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Deformable Part Models with CNN Features

Pierre-André Savalle1, Stavros Tsogkas1,2, George Papandreou3, Iasonas
Kokkinos1,2

1 Ecole Centrale Paris,2 INRIA, 3TTI-Chicago ⋆

Abstract. In this work we report on progress in integrating deep convo-
lutional features with Deformable Part Models (DPMs). We substitute
the Histogram-of-Gradient features of DPMs with Convolutional Neu-
ral Network (CNN) features, obtained from the top-most, fifth, convolu-
tional layer of Krizhevsky’s network [8]. We demonstrate that we thereby
obtain a substantial boost in performance (+14.5 mAP) when compared
to the baseline HOG-based models. This only partially bridges the gap
between DPMs and the currently top-performing R-CNN method of [4],
suggesting that more radical changes to DPMs may be needed.

1 Introduction

The ground-breaking results of deep learning in image classification [8] have been
recently followed with equally dramatic performance improvements for object
detection in the Regions with Convolutional Neural Network (R-CNN) work of
[4], raising by more than 30% the detection accuracy when compared to the
previous state-of-the-art.

In this work we explore to what extent these successes carry over to the
Deformable Part Model paradigm, following in particular the framework layed
out in [3]. By only changing the image representation, we show that the learned
convolutional features yield a substantial improvement in detection performance
with respect to a baseline using Histogram-of-Gradient (HOG) features [1]. This
suggests that CNN features may also be beneficial in other structured prediction
tasks involving DPMs, such as pose estimation [11] or facial landmark localiza-
tion [12]. Our current approach however only partially bridges the performance
gap between DPMs and R-CNNs; we discuss our observations and future research
directions that we believe could reverse this situation.

In Section 2 we describe how we integrate CNN features into DPMs, while
catering for efficiency during the learning and testing stages. In Section 3 we
present results and conclude with a short discussion.

2 Integrating Convolutional Features into DPMs

Motivation and previous work: The deep convolutional network of Krizhevsky
et al. [8] has been the starting point for many recent works on using CNNs for
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image classification or object detection. Its first five layers are convolutional,
consisting of alternating convolution and pooling layers, while the last two lay-
ers are fully connected, as in standard multi-layer perceptrons. Since the network
is designed for image classification (rather than detection), its ability to localize
objects was left unexplored in [8].

A first approach to object localization and detection with this class of models
in the OverFeat system is reported by [9]. They employ a deep network trained
for image classification but apply the last two fully-connected layers in a con-
volutional fashion to produce spatial activation responses for test images larger
than the input images used for training. They jointly train two CNNs: one pre-
dicts the class of the object and another the coordinates of the bounding box
containing it. At test time, they feed the network with all possible windows and
scales of the original images.

Substantial improvements have been obtained by the Regions with CNN fea-

tures (R-CNN) method [4]. They use region proposals [10] to reduce object detec-
tion to image classification. Salient regions are efficiently generated and warped
to a fixed size window, which is then used as input to a CNN. Combining this
idea with a network finetuning stage during training, and a bounding box regres-
sion step for better localization yields a state-of-the-art mean average precision
(mAP) of 58.5% on VOC2007, and of 31.4% on ILSVRC2013. A substantial
acceleration and a (moderate) further improvement in performance has been
achieved in [6] by combining R-CNNs with spatial pyramid pooling.

Combining CNN features with DPMs: The region proposal strategy of
R-CNN only partially captures the complexity of visual objects; in particular, for
tasks such as pose estimation [11] or facial landmark localization [12], one may
still need DPMs to optimize over the relationships between object parts. Using
a sliding window (as in DPMs) can also potentially achieve a better recall than
generic region proposal mechanisms, which may miss certain objects altogether.

A first work in this direction was presented in DenseNet [7], which proposed
to compute a feature pyramid based on the topmost convolutional layers of
Krizhevsky’s network. In order to efficiently obtain a multi-scale representation
the patchwork of scales approach [2] is used. Although [7] demonstrates how
to efficiently compute feature pyramids based on a convolutional network, no
quantitative evaluation on a detection task is provided.

In this work we push this line of work a step further, integrating CNN features
into DPM training and testing. In particular, the standard input of Krizhevsky’s
network consists of a fixed-size, 224 × 224 × 3 patch, which is transformed to
a 13 × 13 × 256 patch at the topmost (fifth) convolutional layer. Rather than
working with fixed-size patches, we provide instead as input to a convolutional
network an arbitrarily-sized image; following [7] we do this for multiple rescaled
versions of the original image, obtaining a multi-scale CNN feature pyramid that
substitutes the HOG feature pyramid typically used in DPMs. The convolutional
network we use has the same architecture as the first five (convolutional) layers
of Krizhevsky’s but uses fine-tuned parameters from [4].
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A major technical challenge is that of making the integration of CNN features
with DPMs computationally efficient. Compared to using HOG features, using
CNN features corresponds to an eight fold increase in the dimension (from 32
to 256), while the DPM framework is already quite computationally expensive.

To achieve efficiency during training we exploit the LDA-based acceleration
to DPM training of [5], using a whitened feature space constructed for CNN
features; this reduces the computation time typically by a factor of four. To
achieve efficiency during convolutions with the part templates (used both during
training and testing), we perform convolutions using the Fast Fourier Transform,
along the lines of [2]. This reduces the convolution cost from typically 12 seconds
per object (using an optimized SSE implementation) to less than 2 seconds.

A factor that turned out to be central to improving detection performance
was the subsampling factor, sub, between the original input and the layer-5
feature representation. For Krizhevsky’s network, sub = 16, meaning that a a
block of 16 × 16 pixels in the input image is represented by a single layer-5
feature vector. As this corresponds to substantially larger bins than the ones
typically used in HOG, we instead oversample our image by a factor of two
before computing features, which effectively leads to sub = 8. We only report
results with sub = 8, as sub = 16 leads to significantly worse APs, while sub = 4
turned out to be computationally prohibitive. We are currently exploring more
efficient variants that incorporate a lower subsampling factor directly during
CNN training rather than trying to make amends post-hoc.

3 Results

Our results are reported in Table 1. We consider two variants of our method: the
first one, C-DPM, combines sliding window detection followed by nonmaximum
suppression; the second one, C-DPM-BB, is augmented with bounding box
regression, using the original bounding box coordinates as input features.

We compare these two variants to the following methods: DPMv5 refers to the
baseline DPM implementation using HOG features and bounding-box regression,
as in [3], while RCNN5, RCNN7, RCNN7-BB correspond to the performance of
(fine-tuned) RCNN using layer 5 features, layer 7 features, or layer 7 features with
an extra bounding box regression based on (richer) CNN features, respectively.

The last rows of the second and third blocks indicate the difference between
the AP achieved by our method and DPMv5 or RCNN5, respectively. To have
comensurate performance measures we compare DPMv5 with our variant that
includes bounding box regression, (C-DPM-BB), and RCNN5, which does not
include bounding box regression, to C-DPM.

From the second block it becomes clear that we significantly improve over
HOG-based DPMs, while employing the exact same training pipeline; this is
indicating the clear boost we obtain simply by changing the low-level image
features.

However the results are not as clear-cut when it comes to comparing with
RCNN. Even when comparing only to RCNN-5, we have a moderate drop in
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Method aero bike bird boat bottle bus car cat chair cow dtbl dog hors mbike person plant sheep sofa train tv mAP

C-DPM 39.7 59.5 35.8 24.8 35.5 53.7 48.6 46.0 29.2 36.8 45.5 42.0 57.7 56.0 37.4 30.1 31.1 50.4 56.1 51.6 43.4

C-DPM-BB 50.9 64.4 43.4 29.8 40.3 56.9 58.6 46.3 33.3 40.5 47.3 43.4 65.2 60.5 42.2 31.4 35.2 54.5 61.6 58.6 48.2

DPMv5 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

C-DPM-BB vs. DPMv5 +17.7 +4.1 +33.2 +13.7 +13.0 +2.6 +0.4 +23.3 +13.3 +16.4 +20.6 +30.7 +7.1 +12.3 -1.0 +19.4 +14.1 +18.4 +15.6 +15.1 +14.5

RCNN7-BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

RCNN7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

RCNN5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3

C-DPM vs. RCNN5 -18.5 -3.8 -2.1 -2.8 +9.4 -0.4 -18.3 -5.4 +2.5 -18.7 +2.1 -1.1 0.0 -3.0 -8.4 +2.0 -19.7 +9.8 +3.0 -4.8 -3.9

Table 1. Results on PASCAL VOC 2007: average precision in percent

performance, while our DPMs are still quite behind RCNN-7. The difference
with respect to RCNN-7 can be attributed to the better discriminative power of
deeper features and could be addressed by incorporating nonlinear classifiers, or
computing all features up to layer 7 in a convolutional manner.

But what we find most intriguing is the difference in performance between
RCNN-5 and C-DPM, since both use the same features. One would expect DPMs
to have better performance (since they do not rely on region proposals, and also
come with many mixtures and deformable parts), but this is not the case. We
suspect that this is because (i) DPMs split the training set into roughly 3 subsets
(for the different aspect ratios/mixtures), effectively reducing by 3 the amount
of training data and (ii) DPMs are somewhat rigid when it comes to the kind of
aspect ratio that they can deal with, (3 fixed ratios) which may be problematic
in the presence of large aspect ratio variatios; by contrast RCNN warps all region
proposals images onto a single canonical scale. We are now working on ways to
mitigate this issue.

To conclude, we have shown that replacing HOG features with CNN fea-
tures yields a substantial improvement in DPM detection performance; given
the widespread use of DPMs in a broad range of structured prediction tasks,
e.g., [11, 12], we anticipate that this will soon become common practice.
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