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words using suffix array
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Abstract

Background: An absent word of a word y of length n is a word that does not occur in y. It is aminimal absent word if
all its proper factors occur in y. Minimal absent words have been computed in genomes of organisms from all
domains of life; their computation also provides a fast alternative for measuring approximation in sequence
comparison. There exists anO(n)-time andO(n)-space algorithm for computing all minimal absent words on a
fixed-sized alphabet based on the construction of suffix automata (Crochemore et al., 1998). No implementation of
this algorithm is publicly available. There also exists anO(n2)-time andO(n)-space algorithm for the same problem
based on the construction of suffix arrays (Pinho et al., 2009). An implementation of this algorithm was also provided
by the authors and is currently the fastest available.

Results: Our contribution in this article is twofold: first, we bridge this unpleasant gap by presenting anO(n)-time
andO(n)-space algorithm for computing all minimal absent words based on the construction of suffix arrays; and
second, we provide the respective implementation of this algorithm. Experimental results, using real and synthetic
data, show that this implementation outperforms the one by Pinho et al. The open-source code of our
implementation is freely available at http://github.com/solonas13/maw.

Conclusions: Classical notions for sequence comparison are increasingly being replaced by other similarity measures
that refer to the composition of sequences in terms of their constituent patterns. One such measure is the minimal
absent words. In this article, we present a new linear-time and linear-space algorithm for the computation of minimal
absent words based on the suffix array.

Keywords: Absent words, Minimal absent words, Suffix array

Background
Sequence comparison is an important step in many
important tasks in bioinformatics. It is used in many
applications; from phylogenies reconstruction to the
reconstruction of genomes. Traditional techniques for
measuring approximation in sequence comparison are
based on the notions of distance or of similarity between
sequences; and these are computed through sequence
alignment techniques. An issue with using alignment
techniques is that they are computationally expen-
sive: they require quadratic time in the length of the
sequences. Moreover, in molecular taxonomy and phy-
logeny, for instance, whole-genome alignment proves both
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computationally expensive and hardly significant. These
observations have led to increased research into alignment
free techniques for sequence comparison. A number of
alignment free techniques have been proposed: in [1], a
method based on the computation of the shortest unique
factors of each sequence is proposed; other approaches
estimate the number of mismatches per site based on the
length of exact matches between pairs of sequences [2].
Thus standard notions are gradually being comple-

mented (or even supplanted) by other measures that refer,
implicitly or explicitly, to the composition of sequences
in terms of their constituent patterns. One such measure
is the notion of words absent in a sequence. A word is
an absent word of some sequence if it does not occur in
the sequence. These words represent a type of negative
information: information about what does not occur in
the sequence. Noting the words which do occur in one
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sequence but do not occur in another can be used to
detect mutations or other biologically significant events.
Given a sequence of length n, the number of absent

words of length at most n can be exponential in n, mean-
ing that using all the absent words for sequence com-
parison is more expensive than alignments. However, the
number of certain subsets of absent words is only lin-
ear in n. An absent word of a sequence is a shortest
absent word if all words shorter than it do occur in
the sequence. An O(mn)-time algorithm for computing
shortest absent words was presented in [3], where m is
a user-specified threshold on the length of the short-
est absent words. This was later improved by [4], who
presented an O(n log log n)-time algorithm for the same
problem. This has been further improved and an O(n)-
time algorithm was presented in [5].
A minimal absent word of a sequence is an absent

word whose proper factors all occur in the sequence.
Notice that minimal absent words are a superset of short-
est absent words [6]. An upper bound on the number
of minimal absent words is O(σn) [7,8], where σ is the
size of the alphabet. This suggests that it may be possi-
ble to compare sequences in time proportional to their
lengths, for a fixed-sized alphabet, instead of propor-
tional to the product of their lengths [1]. Theory and
some applications of minimal absent words can be found
in [9].
Recently, there has been a number of biological stud-

ies on the significance of absent words. The most com-
prehensive study on the significance of absent words is
probably [10]; in this, the authors suggest that the deficit
of certain subsets of absent words in vertebrates may
be explained by the hypermutability of the genome. It
was later found in [11] that the compositional biases
observed in [10] for vertebrates are not uniform through-
out different sets of minimal absent words. Moreover,
the analyses in [11] support the hypothesis of the inheri-
tance of minimal absent words through a common ances-
tor, in addition to lineage-specific inheritance, only in
vertebrates. In [12], the minimal absent words in four
human genomes were computed, and it was shown that,
as expected, intra-species variations in minimal absent
words were lower than inter-species variations. Mini-
mal absent words have also been used for phylogenies
reconstruction [13].
From an algorithmic perspective, an O(n)-time and

O(n)-space algorithm for computing all minimal absent
words on a fixed-sized alphabet based on the construc-
tion of suffix automata was presented in [7]. An alternative
O(n)-time solution for finding minimal absent words of
length at most �, such that � = O(1), based on the
construction of tries of bounded-length factors was pre-
sented in [13]. A drawback of these approaches, in prac-
tical terms, is that the construction of suffix automata

(or of tries) may have a large memory footprint. Due
to this, an important problem is to be able to com-
pute the minimal absent words of a sequence without
the use of data structures such as the suffix automa-
ton. To this end, the computation of minimal absent
words based on the construction of suffix arrays was
considered in [6]; although fast in practice, the worst-
case runtime of this algorithm is O(n2). Alternatively,
one could make use of the succinct representations of
the bidirectional BWT, recently presented in [14], to
compute all minimal absent words in time O(n). How-
ever, an implementation of these representations was
not made available by the authors; and it is also rather
unlikely that such an implementation will outperform an
O(n)-time algorithm based on the construction of suffix
arrays.

Our contribution
In this article, we bridge this unpleasant gap by presenting
the first O(n)-time and O(n)-space algorithm for com-
puting all minimal absent words of a sequence of length
n based on the construction of suffix arrays. In addi-
tion, we provide the respective implementation of this
algorithm. This implementation is shown to be more effi-
cient than existing tools, both in terms of speed and
memory.

Methods
Definitions and notation
To provide an overview of our result and algorithm, we
begin with a few definitions. Let y = y[0] y[1] . .y[n− 1] be
a word of length n = |y| over a finite ordered alphabet �

of size σ = |�| = O(1). We denote by y[i. .j]= y[i] . .y[j]
the factor of y that starts at position i and ends at position
j and by ε the empty word, word of length 0. We recall that
a prefix of y is a factor that starts at position 0 (y[0. .j]) and
a suffix is a factor that ends at position n − 1 (y[i. .n − 1]),
and that a factor of y is a proper factor if it is not the empty
word or y itself.
Let x be a word of length 0 < m ≤ n. We say that there

exists an occurrence of x in y, or, more simply, that x occurs
in y, when x is a factor of y. Every occurrence of x can be
characterised by a starting position in y. Thus we say that x
occurs at the starting position i in ywhen x = y[i. .i+m−1].
Opposingly, we say that the word x is an absent word of y
if it does not occur in y. The absent word x, m ≥ 2, of y is
minimal if and only if all its proper factors occur in y.
We denote by SA the suffix array of y, that is the array

of length n of the starting positions of all sorted suffixes
of y, i.e. for all 1 ≤ r < n, we have y[SA[r − 1] . .n − 1]<
y[SA[r] . .n − 1] [15]. Let lcp(r, s) denote the length of the
longest common prefix of the words y[SA[r] . .n − 1] and
y[SA[s] . .n − 1], for all 0 ≤ r, s < n, and 0 otherwise. We



Barton et al. BMC Bioinformatics  (2014) 15:388 Page 3 of 10

Figure 1 k occurrences of a factorw of y; they are preceded by ai and followed by bi . If there exist i, j ∈[1 : k] such that (ai , bj) /∈ {(a1, b1), . . . ,
(ak , bk)} then aiwbj is a minimal absent word of y.

denote by LCP the longest common prefix array of y defined
by LCP[r]= lcp(r− 1, r), for all 1 ≤ r < n, and LCP[0]= 0.
The inverse iSA of the array SA is defined by iSA[SA[r] ]=
r, for all 0 ≤ r < n. SA [16], iSA, and LCP [17] of y can be
computed in time and spaceO(n).
In this article, we consider the following problem:

MINIMALABSENTWORDS
Input: a word y on � of length n
Output: for every minimal absent word x of y, one tuple
< a, (i, j) >, such that x is defined by x[0]= a, a ∈ �, and
x[1. .m − 1]= y[i. .j],m ≥ 2.

AlgorithmMAW
In this section, we present algorithm MAW, an O(n)-time
and O(n)-space algorithm for finding all minimal absent
words in a word of length n using arrays SA and LCP.
We first give an example and explain how we can char-

acterise the minimal absent words; then we introduce how
their computation can be done efficiently by using arrays
SA and LCP. Finally, we present in detail the twomain steps
of the algorithm.
Intuitively, the idea is to look at the occurrences of a

factor w of y and, in particular, at the letters that precede
and follow these occurrences. If we find a couple (a, b),
a, b ∈ �, such that aw and wb occur in y, but awb does
not occur in y, then we can conclude that awb is a minimal
absent word of y. For an illustration inspect Figure 1.
For example, let us consider the word y = AABABABB:

• factor w = AB occurs at:

– position 1 preceded by A and followed by A
– position 3 preceded by B and followed by A
– position 5 preceded by B and followed by B

We see that Aw occurs and wB occurs as well but
AwB does not occur in y, so AABB is a minimal absent
word of y.

• factor w = BA occurs at:

– position 2 preceded by A and followed by B
– position 4 preceded by A and followed by B

We cannot infer a minimal absent word.

Aminimal absent word x[0. .m−1] of a word y[0. .n−1]
is an absent word whose proper factors all occur in y.
Among them, x1 = x[1. .m − 1] and x2 = x[1. .m − 2]=

x1[0. .|x1| − 2] occur in y (inspect Figure 2); we will focus
on these two factors to characterise the minimal absent
words. To do so, we will consider each occurrence of x1
and x2, and construct the sets of letters that occur just
before:
B1(x1)=

{
y[ j − 1] : j is the starting position of an occur-

rence of x1}
B2(x1)=

{
y[ j − 1] : j is the starting position of an occur-

rence of x1[ 0. .|x1| − 2] }.

Lemma 1. Let x and y be two words. Then x is a minimal
absent word of y if and only if x[0] is an element of B2(x1)
and not of B1(x1), with x1 = x[1. .m − 1].

Proof. (⇒) Let x1 be a factor of y, x2 be the longest
proper prefix of x1, and B1(x1) and B2(x1) the sets defined
above. Further let p be a letter that is in B2(x1) but not in
B1(x1). Then, there exists a starting position j of an occur-
rence of x2 such that y[j − 1]= p, so the word px2 occurs
at position j − 1 in y. p is not in B1(x1) so px1 does not
occur in x and is therefore an absent word of y. x1 and px2
are factors of y, so all the proper factors of px1 occur in y,
thus px1 is a minimal absent word of y.
(⇐) Let x[0. .m − 1] be a minimal absent word of y. Its

longest proper prefix x[0. .m − 2]= x[0] x1[0. .|x1| − 2]
occurs in y, so x[ 0] is in B2(x1). Its longest proper suffix,
x1 occurs as well in y, but x = x[0] x1 is an absent word of
y so it does not occur in y and x[0] is not in B1(x1).

Lemma 2. Let x be a minimal absent word of length m
of word y of length n. Then there exists an integer i ∈
[0 : n − 1] such that y[SA[i] . .SA[i]+LCP[i] ]= x1 or
y[SA[i] . .SA[i]+LCP[i + 1] ]= x1, where x1 = x[1. .m − 1].

Proof. Let j be the starting position of an occurrence
of x[0. .m − 2] in y and k the starting position of an

Figure 2 Aword x and its factors x1 = x[1. .m − 1] and
x2 = x1[ 0. .|x1| − 2].
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occurrence of x1 in y. The suffixes y[j + 1. .n − 1] and
y[k. .n − 1] share x2 = x[1. .m − 2] as a common prefix.
As x is an absent word of y, this common prefix can-
not be extended so x2 is the longest common prefix of
those suffixes. By using iSA, the inverse suffix array, we
have lcp(iSA[j + 1] , iSA[k] ) = m − 2. Let us also note
sk = iSA[k] and sj+1 = iSA[ j + 1]. We then have two
possibilities:

• if sk > sj+1: for all s in [sj+1 + 1 : sk], we have
LCP[s]≥ m − 2, with equality holding for at least one
position. Let us define i = max{s ∈[sj+1 + 1 : sk] :
LCP[s]= m − 2 }, the maximality of i implies that
i = sk or lcp(i, sk) > m − 2 and thus, in both cases
y[SA[i] . .SA[i]+LCP[i] ]= x1.

• if sj+1 > sk : for all s in [sk + 1 : sj+1], we have
LCP[s]≥ m − 2, with equality holding for at least one
position. Let us define i = min{s ∈[sk : sj+1 − 1] :
LCP[s + 1]= m − 2 }, the minimality of i implies
i = sk or lcp(sk , i) > m − 2 and thus, in both cases
y[SA[i] . .SA[i]+LCP[i + 1] ]= x1.

For an illustration inspect Figure 3.

By Lemma 2, we can compute all minimal absent
words of y by examining only the factors S2i =
y[SA[i] . .SA[i]+LCP[i] ] and S2i+1 = y[SA[i] . .SA[i]+
LCP[i + 1] ], for all i in [0 : n − 1]. We just need to con-
struct the sets B1(S2i), B2(S2i) and B1(S2i+1), B2(S2i+1),
where B1(Sj) (resp. B2(Sj)) is the set of letters that imme-
diately precede an occurrence of the factor Sj (resp. the
longest proper prefix of Sj), for all j in [0 : 2n − 1]. Then,
by Lemma 1, the difference between B2(Sj) and B1(Sj), for
all j in [0 : 2n − 1], gives us all the minimal absent words
of y.
Thus the important computational step is to compute

these sets of letters efficiently. To do so, we visit twice
arrays SA and LCP using another array denoted by B1
(resp. B2) to store set B1(Sj) (resp. B2(Sj)), for all j in
[0 : 2n − 1]. Both arrays B1 and B2 consist of 2n ele-
ments, where each element is a bit vector of length σ , the

size of the alphabet, corresponding to one bit per alphabet
letter. While iterating over arrays SA and LCP, we main-
tain another array denoted by Interval, such that, at the
end of each iteration i, the �th element of Interval stores
the set of letters we have encountered before the prefix
of length � of y[SA[i] . .n − 1]. Array Interval consists of
maxi∈ [0:n−1]LCP[i]+1 elements, where each element is a
bit vector of length σ .
During the first pass, we visit arrays SA and LCP from top

to bottom. For each i ∈ [0 : n− 1], we store in positions 2i
and 2i+1 of B1 (resp. B2) the set of letters that immediately
precede occurrences of S2i and S2i+1 (resp. their longest
proper prefixes) whose starting positions appear before
position i in SA. During the second pass, we go bottom
up to complete the sets, which are already stored, with
the letters preceding the occurrences whose starting posi-
tions appear after position i in SA. In order to be efficient,
we will maintain a stack structure, denoted by LifoLCP, to
store the LCP values of the factors that are prefixes of the
one we are currently visiting.

Top-down pass
Each iteration of the top-down pass consists of two steps.
In the first step, we visit LifoLCP from the top and for each
LCP value read we set to zero the corresponding element
of Interval; then we remove this value from the stack. We
stop when we reach a value smaller or equal to LCP[i]. We
do this as the corresponding factors are not prefixes of
y[SA[i] . .n − 1], nor will they be prefixes in the remaining
suffixes.We push at most one value onto the stack LifoLCP
per iteration, so, in total, there are n times we will set an
element of Interval to zero. This step requires time and
spaceO(nσ).
For the second step, we update the elements that corre-

spond to factors in the suffix array with an LCP value less
than LCP[i]. To do so, we visit the stack LifoLCP top-down
and, for each LCP value read, we add the letter y[SA[i]−1]
to the corresponding element of Interval until we reach a
value whose element already contains it. This ensures that,
for each value read, the corresponding element of Interval
has no more than σ letters added. As we consider at most

Figure 3 Illustration of Lemma 2.
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n values, this step requires time and space O(nσ). For an
example, see Figure 4.

Bottom-up pass
Intuitively, the idea behind the bottom-up pass is the same
as in the top-down pass except that in this instance, as
we start from the bottom, the suffix y[SA[i] . .n − 1] can
share more than its prefix of length LCP[i] with the pre-
vious suffixes in SA. Therefore we may need the elements
of Interval that correspond to factors with an LCP value
greater than LCP[i] to correctly compute the arrays B1 and
B2. To achieve this, we maintain another stack LifoRem to

copy the values from LifoLCP that are greater than LCP[i].
This extra stack allows us to keep in LifoLCP only values
that are smaller or equal to LCP[i] without losing the addi-
tional information we require to correctly compute B1 and
B2. At the end of the iteration, we will set to zero each ele-
ment corresponding to a value in LifoRem and empty the
stack. Thus to set an element of Interval to zero requires
two operations more than in the first pass. As we consider
at most n values, this step requires time and spaceO(nσ).
Another difference between the top-down and bottom-

up passes is that in order to retain the information com-
puted in the first pass, the second step is performed for
each letter in B1[2i]. As, for each LCP value read, we still
add a letter only if is not already contained in the corre-
sponding element of Interval, no more than σ letters are
added. Thus this step requires time and space O(nσ). For
an example, see Figure 5.
Once we have computed arrays B1 and B2, we need

to compare each element. If there is a difference, by
Lemma 1, we can construct a minimal absent word. For
an example, see Figure 6. To ensure that we can report the
minimal absent words in linear time, we must be able to
report each one in constant time. To achieve this, we can
represent them as a tuple < a, (i, j) >, where for some
word x of length m ≥ 2 that is a minimal absent word of
y, the following holds: x[0]= a and x[1. .m − 1]= y[i. . j].
Note that this representation uniquely identifies a mini-
mal absent word and conversion from this encoding to the
actual minimal absent word is trivial. Lemma 2 ensures us
to be exhaustive. Therefore we obtain the following result.

Theorem 1. Algorithm MAW solves problemMINIMAL-
ABSENTWORDS in time and spaceO(n).

(a) (b)

Figure 4 Top-down pass. (a) Arrays B1 and B2 obtained after the top-down pass for word y = AABABABB; (b) Elements of array Interval at the
end of each iteration of the top-down pass.
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(a) (b)

Figure 5 Bottom-up pass. (a) Arrays B1 and B2 obtained after the bottom-up pass for word y = AABABABB; (b) Elements of array Interval at the
end of each iteration of the bottom-up pass.

Results and discussion
The experiments were conducted on a Desktop PC using
one core of Intel Xeon E5540 CPU at 2.5 GHz and 32GB
of main memory under 64-bit GNU/Linux. All programs
were compiled with gcc version 4.6.3 at optimisation level
3 (-O3). Time and memory measurements were taken
using the GNU/Linux time command.

Implementation
We implemented algorithm MAW as a program to com-
pute all minimal absent words of a given sequence. The
program was implemented in the C programming lan-
guage and developed under GNU/Linux operating sys-
tem. It takes as input arguments a file in (Multi)FASTA
format and the minimal and maximal length of mini-
mal absent words to be outputted; and then produces
a file with all minimal absent words of length within
this range as output. The implementation is distributed
under the GNU General Public License (GPL), and it is

Figure 6Minimal absentwords of word y = AABABABB; we find sevenminimal absentwords {AAA, AABABB, AABB, BAA, BABABA,
BBA, BBB}.
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available at http://github.com/solonas13/maw, which is
set up for maintaining the source code and the man-page
documentation.

Datasets
We considered the genomes of thirteen bacteria and four
case-study eukaryotes (Table 1), all obtained from the
NCBI database (ftp://ftp.ncbi.nih.gov/genomes/).

Correctness
To test the correctness of our implementation, we com-
pared it against the implementation of Pinho et al. [6],
which we denote here by PFG. In particular, we counted
the number of minimal absent words, for lengths 11, 14,
17, and 24, in the genomes of the thirteen bacteria listed
in Table 1. We considered only the 5′ → 3′ DNA strand.

Table 1 Species selected for this work with reference to
the respective abbreviation and identification of genome
sequence data by accession number for bacteria or
genome assembly project for eukaryotes

Species Abbreviation Genome reference

Bacteria

Bacillus anthracis
strain Ames

Ba NC003997

Bacillus subtilis
strain 168

Bs NC000964

Escherichia coli strain K-12
substrain MG1655

Ec NC000913

Haemophilus influenzae
strain Rd KW20

Hi NC000907

Helicobacter pylori
strain 26695

Hp NC000915

Lactobacillus casei
strain BL23

Lc NC010999

Lactococcus lactis
strain Il1403

Ll NC002662

Mycoplasma genitalium
strain G37

Mg NC000908

Staphylococcus aureus
strain N315

Sa NC002745

Streptococcus pneumoniae
strain CGSP14

Sp NC010582

Xanthomonas campestris
strain 8004

Xc NC007086

Eukaryotes

Arabidopsis thaliana
(thale cress)

At AGI release 7.2

Drosophila melanogaster
(fruit fly)

Dm FlyBase release 5

Homo sapiens (human) Hs build 38

Musmusculus (mouse) Mm build 38

Table 2 Number of minimal absent words of lengths 11,
14, 17, and 24 in the genomes of thirteen bacteria

Species Genome size (bp) M11 M14 M17 M24

Ba 5,227,293 1,113,398 1,001,357 32,432 46

Bs 4,214,630 951,273 1,703,309 86,372 226

Ec 4,639,675 1,072,074 1,125,653 36,395 247

Hi 1,830,023 722,860 294,353 12,158 91

Hp 1,667,825 564,308 336,122 19,276 75

Lc 3,079,196 1,126,363 502,861 13,083 246

Ll 2,365,589 764,006 507,490 25,667 183

Mg 1,664,957 246,342 66,324 2,737 28

Sa 2,814,816 755,483 704,147 32,054 138

Sp 2,209,198 904,815 327,713 10,390 234

Xc 5,148,708 804,034 1,746,214 179,346 633

Table 2 depicts the number of minimal absent words in
these sequences. We denote by M11, M14, M17, and M24
the size of the resulting sets of minimal absent words for
lengths 11, 14, 17, and 24 respectively. Identical num-
ber of minimal absent words for these lengths were also
reported by PFG, suggesting that our implementation is
correct.

Efficiency
To evaluate the efficiency of our implementation, we
compared it against the corresponding performance of
PFG, which is currently the fastest available implemen-
tation for computing minimal absent words. Notice that
this evaluation depends heavily on the suffix array con-

Table 3 Elapsed-time comparison of MAW and PFG for
computing all minimal absent words in the genome of
Arabidopsis thaliana andDrosophilamelanogaster

(a) At

Chromosome Size (bp) MAW (s) PFG (s)

1 30,427,671 40.20 51.90

2 19,698,289 25.86 32.94

3 23,459,830 30.84 42.30

4 18,585,056 24.65 31.42

5 26,975,502 35.38 48.91

(b) Dm

Chromosome Size (bp) MAW (s) PFG (s)

2L 23,011,544 30.01 40.85

2R 21,146,708 27.52 38.38

3L 24,543,557 32.00 45.13

3R 27,905,053 36.44 48.36

X 22,422,827 29.38 40.09

http://github.com/solonas13/maw
ftp://ftp.ncbi.nih.gov/genomes/
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Table 4 Elapsed-time comparison of MAW and PFG for
computing all minimal absent words in the genome of
Homo Sapiens andMusmusculus

(a) Hs

Chromosome Size (bp) MAW (s) PFG (s)

1 248,956,422 426.39 972.52

2 242,193,529 423.19 772.89

3 198,295,559 353.60 645.45

4 190,214,555 339.02 616.26

5 181,538,259 342.53 577.05

6 170,805,979 299.72 538.34

7 159,345,973 305.26 491.32

8 145,138,636 254.17 437.18

9 138,394,717 235.14 356.08

10 133,797,422 235.38 392.45

11 135,086,622 236.80 379.15

12 133,275,309 235.14 390.46

13 114,364,328 191.64 269.52

14 107,043,718 178.00 240.93

15 101,991,189 167.89 222.98

16 90,338,345 153.07 198.49

17 83,257,441 144.32 207.02

18 80,373,285 137.68 199.44

19 58,617,616 100.95 126.82

20 64,444,167 109.80 144.83

21 46,709,983 74.60 74.65

22 50,818,468 70.49 73.34

X 156,040,895 275.14 457.2

Y 57,227,415 60.85 62.34

(b) Mm

Chromosome Size (bp) MAW (s) PFG (s)

1 197,195,432 340.59 599.86

2 181,748,087 316.17 578.2

3 159,599,783 274.46 506.73

4 155,630,120 266.67 473.97

5 152,537,259 260.50 424.24

6 149,517,037 256.36 455.11

7 152,524,553 257.65 413.37

8 131,738,871 223.09 344.92

9 124,076,172 210.37 334.25

10 129,993,255 222.36 363.34

11 121,843,856 208.55 324.54

12 121,257,530 205.09 324.79

13 120,284,312 204.80 314.56

14 125,194,864 212.59 336.49

15 103,494,974 175.21 265.92

16 98,319,150 166.10 249.03

Table 4 Elapsed-time comparison of MAW and PFG for
computing all minimal absent words in the genome of
Homo Sapiens andMusmusculus (Continued)

17 95,272,651 160.70 232.79

18 90,772,031 153.40 223.56

19 61,342,430 101.89 125.85

X 166,650,296 282.21 503.98

Y 91,744,698 141.79 251

struction implementation used; and that PFG uses a less
optimised implementation for this construction than the
one used by MAW. We computed all minimal absent
words for each chromosome sequence of the genomes
of the four eukaryotes listed in Table 1. We considered
both the 5′ → 3′ and the 3′ → 5′ DNA strands.
Tables 3 and 4 depict elapsed-time comparisons of MAW
and PFG. We observe that PFG scales mostly linearly.
MAW also scales linearly and is the fastest in all cases.
It accelerates the computations by more than a factor of
2, when the sequence length grows, compared to PFG.
Figure 7 corresponds to the measurements in Table 4: it
plots chromosome sequence length versus elapsed time
for computing all minimal absent words in the genomes
of Homo Sapiens and Mus musculus using MAW and
PFG. MAW also reduces the memory requirements by a
factor of 5 compared to PFG. The maximum allocated
memory (per task) was 6GB for MAW and 30GB for
PFG.
To further evaluate the efficiency of our implementa-

tion, we compared it against the corresponding perfor-
mance of PFG using synthetic data. As basic dataset we
used chromosome 1 of Hs. We created five instances
S1, S2, S3, S4, and S5 of this sequence by randomly
choosing 10%, 20%, 30%, 40%, and 50% of the positions,
respectively, and randomly replacing the corresponding
letters to one of the four letters of the DNA alpha-
bet. We computed all minimal absent words for each
instance. We considered both the 5′ → 3′ and the
3′ → 5′ DNA strands. Table 5 depicts elapsed-time com-
parisons of MAW and PFG. MAW is the fastest in all
cases.

Conclusions
In this article, we presented the firstO(n)-time andO(n)-
space algorithm for computing all minimal absent words
based on the construction of suffix arrays. In addition,
we provided the respective implementation of this algo-
rithm. Experimental results show that this implementa-
tion outperforms existing tools, both in terms of speed
and memory.
In a typical application, one would be interested in

computing minimal absent words in the whole genome



Barton et al. BMC Bioinformatics  (2014) 15:388 Page 9 of 10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5e+07  1e+08  1.5e+08  2e+08

T
im

e 
[s

]

Length [bp]

MAW
PFG

Figure 7 Chromosome sequence length versus elapsed time for computing all minimal absent words in the genomes of Homo Sapiens
andMusmusculus using MAW and PFG.

for a set of species under study [11,12]. Hence, we con-
sider the improvements described in this article to be
of great importance. Our immediate target is twofold:
first, explore the possibility of implementing the pre-
sented algorithm for symmetric multiprocessing systems;
and second, devise and implement a fast space-efficient
solution for this problem based on the construction of
compressed full-text indexes.

Availability and requirements
• Project name: MAW
• Project home page: http://github.com/solonas13/

maw
• Operating system: GNU/Linux
• Programming language: C
• Other requirements: compiler gcc version 4.6.3 or

higher
• License: GNU GPL
• Any restrictions to use by non-academics: licence

needed

Table 5 Elapsed-time comparison of MAW and PFG for
computing all minimal absent words in synthetic data

Sequence Size (bp) MAW (s) PFG (s)

S1 248,956,422 435.63 746.93

S2 248,956,422 438.52 733.69

S3 248,956,422 444.62 726.34

S4 248,956,422 444.06 743.29

S5 248,956,422 449.25 741.01
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