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A Torque Estimator for a Travelling Wave Ultrasonic Motor -
Application to an Active Claw

Fréd́eric Giraud, Betty SemailMember IEEE

Abstract - Depending on its electrical to mechanical energy
conversion process, the torque on a Travelling Wave Ultrasonic
Motor(TWUM)’s shaft is not directly proportional to a measur-
able electrical variable, such as current or voltage, but is derived
from a complicated process at the stator/rotor interface. The load
torque is thus quite unknown, and this can be a disadvantage
in applications where a torque limitation is required or a torque
measurement is needed. The aim of this article is to come up
with a straightforward torque estimator on a TWUM. For that
purpose, the motor is modelled, this modelling leads to different
estimator strategies. More specifically, we chose a strategy for
which a speed sensor is useless, relying only on the stator’s
resonant behavior. The parameters of the motor needed for the
estimator are measured afterwards while some non linearities
are identified and taken into account. Several experimental trials
are then carried out to check the performance of the estimator.
Finally, a claw actuated by a TWUM is presented, because this
is a typical application where the knowledge of the torque helps
guarantee the safety of the device.

I. I NTRODUCTION

Travelling wave Ultrasonic Motors (TWUM ) exploits a piezoelec-
trically generated flexural wave which propagates at the surface of a
stator. This wave is able to propel by contact a rotor strongly pressed
on the stator. The friction caused by the contact mechanism provides
us with numerous advantages, including: breaking without supply, a
high torque to mass ratio and high torque/low speed characteristics.
Thus, while a speed reducer is often needed with an electromagnetic
motor, it becomes useless in applications usingTWUM , therefore
leading to lightweight and compact applications.

Unfortunately, unlike classical electromagnetic motors, it is very
difficult to exactly obtain the torque operating on aTWUM shaft.
This is due to the different energy conversions and more specifically
to the complications caused by the contact mechanism between the
stator and the rotor. However, for many applications, limiting or
controlling the actuator’s torque is necessary; in fact, when a fault
appears in a system, the torque on the motor’s shaft increases (or
decreases) dramatically, which should be detected by the controller.
While this can be easily done with a DC-motor,TWUM doesn’t offer
this simplicity naturally.

A torque estimator for aTWUM is nonetheless possible to achieve.
For instance, in [1], a possible method is proposed: a neural network
learns off line all the torque-speed characteristics of the motor,
while during operation, the torque is estimatedon line by inverting
the network. This method is based on the characterization of the
stator/rotor contact mechanism; a speed measurement is necessary
and a large number of trials have to be carried out because torque-
speed characteristics are not linear.

In this article, a different torque estimator is proposed. This
estimator doesn’t rely on the mechanical load characteristics, nor
on the stator/rotor contact mechanism, but on the stator parameters.
This estimator relies on a modeling which is described in the first
section of this paper. Then, the torque estimator’s principle is then
developed as well as an experimental approach which is useful when

identifing the modelling parameters. Finally, the accuracy of the
torque estimator is checked on an active claw application, comparing
the estimated torque to the measured one.

II. PRINCIPLE OF THE TORQUE ESTIMATOR

A. Modeling overview

Travelling wave ultrasonic motors are often described using an
electromagnetic equivalent circuit. The resonant behavior is taken
into account by a R-L-C serial branch, while the rotational effect of
a mechanical load attached to the motor is modeled by an equivalent
parallel resistor [2] [3]; sometimes, the value of the capacitance of
the R-L-C branch varies in order to take into account the effect of the
axial force which presses the stator against the rotor. This modeling is
very useful in designing the power electronicsin front of the motor,
but is not satisfactory when describing the energy conversion process;
in fact, this modeling is valid for steady state operations only, and
both the normal and tangential forces are mixed in the circuit.

The next section deals with a modeling we proposed for taking into
account transitory operations [3][4]. This modelling relies on a two
stages decomposition of the stator-rotor contact mechanism. The first
stage, named interaction between stator and an ”ideal” rotor relies on
the assumption of a punctual contact. Punctual means that the stator
is in contact with the ideal rotor at one point only along a wavelength.
Moreover, no sliding is considered between the ideal rotor and the
stator, so both have the same instantaneous speed. The second stage,
named interaction between the real and the ”ideal” rotor aims at
taking into account in a global approach the real contact mechanism
so as to fit the experimental torque-speed characteristics. Although the
real contact mechanism isn’t well described, this modelling has the
advantage to lead to simple equations of which the validity domain
will be checked in chapter III through experimental trials.

On the figure 1, we have represented the travelling wave which
propels the ideal rotor by only one point along a wavelength. In
the fame fixed to the contact point(−→u r,

−→u θ,
−→u z) the travelling

wave propagates toward the right (along−→u θ) although the ideal
rotor moves toward the left (along−−→u θ). We also define the z-axis
about which the motor and the contact point turn. The location of
the contact point is defined by the rotation angleθc, measured from
a fixed frame (O, x, y).

1) Causal modeling in (α, β) frame: The TWUM is composed
of a ring shaped stator on which small piezo-electric elements are
bonded. These elements have alternate polling directions, and are
divided into two groups, named phaseα and phaseβ. These two
phases are supplied by two independent voltages,vα andvβ . Because
of the piezo-electric effect, thefirst energy conversionstage converts
these voltages into the forcesFα andFβ inside the stator with:

Fα = Nvα Fβ = Nvβ (1)

andN the force factor.
These forces bend the stator. And if the excitation frequency of

the two supply voltages is sufficiently close to the resonant frequency
of the stator, two stationary waves appear at the stator surface: the
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Fig. 1. View of the stator; under punctual contact assumption, the rotor is
propelled by one point only along a wavelength.

bending waves, whose height are namedwα and wβ . This second
stageof the energy conversion can be described by the equation (2)

mẅα + dsẇα + cwα = Fα − Frα

mẅβ + dsẇβ + cwβ = Fβ − Frβ

(2)

with

• m the vibrating mass of the stator,
• c the vibrating stiffness of the stator,
• ds the damping coefficient.

In this equation,Frα andFrβ have been added to take into account
the effect of external forces on the wave propagation. Their expression
which depends onFN (the force pressing the rotor against the stator
along the axis of the motor) andF ′

T (the tangential force deriving
from the load torqueT ) is quite difficult to determine, and strongly
depends on the contact condition at the stator-rotor interface [5][6].
However, in the ideal case of a punctual contact condition, these
forces are simply expressed using the location of the contact point
θc, and the well known rotational matrix, usually used in the study
of electromagnetic machines. This calculation has been developed
in [4], and derives from power balance of the system:
(

Frα

Frβ

)

= R(kθc)

(

FN

F ′
T

)

R(θ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(3)
with

F ′
T = k

h

b2
T (4)

And

• h the thickness of the stator
• b the radius of the rotor
• k = 2πb

λ
with λ the wavelength of the excited mode.

The contact points are located at the travelling wave’s crest. It can
be shown that they are situated at an angle given bywα and wβ

using the expression shown in (5)

kθc = atan

(

wβ

wα

)

(5)

This can be summarized by figure 2; in this figure, we defineW
, a time varying vector, which co-ordinates arewα andwβ . And in
the same way,vα andvβ are projections of a time varying vectorV
on axisα and β. In this figure, a(d, q) frame appears, but will be
explained further.

Moreover, as it can be seen in figure (1), the contact point speed
which propels the rotor, has two components:
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Fig. 2. Voltage vectorV and Wave vectorW in (α, β) frame.

• VNid along the axis of the motor, lifts up the rotor to enable
the propagation of the travelling wave. During steady state, this
speed is null.

• V ′
Tid in the tangential direction , from which the rotational speed

of the rotorωid derives.

A kinetic study of the vibrating stator shows then that the expres-
sion of those speeds can be written usingẇαβ and R(kθc) once
again:

(

VNid

V ′
Tid

)

= R(−kθc)

(

ẇβ

ẇα

)

(6)

The rotational speed of the ideal rotorωid and V ′
Tid is given by

equation (7)[2]:

ωid = k
h

b2
V ′

Tid (7)

However, the speedωid does not actually correspond to the
rotor speed, because the contact conditions observed at the stator-
rotor interface are very different from those of the ideal contact
conditions: in fact, because of friction, the actual rotational speed
ω of the rotor decreases with the load torqueT . Several models
([6][7][8]) exist to describe this behavior, but they are too complex
to be taken into account in a control scheme. In order to achieve a
straightforward modelling which may be useful for actuator control, a
linear modelling for the global behavior of the motor can be proposed
based on experimental results. This isthe third energy conversion,
given by equation (8) and (9).

T = f0 (ωid − ω) (8)

FN = KN

∫

(VNid − VN ) (9)

Of course, this process is very non linear, and the value of the pa-
rametersf0 andKN should vary as a function of the operating point.
However, we find here the key variables governing the evolution of
the motor torque: the amplitude of the travelling wave, becauseωid

derives using it, and the rotational speed of the rotor itself. This
roughly outlines the torque estimator described in [9] from the speed
and the stator’s deformation measurements.

In addition, the dynamic of the rotor, along the two degrees of
freedom, leads to lay down two other equations:

mr
dVNid

dt
= FN − Fτ (10)

Jr
dω

dt
= T − Tr (11)

Where:

• mr and Jr are respectively the mass and rotational inertia of
the rotor,

• Tr is the external load torque applied on the rotor,
• Fτ is the normal force pressing the rotor against the stator.

Finally, all these equations yield a modeling which can be repre-
sented by way of a Causal Ordering Graph as shown in figure 3. In
this diagram we see the internal variables of the system, the ellipses
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represent the equations using integral relations (single arrow) or
independent time relations (double arrow) only. The relations named
Rx are refereed to the equation number(x) in the paper. This method
is helpful in deducing the control scheme all it requires is a simple
inversion of the graph.
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Fig. 3. Causal ordering graph of theTWUM .

The graph in figure (3) is divided into four parts, each one
represents one energy conversion process or the dynamic of the rotor.
Moreover, it shows the couplings of the motors:

• the two independent voltage linesα andβ are coupledvia the
rotational matrix,

• the two external forcesFN andF ′
T are mixed andFrα andFrβ

act on the travelling wave.

These couplings make global comprehension of the system difficult.
This is why in the next section we try to remove them by taking
advantage of the experience of the modelling of the electromagnetic
AC machines.

2) Causal modelling in a rotating reference frame:the two
rotational matrices, on the stationary waves (eq. 6) and on the
forces (eq. 3), lead to setting down two new variablesVd and Vq.
As it is for the electromagnetic machines where current or voltages
are expressed in a rotating reference frame fixed to the rotating
electromagnetic field,Vd and Vq represent the supply voltages in
a rotating reference frame fixed to the rotating travelling wave. So,
this leads us to set down:

(

vα

vβ

)

= R(kθc)

(

Vd

Vq

)

(12)

So, according to the figure 2,Vd and Vq are the coordinates of
the voltage vectorV in the rotating frame(d, q). Using Vd and
Vq, equations 2, 3, 6, are revised to produce two new equations
respectively ond axis andq axis respectively, where the couplings
are removed:

mV̇ ′
Nid + dsV ′

Nid + (c − mk(θ̇c)
2)

∫

V ′
Niddt = NVd − F ′

N (13)

2mV̇ ′
Tid + dsV ′

Tid = NVq − F ′
T (14)

In fact, in equation (14), the variables of the tangential axis appear
only on the q axis, though equation (13) shows that the normal
variables only appear on thed axis. This equation is of second order
type, and completely describes the resonant behavior of the motor.

Figure (4) shows the Causal Ordering Graph of the actuator in the
rotating reference frame, reduced to theq axis as it deals with the
torque.

Thanks to this graph’s inversion, it is easy to deduce the torque
control of the piezo-actuator [3]; however, in this paper, we focus
our attention on the torque estimator, which is what the next section
deals with.
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Fig. 4. Causal ordering graph of the TWUM in the rotating reference frame;
axis q only.

B. The torque estimator

The principle of a torque estimator is outlined by inverting the
Causal ordering graph of the figure 4. There are thus three different
paths, as summarized figure 5:

• 1- from relation (11). This is difficult because both the load
inertia and the load torqueTr should be known,

• 2- from relation (8) and the measurements of bothω and ωid

as proposed by [9]; this estimator needs the identification of the
parameterf0,

• 3- from relation (14) and the measurements ofVq andV ′
Tid.
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Fig. 5. The three different ways to estimate the torqueT can be deduced
from the inversion of the COG.

In order to avoid a speed sensor, the torque estimator will rely
on equation 14. However, inverting this equation is not straight-
forward, because of the derivative term2mV̇ ′

Tid, which should be
approximated. A closed loop estimator could then be proposed, whose
output would converge toward the solution. But considering a high
performing estimator is required especially in the case of steady state
operations – or slow variations ofV ′

Tid, the problematic term2mV̇ ′
Tid

is deleted in equation (14):

dsV ′
Tid = NVq − F ′

T (15)

Finally, using equations 4 in 15 leads to

T =
b2

kh

[

NVq − dsV
′

Tid

]

(16)

Achieving the torque estimator.

III. E XPERIMENTAL SETUP

A. The experimental test bench

1) MeasuringVq: The TWUM used during the test is a Shinsei
USR30 [10]. This motor has a30mm diameter and can provide a
rated torque of0.1Nm for a rated speed of200rev/min. It is a
commercial product and thus is readily available. On the stator of this
motor, an extra electrode is glued to the ring of piezo material. Due
to the direct piezo-electrical conversion, the voltage measured on this
sensor, namedvEA, is directly proportional to the deformation of the
stator at this point. Unfortunately, this deformation is a combination
of wα and wβ : thus it is difficult to buildθc from the equation (5)
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becausewα and wβ are not measured independently. In that case,
measuringVq from Vα, Vβ and (12) is impossible.

This leads us to set down the assumption that the amplitude of the
two stationary waves are sinusoidal functions of time in quadrature,
so:

wα(t) = Wcos(2πft)

wβ(t) = Wsin(2πft)
(17)

With f the frequency of the supply voltages andW the travelling
wave’s amplitude.

In order for this assumption to be fulfilled the construction of
the must be sufficiently careful as to ensure a good positioning of
the stator’s electrodes on the piezo ring, thus avoiding dissymmetry
between the two phases. However, this condition is often achieved in
the Shinsei USR30 when it is supplied by two sinusoidal voltages in
quadrature with the same amplitude:

vα(t) = V cos(2πft + Ψ)

vβ(t) = V sin(2πft + Ψ)
(18)

with V the amplitude of supply voltages, andΨ, the phase difference
betweenvα(t) andwα(t). On the experimental test bench,V is kept
constant, thoughf varies.

On the one hand, the equations (5) and (17) yield to:

θc = atan
Wsin(2πft)

Wcos(2πft)

= 2πft

(19)

On the other hand, if we consider the location of the sensor,vEA

is in fact proportional toK(wα +wβ), with K the conversion factor
of the auxiliary electrode. This consideration yields to:

vEA = K(Wsin(2πft) + Wcos(2πft))

= K

√
2

2
Wcos(2πft +

π

4
)

(20)

In conclusion, from equations (19), (12) and (20),θc is equal to
the instantaneous phase of the sensor’s voltagevEA minus π

4
.

The considerations of equations (19) and (12) yields:
(

Vd

Vq

)

= R(−2πft)

(

V cos(2πft + Ψ)
V sin(2πft + Ψ)

)

=

(

V cos(Ψ)
V sin(Ψ)

)

(21)

So, Vq may be deduced by:

Vq = V sin(Ψ) (22)

and Ψ can be measured from the phase difference betweenvα and
vEA, which is experimentally achieved thanks to an integrated chip.

2) Measuring V ′
Tid: to complete the identification ofT from

equation (16), it is necessary to knowV ′
Tid, but however this is an

internal variable. It may be calculated thanks to equation (6), and
from the measurement oḟwα and ẇβ . Once again, to reach these
values, we use the previous assumption which leads to equation (17)

ẇα(t) = Ẇ cos(2πft) + (2πf)Wsin(2πft)

ẇβ(t) = Ẇsin(2πft) + (2πf)Wcos(2πft)
(23)

Of course, in order to obtain the equation (23) we need to consider
that the excitation frequencyf is kept constant. This is not rigorously
correct during transitory operations. But the stator of a TWUM is a
mechanical resonator,f is chosen very close to its resonant frequency
and thus considered constant.

Using equations (23), (19) and the rotational matrix (6) now yield:

V ′
Tid = −ẇαsin(2πft) + ẇβcos(2πft)

=
(

−Ẇ cos(2πft) + (2πf)Wsin(2πft)
)

sin(2πft)

+
(

Ẇsin(2πft) + (2πf)Wcos(2πft)
)

cos(2πft)

= (2πf)W (sin2(2πft) + cos2(2πft))

= (2πf)W

(24)

Therefore,V ′
Tid is proportional to the travelling wave’s amplitude.

If we now take equation 20 into account,W can be deduced by
extracting fromvEA its own amplitude named̂VEA. V ′

Tid is given
by:

V ′
Tid = (2πf)

1

K
√

2

2

V̂EA (25)

Since the different state variables of the torque estimator can
be measured, the next section deals with the identification of the
parameters appearing in the equation 16.

B. Measurement of the stator parameters

Several methods have been proposed to identify stator parame-
ters [11]. Most of them rely on theelectrical equivalent circuit, and
the parameters are found by fitting the curve of the variation in the
frequency of the current into a phase with a2nd order type equation.
However, this approach has several drawbacks among which there
is the difficulty, firstly of precisely detecting the stator’s resonance
- because a small variation of the frequency leads to a greater
variation of the current when approaching the resonance frequency
- and secondly of carrying out an identification of the effect of the
tangential forces.

This is why we proposed an other method [4]. This approach relies
on a Vq control detailed in [3] which allows easy characterisation
of the resonant frequency and avoidance of couplings between the
normal and tangential axes. The identification process is divided into
two steps:

• identification ofds

• identification ofk h

b2

1) Identification ofds: For an unloaded motor which has reached
its steady state, the travelling wave’s amplitudeW derives from the
equation 16 whereT is set to0. In these conditions:

ds2πfW = NVq (26)

Due to the experimental test bench, and equation (22),Ψ is in fact
tuned instead ofVq, and this equation is transformed into:

ds2πfW = NV sin(Ψ) (27)

Identifying ds can then be achieved by keepingV constant; plotting
the evolution ofW againstΨ should result in a sinusoidal shape,
whose crest gives the ratio N

ds2πf
.

However, this method is quite sensitive to non linearities which
induce variations ofds with W [12]. This is why, instead ofV , W
is kept constant. So, for each value ofΨ, V is tuned in order to have
W equal to a value we fixed before.

A closed loop including aVoltage Controlled oscillatorcontrols
the voltage frequencyf so as to have the required value forΨ. This
angle is measured by using a phase detector (figure 6); the controlled
scheme has been previously described in [3].

We then plot the evolution ofW
V

againstΨ. The experimental
trials, for each rotational direction and several wave amplitude, are
given in figure 7. Table I summarizes the values ofds identified from
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Fig. 6. Closed loop for the control ofΨ.
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TABLE I
IDENTIFIED VALUES OF THE PARAMETERds FOR EACH ROTATIONAL

DIRECTION.

W(µm) 0.65 0.74 0.82 0.95 1.05
ds(N.s.m−1) , CW 54.6 46.5 38.2 30.6 26.1

ds(N.s.m−1) , CCW 56.3 49.74 38.2 29.7 24.9

this method.
It appears thatds depends more on the operating wave amplitude

W and less on the rotational direction. In order to take into account
this non linearity in the torque estimator, we are led to representing
in figure 8 the evolution ofds in W , or rather in 1

W
because this

results in a linear shape.
Equation 28 then fits this curve:

ds = −ds0 +
ρ

W
(28)

The values ofds0 andρ are obtained from the figure 8:
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ds0 = 19.2N.s.m−1 ρ = 47.8.10−6N.s

So, taking into account the non-linearity ofds, the torque estimator
can be achieved by merging the equations 16, 23 and 28:

(−ds0 +
ρ

W
)2πfW = NVq − k

h

b2
T

−ds02πfW + 2πfρ = NVq − k
h

b2
T

ds02πfW = 2πfρ + k
h

b2
T − NVq

(29)

In this equation, the global parameterk h

b2
is still to be calculated.

This next section deals with this calculation.
2) Identification of k h

b2
: The identification of this parameter

derives once again from equation (16). But now,T will vary and
Vq is adjusted to keepW constant. So, the evolution ofVq in T
should be a straight line whose slope isk h

Nb2
. We have represented in

figure 9 the result curves for several values ofW and both rotational
directions.

The results show that the experimental trials and the modelling are
consistent, since the curves are nearly straight. However, the slope
of these lines depends on the level of the stator’s deformationW
and also on the direction of rotation. These variations reveal non-
linearities in the modelling; in fact, they express the limits of this
modelling, and more specifically the limit imposed by the assumption
that there is only one contact point. This is why, an average value
of k h

b2
is then calculated from the trials, and the slope of the curves

drawn on figure 9.
So, the averaged slope of all those lines is480NmV −1 yielding:

k
h

b2
= 67.2m−1

The value of this parameter has to be compared to the one calcu-
lated from an analytical approach. In fact, considering the geometrical
dimensions of the motor under study, kh/b can be evaluated to 107m-
1. The gap between these two estimated values can be first explained
by the difficulty to estimate the parameter h, that characterizes the
neutral plane location. Secondly, this result may be induced by
the modelling assumptions, in particular, the punctual contact one.
Nevertheless, the approach leads to a modelling structure that we are
able to identify and which agrees with the torque characteristics in a
given validity domain. n

C. Experimental tries

Different trials have been carried out to illustrate the performance
of this torque estimator. The first measurements shown in figure 10
depict the evolution of the estimated load torque and the measured
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Fig. 9. Vq as a function ofT and comparison a straight line.

load torque for both rotational directions. During this trial, the stator
wave’s amplitude was kept constant while the load torqueT was time
varying.

The second measurement of figure 11 shows the evolution of
the measured load torque compared to its estimation whenW was
time varying. Both rotational directions are depicted, though motor
operation (T > 0 and ω > 0, or T < 0 and ω < 0) and brake
operation (T < 0 and ω > 0, or T > 0 and ω < 0) were here
experienced.

Considering that the torque estimator is quite straightforward, the
estimated load torque is found to be consistent with the measurements
of the experimental trials of figures 11 and 10.

Estimation errors can however be measured on figure 11, revealing
that the estimation depends onW . More obviously, errors are
amplified for braking operations while they are acceptable for other
conditions. This is mainly due to the averaged value ofk h

b2
we

had to use in equation 29 and which is a tradeoff between all the
values identified for all the operating points of the chapter III-B.
Performances of the estimator could then be improved by taking into
account the variation ofk h

b2
in W , but this would be achieved at the

expense of complexity. Despite this problem, applications can take
advantage of this torque estimator, and this is dealt with in the next
section.

IV. A PPLICATION: LIMITING THE TIGHTENING FORCE OFTWUM
ACTUATED CLAW

A. Working principle of a claw

Because of torque vs speed characteristics, Travelling Wave Ul-
trasonic Motors are very suitable for applications which need a low
speed but a high torque. In this field of applications, the electrically

actuated claws are devices which are widely used, for example at the
end of a robot arm to allow object prehension.

Different controls of the claw can be achieved. The first control
type is a position control of the actuator of the claw between an
opened position till the closed position. This is well suited for objects
which all have the same dimensions. But if variable objects of random
sizes have to be picked up, the larger objects are held extremely tight,
while the smallest ones are not even caught (figure 12).

This is why, instead of having a claw position control, a force
limitation is preferred. In this operating mode, the claw closes up at
a constant speed until the force at the claw ’s tip reaches a limited
value.

This last control method is quite easy to achieve with electromag-
netic motors, because the torque is proportional to the supply current
which is often controlled, and can thus be limited. But those motors
have high speed characteristics, so they need a speed reducer in order
to adapt the output speed of the shaft to the desired speed of the claw
when closing. This increases the system’s bulk and its cost.

In this application, a TWUM is interesting, because it can be
directly mounted on the claw since its low-speed characteristic is
well adapted to the system. The torque estimator developed in this
article is implemented to ensure the limitation of the tightening force.
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Fig. 12. Effect of a controlled position claw when the object is sufficiently
big, and in the case where it is too small.

The algorithm for the closing will be as follows:

• 1 wait for the starting signal
• 2 close with a constant speed. During this step,W is kept

constant, and the torque is estimated on line
• 3 stop the motor (setW to 0) when the torque estimator has

reached a value previously fixed.

The next section presents the experimental runs of the claw
actuated by a TWUM, with its torque limitation. from now on the
limited value of the estimated torque will be referred to asTlim

B. Experimental runs

The claw fixed on the TWUM’s shaft is depicted in figure 13.
Several objects with different sizes can be positioned, and for each
run, the internal variable of the motor can be recorded. Thus, figure
14 depicts the evolution ofVq (measured withψ), the motor rotational
angle, the measured and estimated torque and finally the wave
amplitudeW - which is also controlled. These curves are obtained
with Tlim = 0.05Nm. The cycle begins att = 0 with the starting
signal; a wave amplitude reference of about1µm is ordered, and the
claw closes. The estimated torque as well as the measured one are
initially null, but at t = 50ms they both start to increase because the
claw is in contact with the object to be grasped. Consequently,Vq

increases in accordance equation (29), sinceW is kept constant.
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Fig. 10. Comparison between the actual load torque and the estimator’s output for a constant travelling wave’s amplitude.
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Fig. 11. Measurement and estimation of the load torque for a time varying wave amplitude.

At t = 85ms, the estimated torque reaches the limitation: a
reference value ofW of 0µm is ordered which is obtained in almost
10ms. During this short time, the torque actually applied to the claw
can be a little larger due to the time the wave amplitude needs to
become null. Then the torque estimator is switched off because the
very low wave amplitude leads to erroneous estimated torque values.

So, the claw stops its grasping action when it meets an object. This
contact is detected through an increasing in the motor’s torque, which
is estimated on line. Of course, the force with which the object is
taken depends on the value ofTlim. In figure 15, we have drawn the
evolution of the estimated and the measured torque for several values
of Tlim. This run shows that it is possible to limit the tightening force

of the claw by tuning the value ofTlim.1

We must emphasize here that the control presented is not a torque
regulation, but a torque limitation. In fact, when the motor is stopped,
the force on the claw ’s tips can change due to external conditions.
A torque regulation implies that the torque keeps a constant value,
even at null speed, this could be achieved with an improvement of
the torque estimator at low wave amplitude. However, a limitation is
enough in applications in which the objects are inanimate.

1The measured torque is actually about0.04Nm above the estimated one.
This gap is due to the inertia of the torque sensor which creates a torque when
the motor is breaking(Jt = 10−5kgm2). Better results should be obtained
for a claw directly mounted on the motor’s shaft.
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V. CONCLUSION

In this article, we have presented a method to achieve a torque esti-
mator for a TWUM. This estimator relies on the causal modelling of
the motor which helps to deduce the estimator’s equation. Compared
to the torque estimators which rely on the torque/speed characteristics
of the motor, we emphasize that the estimator presented here doesn’t
need the measurement of the rotational speed of the motor, this allows
to removal of the speed sensor, and the measurements have confirmed
the global structure of the modelling.

Experimental trials have been carried out to check the perfor-
mances of the estimator along a wide range of operations, for time
varying torque and for time varying speed of the motor. Results have
been consistent with the measurements, but we highlighted that any
non-linearities could reduce confidence in the estimation.

Although all the questions related to the precision of the estimated
torque – especially for operations whereW is varying – are still
open, the estimator is tested on an application in the final section.
We use a claw actuated by a TWUM. Several trials have shown that
the device runs well, and we have shown that the tightening force of
the claw can be tuned by adjusting the limited value of the estimated
torque.

Future work should increase the precision of this torque estimator,
more specifically at low rotational speeds, to allow sensorless torque
regulators. This implies the control of voltages phases leading to the
loss of quadrature. A new modelling should be introduced to take
into account this voltage supply.
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[1] J.Maas, T.Schulte, N.Fröhleke. Model based control for ultrasonic
motors. IEEE trans. on Ultrasonics, Ferroelectrics and Frequency
control, 5:165–180, june 2000.

[2] Toshiiku Sashida, Takashi Kenjo.An introduction to Ultrasonic Motors.
Clarendon Press, 1993.

[3] F.Giraud, B.Semail, J.-T.Audren. Analysis and phase control of a piezo
electric travelling wave ultrasonic motor for haptic stick application.
IEEE trans. on Industry applications, 40:1541–1549, nov-dec 1997.

[4] F.Giraud, B.Lemaire-Semail. Causal modeling and identification of a
travelling wave ultrasonic motor.European Physical Journal of Applied
Physics, 21:151–159, february 2003.

[5] W. Hagood IV, A.J. McFarland. Modeling of a piezoelectric rotary
ultrasonic motor.IEEE Transactions on ultrasonics, ferroelectrics and
frequency control, 42(2), march 1995.
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