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THE USE OF FINITE ELEMENT METHOD FOR STRESS ANALYSIS 
OF COMPRESSOR VALVES 

D.N. Lal, Mechanical Engineer 
Carrier Corporation, Research Division 
Carrier Parkway, Syracuse, NY 13221 

Simple static stress and dynamic analyses of a canti
lever type suction valve using easily accessible 
finite element codes SUPERB and ANSYS are described. 
This type of study is shown to be of unique value 
in the preliminary design stages of compressor valves. 

INTRODUCTION 

The valve, suction or discharge, is one of the most 
critical components of a compressor. A flapper valve 
is required to have high flexibility to allow unres
trained fluid passage through the ports for achieving 
high efficiency and capacity of the compressor, but 
at the same time it is also expected to have enough 
stiffness to return back in time to seal the ports 
completely. The motion subjects the valve to severe 
cyclic stresses and strains. To make the situation 
worse, most of the valves have irregular geometry as 
unavoidable design requirements. This increases the 
possibility of localized stress concentration and 
pre~ture failure by fatigue. Consequently, it is 
imperative for the designer to be able to calculate 
or measure static displacements, stresses and strains at all critical points of the valve. Further, he 
also needs to_know the dynamic characteristics 
(natural modes and frequencies) in order to avoid 
resonance conditions and achieve the desired motions. 

An analytical solution of the valve stress problem is 
difficult and cannot promise good accuracy because of the complex geometry and loading situations. The 
recently developed Finite Element Method (FEM) of 
structural analysis (1,2) appears to be a suitable 
technique for achieving the above mentioned goals. The method provides approximate numerical solutions 
of adequate accuracy in many cases for the above 
parameters. The most obvious advantage is that it 
gives stress solutions for all desired locations on 
the valve, and a prior knowledge of critical areas 
is not essential. Furthermore, the analysis can be 
carried out and material and geometrical variables 
studied immediately during the design stage. 

Some specialized programs have been written for determining dynamic stresses in compressor valves (3), but 
these are complicated, may require computer simulation 
of the compressor, and are inaccessible to an average design engineer. The use of general purpose proprie
tary programs is therefore desirable. In this paper, 
the use of SUPERB and ANSYS programs available from 

Structural Dynamics Research Corporation, 5729 
Dragon Way, Cincinnati, Ohio 45227, has been demon
strated for a typical cantilever type leaf suction 
valve. This program is very suitable to valve 
problems because of the availability of isoparametric shell elements. 

THE SUPERB PROGRAM 

The choice of SUPERB over other equally popular 
programs like ANSYS, STARDYNE, NASTRAN, etc., is 
mainly based on the availability of multiply curved 
isoparametric thin shell elements (1,2). These 
elements are superior to conventional elements in 
two significant ways. Firstly, their assumed dis
placement function is of a higher order (primarily 
second and third order) so that linearly or quadrati
cally varying strain fields can be described more 
accurately using fewer elements. Secondly, the real 
element geometry is conformally mapped into a simpler 
geometry for computational convenience, using coor
dinate interpolation functions (also called "shape 
functions") which can also be of a higher order; 
e.g., parabolic (second order) and cubic (third order). This feature allows the use of an element which has curved sides and also curved surfaces, 
thus approximating the true geometry more closely 
with fewer elements, The program allows both static 
and dynamic analyses to be performed on the same 
geometric model with the substitution of a few input 
cards. However, since the SUPERB dynamic capability 
is a new release at this writing, it may have 
several hidden sources of inaccuracy. For compari
son purposes, therefore, the ANSYS program was also used for dynamic analysis. 

STATIC ANALYSIS 

In reality, the valve motion is a dynamic problem 
where different modes, if excited, can interact 
with each other and present a complex stress pattern. 
Nevertheless, for guidance in the preliminary design 
stages as to the maximum displacements and stresses 
produced by the maximum pressure differential applied on the valve, a static finite element analysis can 
be extremely convenient and useful. Once selected 
and generated, the same geometrical model can also 
be used later for the dynamic analysis. 
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Model Geometry 

Figure l shows the outline of a cantilev-er type 
suction valve resting on the valve plate. It is 

clamped along the arc LON and has a support plate S 

underneath. The circles C, D, and E denote the 
overlying fluid port outlines. 

Six local coordinates at positions l to 6 in Figure 
l, were defined for convenient and accurate descrip

tion of most of the curved boundaries. It is seen 

that only 14 elements cover the entire structure. 

It is also worth mentioning that a relatively larger 

number of elements has been used near the deep cutout 

area M, a possible site for stress concentration. 

Nodes 51 and 65 represent the centers of ports D and 

E, respectively. The distributed load or fluid 
pressure was assumed concentrated on these nodes 
directed vertically downwards. As is usually a 
common practice in valv-e design, the crankcase was 

provided with a stop to limit the displacement of 
the valve tip, Node 53, in this case to a maximum of 
0.109 inches (2.77 mm). 

Loads 

Since the actual pressure loads on the valve are un
known, several load steps with increasing magnitude 

e were applied until the valve tip just touched the 

~~r+~ stop. The valve deformation pattern should change 

Figure 1. Suction valve below the valve plate 

Figure 2 shows the finite element model of the valve 
using SUPERB. Taking advantage of one fold symmetry, 
only half of the valve below the horizontal line OB 
needs to be modeled. The finite element mesh was 
created using isoparametric parabolic thin shell 
elements (NSTIF ~ 7)* (4). This shell element allows 

both bending and membrane stresses to exist and is 
defined by nodes on the mid-surface and correspond
ing thicknesses. The parabolic or second order 
elements (one intermediate node on the sides) are 
probably the ideal elements to use because they offer 
all the advantages of isoparametric formulation at a 

moderate cost. The third order or cubic elements 
may offer a slightly better accuracy over the former, 
but the cost becomes too high to justify its usage 
in most applications. It should be further noted 
from Figure 2 that the shape of the elements of the 
valve near the clamped region was selected to follow 
the contours of the support plate S, underneath. 
This configuration enables us to take advantage of 

some of the built-in program features like automatic 

mesh generation and convenient coupling of the dis
placements of ov-erlapping nodes of the valve and the 

support. 

*NSTIF is a computer code name in the SUPERB finite 

element library to identify the available element 

formulations. 
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after this threshold load condition, and a few load 
cases above this threshold were used to reveal any 

changes in the stress distribution. For input in 
the program, the fluid pressure in psi was converted 
to a point load by multiplying with the respective 
area of the port. 

Boundary Conditions 

The clamped edge was fixed in all the six allowed 

degrees of freedom for a node; i.e., the three trans
lations and the three rotations. The cut surface 

along the central line OB was given appropriate 
symmetry conditions. The valve tip, Node 53, was 

left free for loads less than the threshold and 
constrained to 0.109 inches (2.77 mm) for loads 
larger than the threshold. 

The Static Solution 

Figure 3ashows the computer generated geometry plot 
of the model. This feature is useful in checking 
the accuracy of the geometrical part (nodal coor
dinates and elem~ntal connectiyities) of the data 

input. 

The finite element solutions giving the nodal dis

placements and maximum principal stresses are 
probably the most directly usable quantities for the 
designer. These can be computer plotted for conv-en
ience or hand plotted if desired. Figure 4 shows U 

z 

displacement hand plots of the nodes along the upper 
edge of the valve model. The curves are shown for 
three pressures: 5 psi (34.5 KPa), 10 psi (69 KPa), 
and 60 psi (414 KPa), all above the threshold condi
tion. The selected scale is such that the displace
ment curves for 5 psi and 10 psi appear to be 
straight lines, but when magnified 100 times (lower 
curv-es} they reveal the expected non-linearity of 
cantilev-er bending. It sho~d also be noted that 

for loads much beyond the threshold, a doubly curved 

shape with an inflexion point near the major load 
application is expected. This trend shows up clearly 

in the 60 psi (414 KPa) curve with inflexion-point 

near Node 49. 



----~------1.757 -------------4 

0.685 

59 
Figure 2. Finite element model of the valve using the SUPER~ program. 

Figure 3. Computer plotted model geometry, (a) from the SUPERB pro~ram, and (b) from the ANSYS program. 
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Figure 4. Hand plots of z displacements, U
3

, along the length of the valve. 

53 

The U
3 

displacement of a particular location likely 
to show appreciable change after valve tip stoppage can also be plotted as a function of the applied load. Figure 5 is such a plot with z displacement of Node 51. It is seen that although the relationship is linear both before and after the threshold load, the slope changes. This change is expected because of a shift in the mechanics of deformation from a cantilever type beam to one that is fixed at one end and simply supported at the other. It is interesting to note that by plotting this way the threshold pressure, 2.3 psi (15.87 KPa) in this case, can be determined easily and accurately by the intersection point of the two straight lines. 
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Figure 5. The z displacement, U
3

, of Node 51 as a function of the pressure loading. 

The stress solution revealed the peak value of the maximum principal stress to occur at Node 29 for all the load levels applied. This information assures the designer that in the static mode of deformation, 
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the stress concentration due to the deep cutout in 

Region M, Figure 2, is not critical. Figure 6 shows 

-the variation of the maximum stress at Node 29 as a 

function of the pressure load, AP, which is very 

similar to that of the disp,lacement, Figure 5. The 

slope change occurs at exactly the same threshold 

pressure of AP = 2.3 psi (15.87 KPa), as in the 

previous case. 
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Figure 6. The maximum principal stress at Node 29 

as a function of the pressure loading. 

The combination of the actual valve load and the valve 

design (geometry and material) should be such that the 

maximum stress remains below the fatigue limit of the 

valve material. The static or fundamental mode 

analysis is not enough to assure fail safe design or 

indicate performance characteristics of the valve. 

Some higher modes of natural vibration, when excited, 

may shift the critical deformation area to another 

region. In addition, the natural frequencies should 

be known to allow appropriate correlation of the valve 

and crankshaft motions for producing optimum capacity 

and efficiency of the compressor. A dynamic analysis 

is therefore essential. 

DYNAMIC ANALYSIS 

The equations of motion in matrix form for free and 

undamped vibration of a_fini te element model of a 

s}truct ure are given by, (1, 5 ) 

[K] { <5} + [M] { 5} = 0 

~here [K] = the system stiffness matrix 

{ o} "' vector of nodal displacements 

[M] system mass matrix, and 

az 
{ol=av{.s} 

(l) 
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The system stiffness matrix [K] is the same as 

assembled for static analysis. The only new para

meter needed is the ~ass matrix [M]. This is 

obtained by appropriate summation of the el~mental 

mass matrices, [m .. ] of the model, 
lJ 

[M] =En [m.j] = l:nf[N.]T p[N.]dV 
i=l l l v l J 

(2) 

j=l 

where [N. ]T and [N .J are the same "shape functions" 
l J 

as used during the stiffness matrix formulation. 

The T stands for transpose of the matrix. p is the 

mass density of the material, and V indicates inte

gration over the elemental volume. Thus p is a new 

material property input for dynamic analysis. 

If it is assumed that the vibrations are harmonic 

of the form, 

{ o } = { o } Cos wt 
0 

where w is the angular frequency, and t is the time, 

then Equation (2) transforms into a typical:eigen

value problem, 

(3) 

The solution of these equations gives a set of nat

ural frequencies, w , and corresponding vibrational 
n 

modes {o } • Here n equals the total number of 
0 

n 
unconstrained degrees of freedom. 

After reduction to standard eigenvalue form, Equation 

(3) is solved by the Jacobi iteration method. Use 

is also made of matrix condensation or the Guyan 

Reduction technique in which a large structural 

system is characterized by only a small set of 

~ or dynamic degrees £! freedom. The mode 

shape solutions can then be expanded by interpola

tion to the full structural set, and plotted there

after if desired. Both SUPERB (4) and ANSYS (6) 
utilize thesetechniques in their solution process. 

In SUPERB, however, the set of dynamic degrees of 

freedom can either be selected and input directly by 

the user, or selected automatically by the program. 

Since both mass and stiffness matrices have to be 

stored, a dynamic problem can be only about 70% as 

large (in terms of the total active de,grees of 

freedom) as an equivalent static problem. 

SUPERB Modelins; 

The modeling and input o~ a modal analysis problem 

with SUPERB follows the same general pattern as the 

static analysis. If the extraction of onlysymroetric 

modes is sufficient in a given problem, then the 

advantage of symmetry conditions in the modeling may 

be retained, and the same mesh geometry can be used. 

In the present problem, the finite element model was 

the same as shown in Figure 2. The displacements in 

the z direction, U , of selected nodes along the 
z 

valve length comprised the input of 28 dynamic degrees 

of freedom. The natural frequencies and shapes of 

the first five symmetric modes were requested as the 
output. 



ANSYS Modeling 

Since SUPERB dynamic capability with isoparametric 
elements is a very recent release and may have some 
unrecognized problems, it was decided to perform a 
parallel analysis using the ANSYS program (with the 
flat conventional shell element) which has been 
tested and verified for accuracy for a longer period 
of time. This time the full valve geometry was used, 
Figure 7, to extract all the possible modes. It 
should be noted that there are 94 STIF 63* elements 
used with an equivalent of 47- elements for half the 
model as shown beside the SUPERB model in Figure 3, 
for comparison. Note that still the valve boundaries 
are not as accurately represented as in the SUPERB 
model with only 14 elements. This comparison clearly 
demonstrates the superiority of isoparametric elements 
over conventional elements in geometrical modeling. 
There were 78 dynamic degrees of freedom (with an 
equivalent of 39 for half the model) selected. 

Figure 7. Computer geometry plot of the FEM model 
using the ANSYS program. 

~J>Pamic Results 

The results obtained for the first three modes are 
suw~arized in Table I for both SUPERB and ANSYS 
solutions. The comparison shows that the natural 
frequency from the SUPERB model, 228 hz, is about 
twice that from the ANSYS model, 110 hz. It should 
be recognized that the modes and frequencies above 
the first rr~y not correspond with each other due to 
the omission of some non-symmetric modes in the 
SUPERB model, but the fundamental mode should be 

*STIF is a computer code name in the ANSYS finite 
element library to identify the available element 
formulations, 

the same for both. The computer plots of the first 
mode shape from both the SUPERB and ANSYS models 
represented the cantilever type bending accurately. 

TABLE I 

FR~UENCY hz 
MODE SUPERB ANSYS 

1 228.48 109.56 

2 875.2 596.57 

3 1825.7 1084.2 

DISCUSSION 

From simple experiments performed it appears that the 
SUPERB dynamic program does not give very accurate 
results. It has been realized recently that a rela
tively coarser mesh that may prove to be sufficient 
for accurate static analysis, may be too stiff for 
dynamic response, and may give much higher frequen
cies than the true values (7). In our case, the 
ANSYS model (47 elements and 39 dynamic degrees of 
freedom) is definitely a finer mesh compared to the 
SUPERB model (14 elements and 28 d.d.o.f.), but the 
difference in answers is too large. The requirement 
of a finer mesh in SUPERB will necessitate extra 
work in the mesh structure already created for static 
analysis, and force at least a partial loss of the 
advantages derived from isoparametric formulation. 

SUPERB is strictly a linear program but it is adequate 
for performing stress analysis of valves because the 
stresses should always remain within the elastic 
range. In fact, the maximum stress calculated should 
not exceed the fatigue limit of the material. 

The dynamic solution may help in evaluating the 
volumetric performance of a compressor valve. For 
instance, consider the suction valve analyzed in 
this study for use in a 1800 rpm compressor. The 
first mode vibrational frequency of the valve from 
the ANSYS solution is 110 Hz which is approximately 
four times that of the crank motion. This will lead to approximately two cycles of valve opening and 
closing instead of one during the suction half cycle 
of the crank, as illustrated schematically in Figure 8. The valve is closed at the 90° position when it 
is supposed to be wide open. This will result in poor volumetric efficiency of the compressor. This 
example clearly demonstrates the value of the 
dynamic analysis to the valve designer. 

It should be noted that in many cases antisymmetric 
modes of vibration can lead .to critical stressing of 
the valve and therefore these modes should not be 
ignored when considering the dynamic analysis. The 
solution obtained from the ANSYS model in our case, 
includes all the possible modes, symmetric and anti
s~etric, and is more meaningful and valuable to 
the designer. 

Experience had shown that the type of valve analyzed 
is susceptible to fail near Node 39 (location M), 
Figure 2. No such indication is obtained from the 
static analysis which shows the peak stress near 
Node 29. However, if we examine the third vibra-
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tional mode (second cantilever mode) from the ANSYS 
solution shown in Figure 9, we see a node (ze~o 
displacement) N occurring slightly towards the right 
of the critical location M. The flapping of the 
valve with respect to N may lead to breaking stresses 
in that area. The excitation of this damaging third 
mode will be accentuated by the valve tip contact 
with its stop. 

Figure 8. Correspondence of crank motion with the 
valve motion when mode 1 of the valve is excited 
(at 1800). 

Figure 9. The third mode of·natural vibration of 
the valve.ANSYS solution. 

208 

CONCLUSIONS 

(l) With the example of a typical cantilever type 
reed valve, it was demonstrated that the finite 
element method in general, and easily accessible 
SUPERB program in particular, is ideally suited 
for static stress analysis o-f compressor valves. 

(2) The static analysis alone is insufficient in 
describing the valve behavior completely 
because the excitation of many dynamic 
characteristics is possible during the com
pressor operation. Therefore both the static 
and dynamic analyses are required. 

(3) The dynamic analysis with SUPERB may need a 
finer mesh than the static analysis for 
accurate results. 

(4) The experience and knowledge of the actual 
valve function will aid in understanding the 
dynamic analysis. 

(5) The Finite Element Method may appear expensive 
and time consuming in the beginning, but the 
routine use may prove to be the most efficient 
and economical method available for the valve 
stress analysis. 
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