaller increase in flow force than 
fig.4. In this paper we use the values of 
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fig.4 for :multi-ring valves. 
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FIGURE 4 c :for multi-ring plr-,te valves.[51 p ' .. 

The author has estimated Mach number in­
fluence by comparison of simple compres­
sible and incompressible solutions of jet 
flows and :fin.da, that this influence is 
small, ev8n under sonic out:flow condition. 

VALVE PLATE AS MASS POINT 

Let us first consider the simple contigu­
ration as given in Fig.1. The equation for 
the motion of the valve plate, idealised 
as a mass point, gives 

In this eq. the linear approximation for 
Fi is used as given in appendix. From 
eq(9) :follows 

•• ( A A ) my+ c- 0 ~R0·39 y + Fapr,o = 0 

Using A/b=21 and dividing by ''1" resul ta in 

m1y + (c 1 -0.78~p)y + F 1 = 0 (10) spr,o, 

Fspr,o, 1 stands for the spring preload per 
unit length. For constant pressure diffe­
rence L\p across the valve the general 
solution of eq{10) ia listed in Table 1~ 
next page. The constants A,B,C can be cal­
culRted, if initial conditions of plate 
motion are given. If the solution leads to 
a motion which is not completely within 
the allowed lift y=O to s, repeated reflec­
tions may occur with frequencies higher 
than natural frequency, fig.5. 

The effect of the impulsive force F. is 
twofold: ~ 

elift of steady state equilibrium posi­
tion Yequ of valve plate 



r-----

TABLE 1 Solutions of equation (10) for constant pressure 

Periodic case y = A+ B.ainwt + c.coewt 

Aperiodic case y = A+ B -lOt .e C +W t + • e 

Indifferent case y=A + n.t + c.t 2 

-
~ ·w, C.O= Vii = c1/m1 ; w =V'.£,1-o.za·Llpr 

m1 

¢~lowering of natural i'requency W/l3T 
to w/z.;r of valve plate or inverting 
:pai·iodic to aperiodic case. 

yt 
feq"1l} _ _(:'_ 
·+~ 
J '7#-'00'/.?Yh?A -~ t 

~IGV~ Solution with reflections 

l!'i acts like a. spring with negative stiff-
ness {c 11, "'"-0.78bp). 

·- i ~ 1 
Now let us consider the case, when ...6-p = 
~p(t). Eq(9) could be solved numerically, 
again with the plate considered as a mass 
point. · 

SJ:.E'L:CRG FORGE .lN"D IMPULSIVE FORCE AS LINE-

~ 
LGi; ua leave th~J IDasa point idealisation 
~d. regard a simple strip as a. valve plate 
fi.g.6. ?or this we use distributed loads 
for apring rorce and impulsive force(per 
unit lei~th of channel). If we superimpose 
e. f:!ruall longitudinal tilting disturbance 
un the lift of the strip, the lines repre­
~Bnting load distributions diverge from 
parallel. For amall inclinations we can 
neglect threedimensional effects on flow 
and calculate F1 1 according to eq(5) with 
·tohe local li:.ft ' y, see fig .. G. 

= l. ,c, 

symbol: p 

symbol: A 

symbol: I 

- c I Fi
2 

1 

m, 

differeii.(re llp 

( 11) 

c 
Fi, 1 = I dFi, ,;ay I 

Mre.so 
unstable 

0 1:msidering the moment en the til ted plate 
w& oan see from fig.6, that there are two 
possibili'tiea: the resulting moment acts 
against tlle t.ilting disttll'bance(and is 
~tabilising) or it amplifies the tilting 
(i.e.mot:i.on is unstable). This is expreesd 
by FIGURE 6 Forces on inclined strip 
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* {~.c) >O (aF l motion rea >O c, 
stable Y :dp=const or ~ p=const or c1 (y)> c?.(y,f.p) 2:P > 0.78 

l. 

1 (12)~ 
motion -II <o or 11--<o or -11-< I c, -II- A:J? < 0.78 unstable 

i ~estimation for simple configuration according to fig.1; Fi approximated linearly 

In these formulas c1 and cF 
1,1 

in the case 

of nonlinear spring and impulsive 
stand for 

force 

c, = I aF:;r,1 I = c1 (y); c., oF. 1 ~ i' 1 = 11~· = 

cFi,1(y,.t1p) 

The same conditions for stability apply e­
vidently for ring and multi-ring plate 
valves. The essential criterion is: 

( 13) = 

does rate of increase in spring force 
with valve lift exceed rate of in­

crease in impulsive force or not. 

Now let as make a closer look at stability 
during the opening and closing motion of 
the valve plate. 
Opening 
Fig.? shows a typical curve.1p(t), when 
pressure pulsations in plenum are absent. 

FIGURE 7 Typical curves ~p(t). y(t) 

The plate opens with rapidly increasing 
values ~p(t) and closes with sl~ly de­
creasing values,..d.p(t). So the plate may 
enter unstable conditions during the pro­
cess at a certain value.Llp. Fig.a demon­
strates this for the simple configuration 
due to fig.1 with linear approximated F1-
characteristica. 

189 

stable 

FIGURE 8 

opening y 

stable 

Parameter lines(Fres)~p=const 

The dots mark the instantaneous positions 
along the various parameter lines F 
(for canst. values of t and hence .f!P'~ 
Let us now consider more realistic condit­ions. Fig. 9a shows a typical spring 
characteristic for a spring with bending 
arms. For the impulsive force we use a 
typical characteristic for a multi-ri~ 
plate valve as given by fig.4 and eq(B). 

FIGURE 9 

y 

~~ ;j/® 
o Fspr 

Typical parameter lines 
m'1l ti-ring plate valves 

for 

Fig.9b shows typical parameter lines Fr for an opening process. Dots again ea 
mark instantaneous positions Y- of plate on the corresponding parameter linea. From 
fig.gb it arises that instability can de­
velop half way during opening and be fol­lowed by an end period of stable seat 
parallel motion. In this period tilted 
positions of plate which may have been 
established in previous period will be 



reduced due to high stiffness of spring in 
end period. 

,9,l_oeing 
Here ~P decreases relatively slowly when 
valve plate starts to cloae(see fig.7). 
Fig~"IO gives typical parameter lines for 
lineariaed force characteristics as used 
previously •. 

stalole 
y 

------..... ---'~.U..-.... 

o Fires c 'res 
FIGURE 10 Parameter lines, closing 

Figo11 shows typical situations for multi­
ring valve plates with bending arm springs. 
It can be seen that there ia a broad 
instability region between seat and guard. 

FIGURE 11 

In Table 1 we have introduced symbols P,A, 
I to characterize principal conditions of 
motion. We can refine this procedure by 
adding a second symbol, according to equi­
librium position of characteristic line 
(F1=Fspr-Yequ). Table 2 gives this sym-

bols. 
TABLE 2 Symbols to characterize equilibri­
um position Yequ of parameter lines 

s ••• yequ within valve lif~ 

+ ••• yequ above valve guard 

-···Yequ below valve seat 

Table 3 gives a survey of important cases. 

If one wants to estimate the stability of 
seat parallel motion of a given valvei one 
can proceed as follows: 

-Find spring stiffness c from valve data; 
c may not be constant when aprinB plates 
with bending arms are used: o=c(y; 

- Calculate spring stiffness per unit 
channel length: 

c1 ~ c/1 l •• total length of channel 

For multi-ring plate valves with given 
seat port area A, width 2b. of cha.nnels: 

c1 = c.2b/A 
-Find ~reasure difference across valve 

~p(y) during opening or closing period 
from computer aimulation(with parallel 
motion), measurements, or general ex­
perience or loss coefficient f . 

_.Form quotient c1/Ap=f(y/b) and enter 
diagram for est1mation of stability, 
Table 4· 

The left hand diagram is derived from 
fluid flow theory and merits a good deal 
of confidence. The right hand diagram is 
dei·ived from fig.4 [51. According to other 
sources the curve c (y/b) for multi-ring 
plate valves is mori olat and resembles 
the curve with 1 x 90 deflection flow. 
As configurations in multi-ring valves 
differ considerably, care should be taken 
when drawing more than rough conclusions 
from the diagram at the right of Table 4. 

Diagrams in Table 4 give no values for 
y/b <0.2. Beyond this limit reattachment 
of flow to seat wall will certainly occur 
and this gives stable conditions. 

Current practice in spring dimensioning 
is based on the requirement that the 
plate begins to cloae early enough to 
reach the seat even when pressure diffe­
rences are low. This requirement is abso­
lutely necessary; otherwise volumetric 
efficiency will decrease and plate impact 
velocity become excessively high. So there 
is only a restricted margin to take into 
consideration the additional requirements 
of stability of motion. 

In existing valves one finds usually 

c1 = Oe05 to 0.5 bar 

the higher values for high speed compres­
sors or for high pressures. If one com­
pares this with diagrams in Table 4, one 
would guess that many valves working with 
pressures up to, s~ 10 bar could avoid 
unstable motion. On the contrary high 
pressure valves are likely to work with 
unstable motion conditions.Limiting of 
valve lift to values as small as 0.5mm 
allows small tilting angles in these cases. 

REFEREUCES 

See Part II. 
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TABLE 3 Some basic cases of plate motion with /J,. p = const 

Ps y y 

Y closing 

t 

As possible equi- A-t y librium position 
closing 

s~ 
s 

Fres Fres; t 

TABLE 4 
Diagrams for estimating stability of seat parallel motion (spring force = line load) 

1.6 r---~--,....-------
c.., 
~p 

t 
/t' 

stable 

"' y o~--~~~~~~~~~1 b. 
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APPENDIX 

Infinite slot with 90° deflection flow 

Pressure loss ~p and impulsive force Fi, calculated from potential flow theory 

and momentum theorem [1] 

y •••• valve plate distance from seat edge(if edges 
chamfered, from lower edge!) 

2b ••• width of slot 

2e ••• width of plate 

A •••• port area; A=2b.l; l ••• length of slot 

w1 ••• velocity in slot; w1=V/A, v .. volumetric flow rat 

9••••density of gas 

f .... presaure loss coefficient 

L1p •• preseure difference across valve 

Fi ••• impulsive force 

Fi, 1 .impulsive force per unit of length; ~i, 1 =Fi/1 
cp ••• force coefficient 

d •••• asymptotic width of leaving jet.branch 

Potential flow theory(jet flow) leads to the following equation, which allows to 

calculate d from lift y and from b: 

Provided that deflection angle is 90°(e~ ~ 1.5b), momentum theorem leads to 

I cp = , + t I 
and impulsive force is F1 = A.~p.(1+¥f) = A.~w~(f +1) 

y/b f cp 

0.1 269 1.004 
0.2 68.3 1. 015 
0.3 30.9 1. 032 
0.4 17.8 1.056 
0.5 11.7 1.085 
0.6 8.4 1.12 
0.7 6.44 1.16 
0.8 5.14 1.19 
0.9 4.25 1.24 
1. 0 3.62 1. 28 
1.2 2.78 1. 36 
1.4 2.26 1.44 
1.6 1.92 1.52 
1.8 1.69 1.59 
2.0 1.52 1.66 
2.2 1.40 1.71 

From evaluation of above given equation follows~ 

' Approximation of cp by a linear function: 
\ 

±1 ~::~3~ ~ -'? 
/ ~ 

~ ~
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