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ABSTRACT 

This paper describes the "Complex" method of 
optimisation applied to a simulation model of a 
compressor. Criteria which may be optimised and 
constraints to be imposed on design parameters are 
discussed. The numerical results obtained during 
a search to optimise valve design for a particular 
compressor are presented. 

INTRODUCTION 

In recent years mathematical models which describe 
compressor behaviour have been developed and the 
extent of their validity assessed. Such models can 
now be used to predict the performance of a partic­
ular compressor design. However, the problem 
remains of selecting values of the many parameters 
involved so that the "best" design is achieved. To 
this end the designer must decide the criteria to be 
optimised and the constraints to be applied. The 
problem, in general terms, is to determine the 
maximum of a nonlinear, multi variable function (the 
objective function) F (x1, x2 •.• , xN), subject 
to non-linear inequality constraints: 

Gi !'!f xi -:!f:Hi> i "" 1 , 2, . . . , M 

where G1 (lower constraints) ""gi (xl, x2, ••. , xN) 
Hi (upper constraints) ""hi Cx:1, x2, ••. , xN) 

The implicit variables xN+l , ••• , xM, which 
may not be required, are dependent functions of the 
explicit independent variables x1 , xz, . • . , xN. 

The choice of optimisation method depends upon the 
nature of the function F (x1 , x 2 , ••• , xN), the 
availability of the partial derivatives oF/~ X!, c F/ox2 , .•• , "'F/oxN and the type of con­
straints encountered. In the present problem partial 
derivatives are not available and the function 
F (x1 , x 2 , •.. , xN) is so complicated that an 
exact expression cannot be found for it. This pre­
cludes analytical methods and gradient techniques. 
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There remain the non gradient direct search "hill­
climbing" methods. These are widely applicable, 
are easy to use, and have received much attention 
during recent years. Perhaps the most promising is 
the Complex method, which can readily handle 
inequality constraints. 

THE COMPLEX METHOD 

The N independent variables are regarded as the 
coordinate directions in an N -dimensional vector 
space. If a value is given to each of the variables 
a point is identified for which the objective function 
may be calculated. If the objective function is 
evaluated at several such points, the values may be 
compared and the point with the worst value moved 
in a way likely to produce an improvement in the 
objective function. If this procedure (with some 
refinements) is repeated a number of times the 
average value of the objective function can be made 
to improve at each step until the design converges 
to the optim urn. This procedure is the basis of the 
Complex method due to Box (l). The method was 
derived from the Simplex method of Spend ley, Hext 
and Himsworth (2) in which the points are chosen 
always to form a regular figure called a simplex: all 
points are equidistant, resulting inN + 1 points in 
an N variable problem. (Simplexes in 2 and 3 
dimensions are a triangle and tetrahedron respect­
ively.) The method is not easily adapted to handling 
constraints. 

In the Complex method, the number of points, K, is 
increased to approximately 2N points which include 
a feasible starting point and K-1 additional points 
generated in a pseudo-random fashion from the con­
straints on the independent variables (the explicit 
constraints): 

Xij = Gi +rij (Hi - Gi) 

i ""1, 2, N 

j = 2' 3' K 

fij are random numbers between 0 and I 



If a point is found which violates the implicit con­
straints it is moved halfway towards the centroid of 
the remaining points (or the points so far calculated 
if this occurs during the formation of the initial 
complex): 

~j (new) = (Xij (old) + Xic)/2 

where the coordinates of the centroid of the remain­
ing points, Xic, are defined by: 

Xic = L ~ 1 [2:. ~ Xij- Xij (old), i = 1, 2, ••. , N 
J=l J 

(2~ LLK, with L = K when an initial valid complex 
has been formed.) 

If an explicit constraint is violated, the offending 
point is moved a small distance b inside the con­
straint. This cannot occur during the formation of 
the initial complex. 

The value of the objective function is calculated for 
each of the points in the complex, and the point 
with the lowest value is rejected. The coordinates 
of the centroid of the remaining points are calculated 
as above and the rejected point is replaced by a new 
point at a certain distance beyond the centroid on the 
line joining the rejected point and the centroid: 

Xij (new) = E (Xic - :>SJ (old)) + Xic 

i=l,Z, ••• ,N 

Box (l) recommended a value of 1.3 for t. This 
amplification factor tends to hasten convergence and 
counteracts the tendency of the complex to collapse 
in constraint corners. The coordinates of the new 
point are checked against the constraints and if the 
point proves to be valid, the objective function is 
calculated. This value is compared with the remain­
ing values for the complex and again the point with 
the lowest value is moved. This process is repeat­
ed until convergence occurs. If a new point con­
tinues to have the lowest value for the objective 
function, it is moved one half the distance towards 
the centroid and retested. This process is repeated 
up to 1:' times after which the centroid is used as 
the new point. If this still fails to yield an improve­
ment, the solution is said to have converged. This 
form of convergence is unusual but could occur 
because the numerical nature of the simulation model 
might cause the computed objective function surface 
to be insufficiently smooth in the vicinity of the 
optimum. Conver·;:.rence is assumed to haveoocurred 
when, for.£!. specified number of consecutive 
iterations,.¥ the objective function at new points 
satisfying all the above conditions lies within a 
specified distance,(J from the best value. 
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THE COMPRESSOR SIMULATION MODEL 

Models of reciprocating compressors have become 
more sophisticated and are capable now of simulat­
ing a complete compressor system. At Strathclyde 
University two models exist, an early model (3) 
based on that by Costagliola (4) and a later model (5) 

capable of simulating the interaction between the 
compressor and its valves with the pipework system 
within which the compressor operates. To demon­
strate the application of the Complex method the 
early model was used, in which the effect of pipe­
work is neglected. This probably reduced computer 
time by a factor of at least 1 0, an important ccnsider­
ation at the development stage since one optimisation 
may require solution of the compressor simulation 
model several hundred times. 

The early model is formulated by the following pairs 
of simultaneous equations: the first and second 
order differentials present are with respect tci 8. The 
compressor cycle described is illustrated in Figure 1. 

For the suction process: 

Gas flow 1.-- , jy'j r--1 
y~ MGi o<.. 'Y l- yl -NV 

Valve dynamics 

qr""i = Ii (l - '\V) - v<. i - :x.i 
For the discharge process: 

Gas flow 
~-1 j X=.!. 

C/J' "" -MGd o( ¢-. ¢ t -l -mp 
Valve dynamics 

q~ ~d = Jd (¢ - 1) - o( d - Ad 
In addition the re-expansion and compression 
processes are described mathematically. 

VALVE DESIGN 

Important limiting factors in valve design are flow 
passage size and valve plate permitted lift. A large 
valve flow area is sought to achieve a high gas 
throughput without incurring excessive gas velocities 
and throttling losses. (Provision of adequate areas 
has become increasingly difficult as advances in 
compressor speed have resulted in smaller compress­
ors for a given throughput of gas.) A higher per­
mitted valve lift may decrease the throttling loss and 
increase the throughput but may be accompanied by 
an increase in valve plate impact velocity. The 
design must conform to acceptable limits for impact 
velocity since valve life is related to this parameter. 
Specifying acceptable values for impact velocity 
remains a problem. 



OPTIMISATION OF VALVE DESIGN 

The objective function is chosen to suit the parti­
cular design problem. The criterion "the greatest 
gas throughput for the least power input" was 
adopted as the objective function in the form 

volumetric efficiency ~------~~~~~~~~~~--------------
valve losses 1 + thermodynamic work input for ideal cycle 

When this objective function is large, the volu­
metric efficiency is high and/or the valve losses 
are low. Then the compressor has a high efficiency 
so .the aim is to maximise this objective function. 

The choice of the independent variables, as with 
the objective function, depends upon the particular 
design problem. Any of the parameters in the 
compressor simulation model which requires an 
input value could be used as an independent variable. 
This would infer a situation which involved some 
3 0 variables, which would be unmanageably large, 
certainly for an initial study. It would also give 
the situation greater dimensionality than it actually 
has as most of the variables appear in the model 
only within lumped parameters which are the coeff­
icients in the pairs of simultaneous equations: it is 
a change in these coefficients rather than in the 
individual variables which affect the solutions 
yielded by the model. 

In the present study the following assumptions were 
made: 

1) the mean operating conditions (l.U, Pi, T1, Pd) 
are fixed 

2) the basic compressor design (s, r, 1, Ap, c) 
is fixed 

3) the empirical coefficients in the model (Cd, CD, 
e) are fixed 

These assumptions leave twelve variables (Av, Ai, 
L, k, h 0 , Wv for suction and discharge valve). The 
problem has been reduced to that of dimensioning 
the valves to maximise the objective function for a 
particular compressor with specified operating 
conditions. The particular single stage air com­
pressor investigated has a cylinder 6 in bore x 4t in 
stroke with suction and discharge valves, each of 
which has a single ring plate backed by three coil 
springs. The speed range was 4 00 - 600 rev/min 
and the discharge pressure was up to 100 lbf/in2. 

At the first attempt to obtain a solution the explicit 
constraints on the independent variables were set 
arbitrarily at some distance on either side of the 
values in the existing design. Only one implicit 
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constraint was applied: namely that the valve port 
areas could not be larger than the respective valve 
plate areas. Convergence to an optimum occurred 
in 110 iterations. The valve lift, port area and 
valve plate area were placed on the upper constraint 
boundaries and the spring preload, spring stiffness 
and valve plate weight were placed on the lower 
constraint boundaries. An increase in volumetric 
efficiency and a decrease in the throttling losses 
were obtained but the computed valu~s for the 
impact velocity became very large. 

The solution was modified by applying an arbitrary 
maximum permissible impact velocity for the plate 
in both the suction and discharge valves. If a 
computed value for impact velocity fell outside the 
limit, the value was subtracted from the objective 
function, thus introducing a penalty for designs with 
impact velocities outside the specified limits. This 
proved effective and resulted in designs in which 
the independent variables were not erroneously 
impeded by the arbitrarily chosen explicit constraints. 

Three sets of results A, B and C are listed in Table l. 
The convergence to the optimum of the objective 
function and of some of the independent variables is 
shown in Figures 2 to 5. The conve:~ence criteria 
were? ~40,£ == .rxo1,(3 == .005 and '1': ~ 5. A plot of 
the points at which new best values were generated 
is given in Figure 2: the points plotted in Figures 3 
to 5 are of mean values·of some of the valve vari­
ables. 

Comparisons between cases A and B illustrate how 
reduction of the upper limits on the acceptable values 
for impact velocity reduced the maximised value of 
the 'Jbjective function. Thevalues of the suction 
valve plate weight, Wvs, in these two designs were 
appreciably different. Since a heavier (thicker) 
valve plate may tolerate a greater impact velocity, a 
better method of incorporating the impact velocity 
limits might be to make the limits a function of the 
valve weight. Case C incorporates this suggestion: 
the limit was specified as: 

L. . _ (impact velocity V ft/s) x Wv 
lmlt - acceptable W v for an impact velocityV ft/ s 

This limit could be easily altered to a functional 
relationship based on the latest theoretical and 
experimental studies on valve impact stressing. 

CONCLUDING COMMENTS 

The Complex method can be used in conjunction with 
a simulation model to optimise a compressor or valve 
design. To assess the validity of the procedure the 
valves in tl-te compressor examined should be mndified 
to the optimised dimensions and the improvement in 
compressor efficiency measured experimentally for 
comparison with that predicted by the analysis. The 
initial study should be extended in a number of 



directions. The sensitivity of the maximised object­

ive function to changes in each independent variable 
could be examined. This would assist in identifying 

suitable manufacturing tolerance for valve components. 

TABLE 1 

Test A 

Velocity limit at stop (suction) (ft/s) 6.0 

Velocity limit at stop (discharge) (ft/s) 10.0 

Objective function (maximum) .86318 

Independent variables (optimum) 

Avs (in2) 5.318 

Ais (in2) 5.310 

Ls (lbf) 0.631 

ks (lb£/in) 0.0322 

hos (in) 0.167 

Wvs (lb) 0,293 

Avd (in2) 1.360 

Aid (in2) 1.331 

Ld (lbf) 0.699 

kd (lbf/in) 2.606 

hod (in) 0.123 

wvd (lb) 0.0655 

vs (ft/s) 4. 635 

Vct (ft/s) 9.751 

Iterations to convergence 212 

Computer time (seconds) 3885 

NOMENCLATURE (Compressor Simulation Model) 

a Acoustic velocity 
A Area of flow in partly open valve 
A0 Area of flow in fully open valve 
Ap Area of piston face 
Av Area of valve face 
c Clearance at inner dead centre 
Cd Coefficient of discharge 
CD Coefficient· of pressure drag 
d (-suffix) Discharge 
e Coefficient of Restitution 
G Lumped dimensionless parameter = 

Gd Ao a/ l.h Ap s 
h Valve lift in partly open valve 
h 0 Maximum permitted valve lift 

(suffix) Inlet 
J Lumped dimensionless parameter= 

CD Ayp/kh0 

k Spring constant 
1 Length of connecting rod 
L Spring load on closed valve 
M Parameter = (s 1( /z) /2/'( - 1 
N Parameter= ( ¥/z) dz/d8 
p 

Pd 

Pi 
p 
q 
r 

Pressure 
Di$charge pressure 

Suction pressure 
(suffix) Piston 
Dimensionless speed ratio = Wfu.rn 
Radius of crank 

s 
s 
T 
v 
v 
Wv 
z 

B 

8.0 

14.0 

.88087 

3. 074 
3. 074 
.0001 
l. 703 
0.190 
.0803 
2.758 
2.758 
0.487 
6.065 
0.137 
0.0655 
6.344 

12.638 

212 

4582 

Piston stroke 
{suffix) Suction 
Temperature 
(suffix) Valve 
Velocity 
Weight of valve 

c 
(W v sf. 04 6) X 6 . 0 

(Wvd/.0552) x 10.0 

.86949 

1.558 
1.558 
.0001 
1.422 
.155 
.0503 
5.153 
4 .161 
0.425 
1 .211 
0.101 
0.162 
5. 724 

16.4 

173 

4000 

Piston position from cylinder cover = 
c + r (1 - cos e +{.fr-) sin 2 8) 
Valve lift ratio= A/Ao = h/ho 
Gas isentropic index 
Crankangle 
Spring parameter= L/kh0 

Valve pressure ratio (discharge)= P/Pd 
Valve pressure ratio (suction) = P/Pi 
Angular speed of crank 
Natural frequency of valve 
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