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Abstract.— Despite an increasingly vast literature on cophylogenetic reconstructions for

studying host-parasite associations, understanding the common evolutionary history of

such systems remains a problem that is far from being solved. Most algorithms for

host-parasite reconciliation use an event-based model, where the events include in general

(a subset of) cospeciation, duplication, loss, and host switch. All known parsimonious



event-based methods then assign a cost to each type of event in order to find a

reconstruction of minimum cost. The main problem with this approach is that the cost of

the events strongly influences the reconciliation obtained. Some earlier approaches attempt

to avoid this problem by finding a Pareto set of solutions and hence by considering event

costs under some minimisation constraints.

To deal with this problem, we developed an algorithm, called Coala, for estimating

the frequency of the events based on an approximate Bayesian computation approach. The

benefits of this method are twofold: (1) it provides more confidence in the set of costs to be

used in a reconciliation, and (2) it allows estimation of the frequency of the events in cases

where the dataset consists of trees with a large number of taxa.

We evaluate our method on simulated and on biological datasets. We show that in

both cases, for the same pair of host and parasite trees, different sets of frequencies for the

events lead to equally probable solutions. Moreover, often these solutions differ greatly in

terms of the number of inferred events. It appears crucial to take this into account before

attempting any further biological interpretation of such reconciliations. More generally, we

also show that the set of frequencies can vary widely depending on the input host and

parasite trees. Indiscriminately applying a standard vector of costs may thus not be a good

strategy.

(Keywords: cophylogeny, host/parasite systems, likelihood-free inference, approximate

Bayesian computation.)

Cophylogeny is the reconstruction of ancient relationships among ecologically linked



groups of organisms from their phylogenetic information. The study of host-parasite

systems has a long history and has been already well addressed in the literature (Page

1994b; Huelsenbeck et al. 1997; Charleston 1998; Paterson and Banks 2001; Merkle and

Middendorf 2005; Conow et al. 2010, for example). It also has broad applications

throughout biology. For instance, the same mathematical model can be applied to

gene-species associations (Hallett and Lagergren 2001; Doyon et al. 2011a,b; Tofigh et al.

2011; Bansal et al. 2012). Hence, any single method for host/parasite associations that is

developed could be applicable to both situations. Lately indeed, there have been attempts

to introduce a general framework that incorporates all existing models (Wieseke et al.

2013).

Our work is particularly focused on reconstructing the coevolutionary history of

host-parasite systems. Specifically, we are given a host tree H, a parasite tree P , and a

function ϕ mapping the leaves of P to the leaves of H. In general, four main

macro-evolutionary events are assumed to be recovered: (a) cospeciation, when the parasite

diverges in correspondence to the divergence of a host species; (b) duplication, when the

parasite diverges “without the stimulus of host speciation” (Paterson and Banks 2001); (c)

host-switching, when a parasite switches, or jumps from one host species to another

independent of any host divergence; and (d) loss, which can describe three different and

undistinguishable situations: (i) speciation of the host species independently of the

parasite, which then follows just one of the new host species due to factors such as, for

instance, geographical isolation; (ii) cospeciation of host and parasite, followed by

extinction of one of the new parasite species and; (iii) same as (ii) with failure to detect the

parasite in one of the two new host species. These events are depicted in Figure 1.

A parsimonious solution for reconciling the phylogenetic trees for hosts on one side,

and parasites on the other, simply assigns a cost to each of the four types of events and

then seeks to minimise the total cost of the mapping. If host switches are forbidden, exact



solutions can be found in time linear in the size of the trees (Goodman et al. 1979; Page

1994a; Mirkin et al. 1995; Guigó et al. 1996, for example). If timing information is

available, e.g. if we happen to know the order in which speciation events occurred in the

host phylogeny, then any proposed reconciliation must also respect the temporal

constraints imposed by the available timing information. Host switches are thus restricted

to occur only between co-existing species. When co-existence relationships are known for

all host species, the reconciliation problem can again easily be solved using dynamic

programming, this time polynomially in the size of the trees (Libeskind-Hadas and

Charleston 2009; Conow et al. 2010; Drinkwater and Charleston 2014). However, when

timing information is not available, the difficulty of separating between compatible and

incompatible switches makes the reconciliation problem NP-hard (Ovadia et al. 2011;

Tofigh et al. 2011). A number of algorithms have been developed that allow for solutions

that are biologically unfeasible, that is, solutions where some of the switches induce a

contradictory timing ordering for the internal vertices of the host tree (Doyon et al. 2011c).

In this case, the algorithms are able to generate optimal solutions in polynomial time. For

the fastest existing ones, see for example Bansal et al. (2012).

Clearly in all situations, the choice for the cost values is crucial in the solution(s)

found. Indeed, arbitrarily choosing a cost vector may lead to solutions where the events in

the optimal solutions do not necessary reflect the reality (Charleston 2003, for example,

describes a study on the distribution of the events in optimal reconciliations). From a

biological point of view, reasonable cost values for an event-based reconciliation are not

easily chosen. It is also natural to think that the frequency of the events is not constant

across datasets. Thus, different pairs of host/parasite phylogenies might be associated with

different cost events. Moreover, our results show that for the same pair of host and parasite

trees, different reconciliations – in the sense of presenting a different set of frequencies for

the events – may constitute equally probable solutions. It is thus crucial to take this into



account before attempting any further biological interpretation of such reconciliations.

Some approaches (Charleston 2012; Libeskind-Hadas et al. 2014) attempt to choose

the costs of the events by adopting some minimisation constraints and by focusing on

Pareto optimal solutions. As indicated in Ronquist (2003), if each event is associated with

a cost that is inversely related to its likelihood (the more likely is the event, the smaller its

cost), then the most parsimonious reconstruction will also, in some sense, be the most

likely explanation of the observed data. Likelihood-based approaches should in general be

preferred to parsimony-based methods as they remove the subjective step of cost parameter

choice and rely instead on a simultaneous inference of parameter values and events. Some

work has been done along these lines, for instance in testing for coevolution (Huelsenbeck

et al. 1997, 2000). This however excluded duplications and tended to over-estimate the

number of host switches. Instead, in Szöllősi et al. (2013) all four types of events are

considered, but the method was developed with the objective of reconstructing a species

tree starting from multiple gene trees. The aim is similar in Arvestad et al. (2003) but the

type of approach is different and the model again incomplete as in Huelsenbeck et al.

(1997, 2000), this time not allowing for host switches. The likelihood approach adopted in

(Huelsenbeck et al. 1997, 2000; Szöllősi et al. 2013) moreover presents the inconvenience of

being computationally intensive.

The huge space of possible solutions is also an issue, for instance, in population

genetics for reconstructing the evolutionary history of a set of individuals. Since the early

work of Pritchard et al. (1999), the literature from this domain has seen classical Monte

Carlo methods and their variants being replaced by Approximate Bayesian Computation

(ABC), a set of more efficient statistical techniques (Beaumont et al. 2002). In complex

models, likelihood calculation is often unfeasible or computationally prohibitive. ABC

methods, also called likelihood-free inference methods, bypass this issue while remaining

statistically well-founded. For more details, we refer to the review of Marin et al. (2012) as



well as the convergence results in Fearnhead and Prangle (2012).

Following these ideas, we developed an algorithm, called Coala (Coala stands for

“COevolution Assessment by a Likelihood-free Approach”, and is also the Portuguese

spelling for Koala, the arboreal herbivorous marsupial native to Australia), for estimating

the frequency of the events based on a likelihood-free approach. Given a pair of “known”

host and parasite trees and a prior probability distribution associated with the events,

Coala simulates the temporal evolution of a set of species (the parasites) following the

evolution of another set (the hosts) as represented by the latter’s known phylogenetic tree.

In this way, it generates under different parameter values a number of simulated

multi-labelled parasite trees which are then compared to the known parasite tree. The

ABC principle is to keep the parameter values (event probabilities) giving rise to parasite

trees that are “close” to the known one. The output of the algorithm is then a distribution

on such parameter values that is a surrogate of the posterior probability for the events

which would best explain the observed data.

To the best of our knowledge, the only other method that might be compared to

ours is the parameter adaptive approach CoRe-Pa (Merkle et al. 2010). In this case, the

space of cost vectors is explored either by sampling such vectors at random assuming a

uniform distribution model or by using a more sophisticated approach, the so-called

Nelder-Mead simplex method (Nelder and Mead 1965). The first appears to be the option

by default in CoRe-Pa. In both cases, the function to minimise is the difference between

the probabilities directly computed from the cost vector chosen and the actual relative

frequencies observed during the reconstruction using such vector. This choice may appear

somewhat circular as one would expect that, since reconstruction is driven by the cost

vector, the frequency of the events thus reconstructed not only would, but indeed should

agree with it.



Method

General framework

The method we propose relies on an approximate Bayesian computation (ABC).

This belongs to a family of likelihood-free Bayesian inference algorithms that attempt to

estimate posterior densities for problems where the likelihood is unknown a priori. Given a

set of observed data D0 and starting with a prior distribution π on the parameter space Θ

of the model, the objective is to estimate the parameter values θ ∈ Θ that could lead to the

observed data using a Bayesian framework. More precisely, the Bayesian paradigm consists

in finding the posterior given D0 defined as:

p(θ|D0) =
p(D0|θ)π(θ)

p(D0)
.

If the likelihood function p(D0|θ) cannot be derived, then a likelihood-free

approximation can be used to estimate this posterior distribution and thus the parameter

values. In general, a likelihood-free computation involves a chain of parameter proposals

and only accepts a set of parameter values on condition that the model with these values

generates data that satisfy a performance criterion with respect to the observed data

(Sisson et al. 2007, 2009). Strict acceptance (or inversely rejection) is based on whether the

generated data DS perfectly matches the observed data D0. In cases where the probability

of perfectly matching the data is very small, a tolerance d(Ds, D0) ≤ ε is adopted to relax

the rejection policy, where d is a distance measure. In either case, this is called the fitting

criterion. Note that this fitting criterion often relies only on a summary statistic instead of

the full datasets DS and D0. Moreover, for complex models where the prior and posterior

densities are believed to be sufficiently different, the acceptance rate is very low and then



the use of a likelihood-free Sequential Monte Carlo (SMC) search that involves many

iterations leads to a more appropriate strategy. SMC is also preferred among other possible

methods as it is flexible, easy to implement, parallelisable and applicable to general

settings (Del Moral et al. 2012).

The ABC-SMC algorithms approximate the posterior distribution by using a large

set of randomly chosen parameter values. Over sufficiently many iterations and under

suitable conditions, the stationary distribution of the Markov chain will approach the

distribution of p(θ|d(DS, D0) ≤ ε), which will converge to the posterior density p(θ|D0) if

the statistics used to compare the generated data with the real one are sufficient and ε is

small enough. In our case, the observed data are a pair of host and parasite trees, denoted

by H and P respectively, and a list of associations between parasite and host leaves. The

parameter vector of the model is composed of the probabilities of each one of four events

corresponding to respectively: speciation of the parasite together with a speciation of its

host (called cospeciation); speciation of the parasite without concomittant speciation of the

host (called duplication); switch (also known as jump) of the parasite to another host

(called host switch, which is further assumed to be without loss on the original host); and

speciation of the host without concomitant speciation of the parasite, and thus loss of the

parasite for one of the new host species (called loss). We thus have that θ stands for a

vector of four probabilities 〈pc, pd, ps, pl〉. Note that each node in the host tree either

matches a node in the parasite tree or represents a loss, giving rise to the four possible

events. For this reason, the parameter θ is constrained such that pc + pd + ps + pl = 1 (see

Section “Parasite tree generation algorithm” for more details).

Starting from the host and respecting the probabilities of the events specified in a

given parameter vector θi, we generate M parasite trees, where M ≥ 1.

Once a parasite tree P̃ is thus simulated, it can be compared to the real parasite

tree P by computing a distance between the two. For a given parameter vector θi, we can



then produce a distance summary of the generated trees, and use this as a criterion in the

ABC rejection method. The latter selects the parameter vector(s) that approximate the

observed data within a given tolerance threshold.

The ABC-SMC procedure allows us to refine the list of accepted probability vectors

by sampling a vector θi, introducing a small perturbation to it to produce a vector θ′i, and

then collecting a new distance summary for θ′i.

The list of vectors output in the final step of the algorithm defines the posterior

distribution of the coevolutionary event probabilities for the given pair H and P . Table 1

shows a summary of the notation used throughout this work.

Parasite tree generation algorithm

The Duplication-Transfer-Loss (DTL) model.— To simulate the coevolutionary history of

the two input phylogenies, we rely on the event-based model presented in Tofigh et al.

(2011), and later further analysed in Bansal et al. (2012).

A rooted phylogenetic tree is a leaf-labelled tree that models the evolution of a set

of taxa from their most recent common ancestor (placed at the root). The internal vertices

of the tree correspond to the speciation events. The tree is rooted so a direction is

intrinsically assumed that corresponds to the direction of increasing evolutionary time.

Henceforth, by a phylogenetic tree T , we mean a rooted tree with labelled leaves where

every vertex has in-degree 1 and out-degree 2 except for the leaves, which have out-degree

0. For such a tree T , the set of vertices is denoted by V (T ), the set of arcs by A(T ), and

the set of leaves by L(T ). The root of T is denoted by r(T ). Given an arc

a = (v, w) ∈ A(T ), going from v to w, we call its head, denoted by h(a), the vertex w and

its tail, denoted by t(a), the vertex v. For a vertex v ∈ V (T ), we define the set of

descendants of v, denoted by Des(v), as the set of vertices in the subtree of T rooted at v



(including v). Similarly, the set of ancestors of v, denoted by Anc(v), is the set of vertices

in the unique path from the root of T to v (including the end points). For a vertex

v ∈ V (T ) different from the root, we call its parent, denoted by par(v), the vertex x for

which there is the arc (x, v) ∈ A(T ). We denote by mrca(v, w) the most recent common

ancestor of v, w in T . Finally, we denote by ≥ the partial order induced by the ancestry

relation in the tree. Formally, for x, y ∈ V (T ), we say that x ≥ y if x ∈ Anc(y). If neither

x ∈ Anc(y) nor y ∈ Anc(x), the vertices are said to be incomparable.

Let H,P be the phylogenetic trees for the host and parasite species respectively. We

define ϕ as a function from the leaves of P to the leaves of H that represents the

association between currently living host species and parasites. These associations are part

of the input of our algorithm, together with the trees themselves. In our model, we allow

each parasite to be related to one and only one host, while a host can be related to zero,

one, or more than one parasite. More formally, ϕ is thus a function which needs not be

surjective nor injective.

A reconciliation γ is a function γ : V (P )→ V (H) that is an extension of ϕ. In

particular γ partitions the set V (P ) into three sets Σ, ∆, and Γ which correspond to the

vertices of P associated with, respectively, cospeciations, duplications, and host switches.

The reconciliation γ also defines a subset Ξ of A(P ) which corresponds to the arcs

associated with host switches.

Given a reconciliation γ, the following holds (Tofigh et al. 2011; Charleston 2002):

1. For any p ∈ L(P ), γ(p) = ϕ(p) (γ extends ϕ).

2. For any internal vertex p ∈ V (P )− L(P ) with children p1 and p2:

(a) mrca(γ(p), γ(pi)) ≥ γ(pi), for i = 1, 2 (a child cannot be mapped to an ancestor

of the parent).



(b) mrca(γ(p), γ(p1)) = γ(p) or mrca(γ(p), γ(p2))) = γ(p) (one of the two children is

mapped to the subtree rooted at the parent).

3. For any (p1, p2) ∈ Ξ⇔ mrca(γ(p1), γ(p2)) 6∈ {γ(p1), γ(p2)} (the arc (p1, p2) is an arc

denoting a host switch).

4. For any p ∈ V (P )− L(P ) with children p1 and p2:

(a) p ∈ Γ⇔ (p, p1) ∈ Ξ or (p, p2) ∈ Ξ (p is associated with a host switch).

(b) p ∈ ∆⇔ mrca(γ(p1), γ(p2)) ∈ {γ(p1), γ(p2)} (the children are mapped to

comparable vertices and p is associated with a duplication event).

(c) p ∈ Σ⇔ mrca(γ(p1), γ(p2)) = γ(p) and γ(p1) and γ(p2) are incomparable (p is

associated with a cospeciation event).

The losses are identified by a multi-set (generalisation of a set where the elements

are allowed to appear more than once) Λ whose elements are in V (H) containing all the

vertices h ∈ V (H) that are in the path between the image of a vertex p ∈ V (P ) and the

image of one of its children. The images themselves are not included in the count, except

for the duplication event, where one of the images is included.

The triple S = 〈H,P, γ〉 is said to be a reconciliation. Given a vector 〈cc, cd, cs, cl〉 of

non-negative real values that correspond to the cost of each type of event, the cost of a

reconciliation is equal to cc|Σ|+ cd|∆|+ cs|Γ|+ cl|Λ|.

Finally, a reconciliation is said to be acyclic or time feasible if there exists a total

order on V (H) ∪ V (P ) that is consistent with the two partial orders induced by H and P

and respects all temporal constraints imposed by both tree topologies and by the set of

host switch events. For a detailed definition of a time-feasible scenario, we refer to Stolzer

et al. (2012).



Evolution of parasites.— The evolution of the parasites is simulated by following the

evolution of the hosts traversing the phylogenetic tree H from the root to the leaves, and

progressively constructing the phylogenetic tree for the parasites. During this process, a

single parasite vertex can be in two different states: mapped or unmapped. At the moment

of its creation, a new vertex v is unmapped and is assigned a temporary position on an arc

a of the host tree H. We denote this position by 〈v, a〉. From this position, we can decide

to map v to a vertex w of H (all coevolutionary events except for loss), or, in the case of a

loss, to move v to another position. In the first case, v is always mapped to the vertex h(a)

that is the head of the arc a. We denote this mapping by [v : w] with w = h(a).

Since in all three non-loss cases (cospeciation, duplication, and host switch), the

parasite is supposed to speciate and two children are created for v, denoted by v1 and v2.

Their positioning along arcs of the host then depends on which of the three events took

place. In the case of a loss, no child for v is created (at this step) since there is no parasite

speciation, and v is just moved to one of the two arcs outgoing from h(a) chosen randomly.

Notice however that, in order to avoid confusing a loss with another event (for instance, a

cospeciation), some precautions must be taken, as explained more specifically in the next

paragraph concerning the simulation of a loss event.

These choices, together with the general framework for our parasite tree generation

method, are provided next.

Starting the generation.— The generation of the simulated parasite tree P̃ starts with the

creation of its root vertex P̃root. This vertex is positioned before the root of H on the arc

a = (ρ,Hroot). This allows the simulation of events that happened in the parasite tree

before the most recent common ancestor of all host species in H. Figure 2 a) depicts this

initial configuration.

The evolutionary events.— For any vertex v of P̃ that is not yet mapped and whose



position is 〈v, a〉 (Fig. 2 b)), we choose to apply one among the four allowed operations,

depending on the probability of each event. In what follows, we denote by a1, a2 the arcs

outgoing from the head h(a) of the arc a.

• Cospeciation (Fig. 2 c)): We apply the mapping [v : h(a)] and we create the vertices

v1 and v2 as children of v. We position them as follows: 〈v1, a1〉 and 〈v2, a2〉. This

operation is executed with probability pc.

• Duplication (Fig. 2 d)): We apply the mapping [v : h(a)] and we create the vertices

v1 and v2 as children of v. Both v1 and v2 are positioned on a. This operation is

executed with probability pd.

• Host switch (Fig. 2 e)): We apply the mapping [v : h(a)] and we create the vertices v1

and v2 as children of v. We then randomly choose one of the two children and

position it on a. Finally, we randomly choose an arc a′ that does not violate the time

feasibility of the reconstruction so far (Stolzer et al. 2012). If such an arc does not

exist, it is not possible for a host switch to take place. In this case, we choose between

the three remaining events with probability pi/(pc + pd + pl) with i ∈ {c, d, l}.

Otherwise, we position v2 on a′. This operation is executed with probability ps.

• Loss (Fig. 2 f)): This operation is executed with probability pl and consists of

randomly choosing an arc outgoing from the head h(a) of a and positioning v on it.

Observe that we are considering only losses resulting from lineage sorting. It would

be interesting to incorporate extinction or failure to detect infection but this would

require the addition of new parameters, thus making the model more complex to

analyse. However, if v was created by a duplication event and is being processed for

the first time, we have to verify if its sibling vertex v′ was already processed and also

suffered a loss. In this case, v must be positioned on the same arc a′ where v′ was



positioned. This procedure is adopted to avoid later mappings where a duplication

followed by two losses would be confused with a cospeciation.

We also assume that no evolutionary event takes place whenever a leaf of H is

reached. This means that, if v is positioned on an arc incoming to a leaf, then v is mapped

to the leaf and no further operation is executed. Hence, the generation of P̃ terminates

when all the created vertices are mapped (i.e. have reached a leaf of the host tree). Finally,

the leaves of the parasite tree P̃ are labelled according to their mapping to the leaves of the

host tree. Observe that as more than one parasite can be mapped to the same host, P̃ is a

multi-labelled tree (that is, trees whose leaf labels need not be unique). Finally, some

combinations of host switches can introduce an incompatibility due to the temporal

constraints imposed by the host and parasite trees, as well as by the reconciliation itself.

During the generation of the parasite tree, we always allow only for host switches that do

not violate the time-feasibility constraints. For the criteria enabling to assess

time-feasibility, we refer to Stolzer et al. (2012).

Note that in this model, we do not use information about edge lengths. This is a

positive aspect of the method in the sense that branch lengths are not always easy to

determine with accuracy. In contrast, we cannot simulate the “null events” (parasite doing

nothing in the host tree). Moreover, for now, we do not simulate “failure to diverge” which

describes a situation where a host speciates while the parasite does not but continues to

inhabit both of the two new species of hosts. Despite the importance of this event,

mathematically speaking it is not clear how to include it in the cophylogenetic

reconciliation model since we have to allow the association of a parasite to multiple hosts.

The ideas presented by Drinkwater and Charleston (2014) for the improvement of node

mapping algorithms may help on the simulation of the “failure to diverge” event in future

work.

Since the simulation model is restricted to the events of cospeciation, duplication,



host switch, and loss, the probabilities of these four events sum up to one.

Cophylogeny parameter estimation algorithm

Prior distribution π.— The parameter θ = 〈pc, pd, ps, pl〉 lives in the simplex S3 (the p’s are

positive and sum to one). It is then standard to sample θ from a Dirichlet distribution

which is a family of continuous multivariate probability distributions parameterised by a

vector α of positive real numbers that determine the shape of the distribution (Gelman

et al. 2003).

In our simulations, we adopt a uniform Dirichlet distribution (namely

α = (1, 1, 1, 1)) that corresponds to sampling uniformly from the simplex S3. This is often

used when there is no previous knowledge favouring one component (e.g. coevolutionary

event) of θ over another. However, the method we implemented allows the user to specify

other prior distributions when such knowledge is available.

Choice of summary statistic and fitting criterion.— The ABC inference method is based on

the choice of a summary statistic that describes the data while performing a dimension

reduction task. The latter is used to evaluate the quality of agreement (similarity) between

the simulated datasets (the generated parasite trees) and the observed (the real parasite

tree). In our case, the summary statistic will be based on the measured distances between

the generated parasite trees and the real one.

The distance of each simulated tree to the real parasite tree is therefore informative

about the quality of the vector that generated it. Hence, the distance that will be used

must take into account: (i) how well does the simulated tree represent the set of trees

generated by a given vector, and (ii) how topologically similar is the simulated tree to the

real parasite tree.



Concerning the first point, the intuition is as follows. In our model, when generating

a parasite tree, the expected frequency of an event should be close to the corresponding

probability value of the parameter vector used to generate the tree. To this purpose, for a

given vector θ = 〈pc, pd, ps, pl〉 and for each simulated tree Pθ that was generated according

to this vector, we kept track of the number of events obs = 〈oc, od, os, ol〉 associated with

this simulation. We compared the observed number of events to the expected

exp = 〈ec, ed, es, el〉. Observe that the expected number of events can be easily calculated

using the size of the parasite tree P and the vector θ. A tree is a good representative if the

observed number of events is near to the expected. More formally, for a real parasite tree

P , a vector θ = 〈pc, pd, ps, pl〉, and a simulated parasite tree Pθ for which the observed

number of events are obs = 〈oc, od, os, ol〉, we define a measure D1(P, Pθ) as follows:

D1(P, Pθ) =
1

4
×

∑
i∈{c,d,s,l}

|ei − oi|
max{ei, oi}

.

As concerns point (ii), we use a metric for comparing phylogenetic trees. There is a

wide literature on distances for phylogenetic trees (Felsenstein 2003). Our choice was

driven by the need to have one that can be computed efficiently and accurately.

Unfortunately, many of the distances used in biology are also NP-hard to compute

(Waterman and Smith 1978; Hein 1990; Baroni et al. 2005), whereas some of the fastest,

like for instance, the Robinson-Foulds distance (Robinson and Foulds 1981) which can be

calculated in linear time (Day 1985), are poorly distributed and thus not good enough

discriminators (Steel and Penny 1993; Bryant and Steel 2009). Moreover, many

efficient-to-compute distances are not robust to small changes (such as in the position of a

single leaf) in one of the two trees.

Recall that in our method the leaves of the parasite tree P̃ are labelled according to

their mapping to the leaves of the host tree and that more than one parasite can be mapped



to the same host. Hence, we are interested in distances between multi-labelled trees.

In our context, the distance that best meets the requirement of efficiency and

accuracy appears for now to be the maximum agreement area cladogram (MAAC)

(Ganapathy et al. 2006). This is a generalisation for multi-labelled trees of the well-known

maximum agreement subtree (Finden and Gordon 1985; Farach-Colton et al. 1995) and it

corresponds to the number of leaves in the largest isomorphic subtree that is common to

two (multi-labelled) trees. Clearly this isomorphism takes into account the labels of the

trees. The MAAC distance can be calculated in O(n2) time where n is the size of the

largest input tree (Ganapathy et al. 2006).

We use a normalised version of MAAC that takes into account also the number of

leaves in common between the two trees. More formally, for two trees P and P ′ with leaf

sets L(P ) and L(P ′) respectively, we define the measure D2(P, P
′) as follows:

D2(P, P
′) =


1− MAAC(P, P ′)

|L(P ) ∩ L(P ′)|
if L(P ) ∩ L(P ′) 6= ∅

1 otherwise.

Observe that the intersection operation involves multi-sets. We recall that a

multi-set is a generalisation of a set where the elements are allowed to appear more than

once, hence the operations take into account their multiplicity in the following way: if the

multiplicity of an element e in a multi-set A is given by [e](A), then [e](A ∩B) is given by

min{[e](A), [e](B)}.

Finally, we propose a distance that is based on these two components D1 and D2.

For a real parasite P , a vector θ = 〈pc, pd, ps, pl〉, and a simulated parasite tree Pθ, we

define the distance d(P, Pθ) as follows:

d(P, Pθ) = β1D1(P, Pθ) + β2D2(P, Pθ), with β1 + β2 = 1.



According to our experiments (see Supplementary Material,

http://dx.doi.org/10.5061/dryad.9q5fp), the most appropriate values are β1 = 0.7

and β2 = 0.3 but this can be set by the user. The main drawback of this distance is that it

is not a metric; however it achieves good results with respect to discriminating the trees as

observed in our experiments.

In Coala, we implemented two other distances, both of which are variations of the

MAAC. A user can choose the most appropriate one depending on the case. In this paper,

we show only the results for the two-component distance, as this had the most

discriminating power (data not shown).

Given a parameter vector θ = 〈pc, pd, ps, pl〉, we generate M trees and for each of

them we consider the distance of P̃ from the real parasite tree P . From this set of

distances, D, we produce a summary, denoted by S(θ), that characterises the set of trees

generated with the parameter vector. In our experiments, we choose S(θ) as the average of

all the produced distances.

The summary S(θ) is the value that is used in the rejection/acceptance step of the

ABC method.

Finally, it is worth noting that while the choice of a summary statistic (or

equivalently here a summary tree distance) is independent from the generation process

(coevolution model), such a choice may have a deep impact on the performance and the

results of the method. This is one of the main issues with ABC-related methods. Some

recent works have attempted to improve this step (Fearnhead and Prangle 2012). From the

experiments done however, we can already see that the two-component distance seems to

be a good enough discriminator.

Approximate Bayesian Computation - Sequential Monte Carlo procedure.— The ABC-SMC

procedure is composed of a sequence of R > 1 rounds. For each of these rounds, we define

http://dx.doi.org/10.5061/dryad.9q5fp


a tolerance value τr (1 ≤ r ≤ R) which determines the percentage of parameter vectors to

be accepted. Associated with a tolerance value τr, we have a threshold εr which is the

largest value of the summary statistic associated with the accepted parameter vectors.

• Initial round (r = 1):

Draw an initial set of N parameter vectors {θi1}(1≤i≤N) from the prior π. Then,

for each θi1 generate M trees {P̃j(θi1)}(1≤j≤M). Select Q = τ1 ×N parameter

vectors θ1 that have the smallest S(θ1), thus defining the threshold ε1 and the

set A1 of accepted parameter vectors.

• Following rounds (2 ≤ r ≤ R):

1. Sample a parameter vector θ? from the set A(r−1). Create a parameter vector θ??

by perturbing θ?. The perturbation is performed by adding to each coordinate

of θ? a randomly chosen value in [−0.01,+0.01] and normalising it.

2. Generate M trees {P̃j(θ??)}(1≤j≤M) and compute S(θ??). If S(θ??) ≤ ε(r−1), add

θ?? into the quantile set Sr. If |Sr| < Q, return to Step 1.

3. Based on the set Sr, select τr ×Q parameter vectors θr that have the smallest

S(θr), thus defining the threshold εr and the set Ar of accepted parameters.

The final set AR of accepted parameter vectors is the result of the ABC-SMC

procedure and characterises the list of parameter vectors that may explain the evolution of

the pair of host and parasite trees given as input.

Let us observe that, since in all our experiments we are assuming a uniform prior

distribution and also are performing the perturbations in a uniform way, the weights

induced by the proposals appear to be uniform (Beaumont et al. 2009). However, in the



case of a different prior, weights should be used in the process in order to correct the

posterior distribution according to the perturbation made.

Clustering the results

Coala implements a hierarchical clustering procedure to group the final list of

accepted parameter vectors. The basic process of a hierarchical clustering is as follows. At

the beginning, each parameter vector forms a single cluster. Then at each step, the pair of

clusters that have the smallest distance to each other are merged to form a new cluster.

The distance that we use between the vectors θ = 〈pc, pd, ps, pl〉 and θ′ = 〈qc, qd, qs, ql〉 is the

χ2 distance, which is a weighted Euclidean distance defined as follows:

d(θ, θ′) =

√√√√ ∑
i∈{c,d,s,l}

2× (pi − qi)2
(pi + qi)

.

At the end of this process, we have a single cluster containing all the items

represented as a tree (hierarchical cluster tree or dendrogram) showing the relationship

among all the original items. As we make no assumptions concerning the space of the

vectors we are dealing with, we chose to apply a more general but still efficient method,

introduced in Langfelder et al. (2007), to select the branches to be cut in the dendrogram.

The method proceeds in two steps. Starting with the complete dendrogram, it first

identifies preliminary clusters that satisfy some criteria: for example they contain a certain

minimum number of objects (to avoid spurious divisions), any two clusters are at least

some distance apart, etc. (Langfelder et al. 2007, for more details). In a second step, all

the items that have not been assigned to any cluster are tested for sufficient proximity to

preliminary clusters; if the nearest cluster is close enough, the item is assigned to that

cluster, otherwise the item remains clustered according to the complete dendrogram.



Finally, once the vectors are split into clusters, we associate to each one a

representative parameter vector. To define each coordinate of the “consensus” parameter

vector, we take the mean value of the respective coordinate in all the parameter vectors

which are inside the cluster. We then normalise the “consensus” coordinates to sum to one.

Experimental Results and Discussion

We evaluated our method in two different ways. First we designed a self-test to

show that the principle underlying it is sound and to test it on simulated datasets.

We then extended the evaluation to four real examples that correspond to biological

datasets from the literature. This choice was dictated by: (1) the availability of the trees

and of their leaf mapping; and (2) the desire to, again, cover for situations as widely

different as possible in terms of the events supposed to have taken place during the

host-parasite coevolution. As a matter of fact, the first point drove the choice more than

the second: there are not so many examples available from which it is easy to extract the

tree and/or leaf mapping and that are big enough to represent meaningful datasets on

which to test Coala. All four examples were also analysed in the original paper from

which they were extracted by one or more of the existing algorithms that search for a most

parsimonious (possibly cyclic) reconciliation (i.e. for a reconciliation of minimum cost).

Except in one case, which is a heuristic strategy and therefore does not guarantee

optimality of the solution, all existing algorithms need to receive as input the cost of the

events, which is thus established a priori and drives the conclusions on the results obtained.

Finally, we applied Coala to a biological dataset of our own, representing the

coevolution of bacteria from the Wolbachia genus and the various arthropods that host

them. This dataset was selected because of its size: the trees have each 387 leaves.

Experimental parameters



All datasets were processed by Coala configured with the same parameters. For

each dataset, we generated N = 2000 parameter vectors in the first round. For each of the

vectors, we generated M = 1000 parasite trees using our method. We required these trees

to have a size at most twice the one of the real parasite tree, otherwise the tree was

discarded as being too different from the original. If a given vector did not generate M

such trees in 5000 trials, then the vector was immediately associated with a distance equal

to 1 which indicated that it represented the real data badly.

We used the average of all the 1000 distances produced as a fitting criterion in the

rejection/acceptance step of the ABC method. The tolerance value used in the first round

was τ1 = 0.1. For the remaining rounds 2 ≤ i ≤ R, we defined τi = 0.25. Notice that

τ1 ×N = 200 defines the size Q of the quantile set which must be produced in each new

round. Thus, after the last round, we have τR×Q = 50 accepted vectors. These vectors are

grouped into clusters and a representative vector is associated with each cluster as

explained in the Section “Clustering the results”.

We ran the experiments using R = 3 and R = 5 rounds. The number of rounds is an

important parameter, which defines the characteristics of the list of accepted parameter

vectors.

However, observe that a high number of rounds will tend to overfit the data and

thus hide a possible variability in the list of accepted vectors that could provide significant

alternatives for explaining the studied pair of trees.

Since we are interested in exploring different alternatives for each dataset, we

present only the results which were obtained after running Coala for 3 rounds. The

results involving 5 rounds may be found in the Supplementary Material.

Simulated datasets

We first evaluated our model on simulated data. Clearly, in order to do this, we



have to generate the phylogenies for the hosts and parasites whose coevolution is being

studied in such a way that the probability of each event is known. The basic idea is that if

we are able to select a “typical” (or representative) parasite tree Pθ that is generated

starting from a host tree H and a given probability vector θ, Coala should be able to list

values close to θ among the vectors accepted in the last round.

It is important to observe that many different probability vectors can explain the

same pair of trees. We will therefore consider it acceptable if Coala produces clusters that

are relatively close to θ.

Generating simulated datasets.— Due to the high variability of the parasite trees which can

be simulated given a host tree H and a vector θ, the task of choosing the most “typical”

tree can be hard. To simplify this task and select a typical tree, we impose two conditions

which must be observed by the simulated tree. The first one requires that the candidate

tree should have a size close to the median for all the trees which are simulated using H

and θ. The second condition requires that the observed number of events of a candidate

tree should be very close to the expected number given θ.

In practical terms, we execute the following procedure: in order to get realistic

datasets we choose a real host tree H (see Supplementary Material for more information).

Then, given a probability vector θ and H, we generate 2000 parasite trees using our model,

without imposing any limit on the size of the generated trees. We then compute the

median size of all generated trees and we filter out those whose size is far from this value

(difference greater than 1 or 2 leaves from the median value). Finally, we select as typical

tree Pθ the one that shows the smallest χ2 distance between the vector θ and the vector of

observed frequencies of events.

We generated in this way 9 datasets (H,P ) associated with the following 9

probability vectors: θ1 = 〈0.70, 0.10, 0.10, 0.10〉, θ2 = 〈0.80, 0.15, 0.01, 0.04〉,



θ3 = 〈0.75, 0.01, 0.16, 0.08〉, θ4 = 〈0.70, 0.05, 0.02, 0.23〉, θ5 = 〈0.60, 0.20, 0.00, 0.20〉,

θ6 = 〈0.55, 0.00, 0.20, 0.25〉, θ7 = 〈0.45, 0.10, 0.15, 0.30〉, θ8 = 〈0.40, 0.20, 0.10, 0.30〉 and

θ9 = 〈0.30, 0.20, 0.40, 0.10〉 (see the Supplementary material for more details). The choice

of vectors was done with the aim to cover different patterns of probability. All datasets

were generated with the same host tree H of 36 leaves.

Self-Test.— As concerns the self-test, we designed the following procedure. Let Pθ denote

the simulated parasite tree chosen in correspondence of the probability vector θ, as

explained in the previous section. We recall that the host tree H remains the same during

all the self-test experiments. For a pair of host and parasite trees (H,Pθ), we ran Coala

50 times. In each run j, we computed the quality qj that corresponded to how well the

method was able to recover the target vector θ used for generating the dataset Pθ. To do

this, for each run j, we considered the representative vectors of the clusters produced as

output. We computed the χ2 distance for each of the representative vectors to the target

vector θ and set qj to the smallest value among them.

Figure 3 shows the distribution of the quality values which were obtained at the end

of each round (from 2 to 5) for the simulated datasets θ1, θ3, θ4, and θ7 (the results for the

remaining datasets can be found in the Supplementary Material). Figure 4 shows the

histograms of the event probabilities observed for the 50 parameter vectors with smallest

χ2 distance at the end of each round for dataset θ3 (again, the results for the remaining

datasets are available in the Supplementary Material).

Up to a certain level of cospeciation probability (≥ 0.50), our results (Figure 3)

show that in the rounds 2 and 3, Coala is able to select parameter vectors that are close

to the target probability vector. Looking to the histograms of these two rounds, we can

observe that in most of the runs, the closest parameter vector has low χ2 distance to the

target. After the third round, this tendency changes and the closest parameter vectors



show high χ2 distances indicating that Coala is mainly selecting vectors which are far

from the target one.

Since Coala is based on an ABC-SMC approach, the accepted vectors in one round

have summary statistics (i.e. average distance) smaller than the ε defined in the previous

round. This means that at each new round, Coala is selecting parameter vectors that

have more probability of explaining the pair of trees given as input because their simulated

parasite trees are, on average, closer to the real one.

Although we try to choose the best representative parasite tree P for each pair (H,

θ), we cannot guarantee that θ is the best explanation for the association between H and

P . Even so, Coala was able to select parameter vectors that are close to the target

probability vector in the first rounds. Figure 4 shows the histograms of the event

probabilities observed among the 50 parameter vectors with smallest χ2 distance at the end

of each round for dataset θ3, and confirms these observations. We can see that at round 2,

the median and mean event probabilities (solid and dotted vertical lines respectively) are

very close to the target value (dashed vertical line). When we increase the number of

rounds, the distance between the median/mean probabilities and the target values

increases.

When we decrease the cospeciation probability to values smaller than 0.50, Coala

selects very few vectors which are close to the target vector. When the cospeciation

probability decreases while the duplication and host switch probabilities increase, the

variability of the tree topologies observed increases exponentially. Due to this, selecting a

typical tree becomes an almost impossible task and this may explain the obtained results.

Increasing the number of simulated trees to compute the summary statistic might enable

us to improve the quality of the results. However, this would require a much longer

execution time.



Biological datasets extracted from the literature

To evaluate Coala on biological datasets, we extracted four pairs of host and

parasite trees from the literature. However, due to space issues, in this work we present

only two of them. A description and the results obtained on the additional biological

datasets can be found in the Supplementary Material. Before presenting and discussing the

datasets, we provide details on how we performed the analyses.

Each dataset was processed by Coala as described in the Section “Experimental

parameters”. Table 2 shows the representative parameter vectors obtained for each one of

the datasets and Figure 5 the histograms of the event probabilities of the list of accepted

vectors obtained at the end of the third round.

In order to compare our results to the existing literature, we transformed each one

of the representative parameter vectors 〈pc, pd, ps, pl〉 into a vector of costs that was then

used to compute optimal reconciliations between the host and parasite trees given as input.

The transformation was done by defining ci = − ln pi, with i ∈ {c, d, s, l}, which is based on

a commonly accepted idea that the cost of an event is inversely related to its probability

(Charleston 1998; Ronquist 2003; Huelsenbeck et al. 1997, for example). Indeed, if pi is

equal to 1, then we expect all the events to be of type i, thus the cost of the corresponding

event must be 0. Similarly, if pi is equal to 0, we expect that event i never happens, and

thus the cost must be assigned to +∞.

To the best of our knowledge, the only methods that enumerate all optimal

reconciliations are CoRe-Pa (Merkle et al. 2010), Notung (Stolzer et al. 2012) and

Eucalypt (Donati et al. 2014). However CoRe-Pa in some cases misses solutions,

probably because it considers some additional constraints. Notung does not allow

cospeciation costs different from zero and the remaining event costs must be described by

integer values. We thus present the results of Eucalypt which allows the configuration of

all event costs and accepts real numbers.



Table 3 shows, for each dataset, the vector of costs (cc, cd, cs, cl) produced by

transforming the representative parameter vectors obtained after the third round (Table 2).

Column Opt indicates the cost of the optimal solution and columns #c, #d, #s, #l the

numbers of each event type which are observed among the enumerated scenarios. Finally,

columns #A and #C indicate, respectively, the total number of acyclic and cyclic scenarios.

Dataset 1 – Flavobacterial endosymbionts and their insect hosts.— This dataset was

extracted from the work of Rosenblueth et al. (2012) and is composed of a pair of host and

parasite trees which have each 17 species (see Supplementary Material). The parameter

adaptive approach of CoRe-Pa (Merkle et al. 2010) was used to infer the more

appropriate cost vectors for analysing this dataset. Nine such vectors were produced.

However, only one, 〈cc = 0.088, cd = 0.325, cs = 0.339, cl = 0.248〉, was associated with a

feasible reconciliation in the sense that host switches happened between contemporary

species only (the branch length was used to infer this information). Since CoRe-Pa can

produce unfeasible (i.e. cyclic) solutions during the parameter adaptive approach,

Rosenblueth et al. decided to complement their study with Jane 3 (Conow et al. 2010),

which uses a genetic algorithm approach to produce only acyclic reconciliations. They thus

started with the only cost vector obtained by CoRe-Pa associated with a feasible

reconciliation, however transforming it into integer numbers (a requirement of the

software), and then gradually changed the costs until a feasible reconciliation was produced

(again using branch-length information). This procedure resulted in the cost vector

〈cc = 1, cd = 1, cs = 1, cl = 2〉 and a reconciliation with 9 cospeciations, 0 duplication, 7

host switches and 1 loss, the same as obtained by CoRe-Pa.

Running Coala on this dataset, we obtain 3 non-singleton clusters which are quite

different from each other (Table 2). Cluster 0 is formed by a single accepted vector which

did not cluster with any other because it is too far apart. Cluster 1 shows probabilities of



0.46, 0.26 and 0.28, respectively, for cospeciation, duplication and loss. After transforming

these into costs (Table 3), the obtained reconciliation scenarios have 11 cospeciations, 2

duplications, 3 host switches and 11 losses. Clusters 2 and 3 show very low duplication

probability. While Cluster 2 exhibits intermediate values for the remaining probabilities,

Cluster 3 has a very high cospeciation probability value (0.91) and low host switch (0.06)

and loss (0.02). Due to the low duplication value, these clusters show the same

reconciliation scenario: 9 cospeciations, 0 duplications, 7 host switches and 1 loss, which is

identical to the one proposed by Rosenblueth et al. (2012).

Dataset 2 – Rodents and Hantaviruses.— This dataset is taken from Ramsden et al. (2009,

Figure 2) and considers the coevolution of hantaviruses with their insectivore and rodent

hosts. The host tree consists of a total of 34 hosts (28 rodents and 6 insectivores) and the

parasite tree includes 42 hantaviruses. It was strongly believed that hantaviruses

cospeciated with rodents since their phylogenetic trees have topological similarities with

three consistently well-defined clades (Hughes and Friedman 2000; Plyusnin and Morzunov

2001; Nemirov et al. 2004; Jackson and Charleston 2004). The authors show that to

support this hypothesis, the evolutionary rate of the RNA sequences of the hantaviruses

should be several orders of magnitude smaller than the rates which are normally observed

in RNA viruses that replicate with RNA-dependent RNA polymerase (Hanada et al. 2004).

By analysing the cophylogenetic reconciliations, the authors show that scenarios with more

than 20 cospeciations are statistically non-significant. To explain the topological

congruences, the authors point to the fact that host-switching followed by pathogen

speciation can generate congruence between trees, particularly when pathogens

preferentially switch among closely related hosts. Based on this fact and on the observed

patterns of amino acid replacement observed in these viruses (compatible with host-specific

adaptation), the authors conclude that the coevolutionary history of these hosts and



parasites is the result of a recent history of preferential host-switching and local adaptation.

Looking at Table 2, we can observe that Clusters 1, 2, and 3 have representative

vectors with zero probability for host switch events: Cluster 1 has a very high cospeciation

probability (0.85), while Clusters 2 and 3 have probability values which are almost equally

distributed among cospeciation, duplication and loss events. After transforming these

vectors into costs (Table 3), we obtain scenarios with a high number of cospeciations which

is considered non-significant by Ramsden et al. (2009).

Differently from the others, Cluster 4 shows a vector with host switch probability

higher than the probabilities of duplication and loss. When converted into costs (Table 3),

this generates time-consistent scenarios with 17 cospeciations, 5 duplications, 19 host

switches and 4 losses, a result much closer to the explanation given by Ramsden et al.

(2009). These results reinforce the idea that, although Coala is able to identify vectors

which can explain a pair of trees, having a prior knowledge of the dynamics of the

interactions of the two groups of species is important to identify the clusters that better

explain their coevolution.

Wolbachia and their arthropod hosts dataset

Wolbachia is a large, phylogenetically diverse monophyletic genus of intracellular

bacteria that are currently considered the most abundant endosymbionts in arthropods. In

insects alone, it is estimated that over 65% of the species are infected by Wolbachia. The

dataset used in this paper corresponds to Wolbachia species that were detected in an

extensive set of arthropods collected from 4 young, isolated islands (less than 5 Myr old)

(Simões et al. 2011; Simões 2012). The trees are a subset of those discussed in (Simões

et al. 2011; Simões 2012), where we retained only those parasites which were associated

with a unique host, the hosts diverge by at least 2% at the level of the CO1 genes that

were used for reconstructing their phylogenetic tree and the Wolbachia sequences



(corresponding to the fbpA gene) differ by at least one SNP. Each resulting tree is

composed of 387 leaves. The initial results presented in Simões (2012) seemed to indicate

that host switches might be quite frequent even among hosts that are physiologically and

molecularly very distinct and thus phylogenetically distant.

The Wolbachia-arthropods dataset was also processed by Coala as described in the

Section “Experimental parameters”. Table 4 shows the three clusters which were obtained

at the end of the third round. All these clusters have significantly high cospeciation

probabilities (> 0.77). The first cluster has a very low duplication probability and a host

switch probability around 0.5. The two other clusters point to a relatively high duplication

probability and low level of host switches. The difference between them is related to the

probability of losses, which is around 0.14 for Cluster 2 and zero for Cluster 3.

Cluster 1 goes in the direction of what was presented in Simões (2012) where the

author suggested that in the last 3 Ma, there were many transfers of Wolbachia, including

between different arthropod orders, i.e. over large phylogenetic distances. Clusters 2 and 3

point to an opposite scenario.

Similarly to the analysis performed for the small biological datasets, we transformed

each one of the representative parameter vectors into a vector of costs that was then used

to compute optimal reconciliations between the host and parasite trees given as input.

What is most striking with the results obtained for this dataset is the absolutely

huge number of optimal reconciliations that can be derived for all clusters. Since the total

number of solutions makes impossible the enumeration of all the results, for this dataset,

we therefore only computed the costs of the optimal solutions and the total number of

solutions. Additionally, for each cluster, we sampled 10000 solutions and we checked for the

presence of acyclic solutions. Table 5 summarises the results obtained.

For the small sampling that we performed, we were able to find feasible (acyclic)

solutions only with the cost vector produced with the event probabilities of Cluster 3.



However, the results obtained with all the other four datasets used here lead us to suggest

that the number of feasible solutions might quite possibly remain large.

Conclusions

We have developed an automated method that, starting from two phylogenies

representing sets of host and parasite species, allows extraction of information about the

costs of the events in a most probable reconciliation. It is clear that within a

parsimony-based approach, an optimal solution strictly depends on the specific values

attributed to these costs. However, there seldom is enough information for assigning those

values a priori. Indeed, we observe in the results we obtained on a diverse selection of

datasets that the costs inferred by our simulations may be very different across datasets,

thus motivating the use of estimated instead of fixed costs. Such costs may even differ

widely for a same pair of host-parasite trees, as is observed for the Wolbachia-arthropods

dataset.

These costs are inversely related to their likelihood, and so to their expected

frequency. For this reason, providing information on the frequencies of the events is an

important issue, in particular in the cases where the reconciliation methods fail to find a

solution. The latter can happen, for instance, if all the optimal solutions that are identified

by the existing reconciliation algorithms are biologically unfeasible due to the presence of

cycles, since finding an acyclic reconciliation is an NP-hard problem. In addition, if the

host and parasite trees are large (for instance, on the order of hundreds of taxa), these

cases cannot be handled by the existing reconciliation algorithms in the sense that there

are too many solutions to test for acyclicity.

As a future work, we first plan to refine the model used for the reconciliation

problem, including more biological information and making it more realistic. In particular,



we could include information about the distance of the allowed host switches (for instance

if we expect a host switch to rarely happen between species that are too far from each

other), or allow the mapping of the leaves to be an association instead of a function (thus

addressing the cases where a parasite can be found in more than one host species).

Moreover, we should also consider the case where the input phylogenies are not fully

resolved, meaning that the trees are not binary.

A more efficient exploration of the parameter space is another important future

issue that would significantly increase the efficiency of our procedure and also allow to

handle larger trees.

It is important to observe that most studies on cophylogeny assume that the

phylogenies of the organisms are correct. Clearly, this may affect the results observed. It

would therefore be interesting to be able to infer the cophylogenetic reconciliation directly

from sequence data.

Finally, the accuracy of the results obtained by our method depends on the choice

of the metric used for comparing trees. Designing new metrics that can be computed

efficiently while still capturing the similarity for multi-labelled, not fully resolved trees is

therefore another important future issue which we believe is also interesting per se.

Availability

The Coala program is available at http://coala.gforge.inria.fr/ and runs on any

machine with Java 1.6 or higher. The Eucalypt program is available at

http://eucalypt.gforge.inria.fr/.

Running time

The experiments were executed at the IN2P3 Computing Center (http://cc.in2p3.fr/).

For the simulated datasets, each pair of trees was processed with 3 threads for speeding up

http://coala.gforge.inria.fr/
http://eucalypt.gforge.inria.fr/
http://cc.in2p3.fr/


the simulation process. The time necessary to complete 5 rounds for all 50 runs varied

from 1 to 2 days depending on the size of the trees. For the biological datasets 1 to 4, we

also used 3 threads. The observed execution times for 5 rounds were between a couple of

hours for the smallest dataset (Dataset 1) and one day for Dataset 4. Due to its size, the

dataset Wolbachia-arthropods was processed with 150 threads and it required

approximately 8 days to complete 5 rounds.

Supplementary Material

Data available from the Dryad Digital Repository at

http://dx.doi.org/10.5061/dryad.9q5fp.
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Tables

Table 1: Notation

Notation Description

H Host tree

P Parasite tree

ϕ Function from the leaves of P to the leaves of H. It represents the

associations between currently living host species and parasites.

γ Function from the vertices of P to the vertices of H. It represents

the reconciliation between H and P and extends ϕ.

Σ,∆,Γ Sets of parasite vertices associated with, respectively, cospeciation,

duplication, and host switch events.

Ξ Set containing arcs of the parasite tree that are associated to

host switch events.

Λ Multi-set containing all vertices h ∈ V (H) that are associated to

loss events.

D0 Observed data.

DS Generated data.

Θ Parameter space.

θ Parameter value.

P̃ Simulated parasite tree.

pi Probability of the event i, where i ∈ {c, d, s, l}.
ci Cost of the event i, where i ∈ {c, d, s, l}.
oi Number of observed events of the type i, where i ∈ {c, d, s, l}.
Note: c = cospeciation, d = duplication, s = host switch, and l = loss.



Table 2: Representative probability vectors produced by Coala at Round 3.

Dataset Cluster pc pd ps pl #vectors

1

0 0.030 0.000 0.557 0.413 1

1 0.461 0.258 0.000 0.281 24

2 0.554 0.000 0.270 0.176 20

3 0.910 0.016 0.058 0.016 5

2

1 0.851 0.082 0.000 0.066 25

2 0.473 0.204 0.000 0.323 10

3 0.238 0.349 0.000 0.413 8

4 0.580 0.002 0.282 0.136 7



Table 3: Event vectors obtained by transforming the probability vectors (Table 2) into cost
vectors.

Dataset Cluster cc cd cs cl Opt #c #d #s #l #A #C

1

0 3.517 13.816 0.584 0.885 14.044 1 0 15 2 2944 0

1 0.775 1.355 7.824 1.270 48.664 11 2 3 11 2 0

2 0.591 8.517 1.310 1.736 16.217 9 0 7 1 1 0

3 0.094 4.160 2.844 4.154 24.892 9 0 7 1 1 0

2

1 0.161 2.496 9.210 2.717 153.544 22 11 8 18 0 12

2 0.748 1.592 9.210 1.130 105.393 22 19 0 52 1 0

3 1.436 1.053 8.112 0.884 97.548 22 19 0 52 1 0

4 0.545 6.266 1.265 1.996 72.588 17 5 19 4 4 0

Note: #c,#d,#s, and #l denote the number of each event type which are observed

among the enumerated scenarios. #A and #C indicate, respectively, the total number

of acyclic and cyclic scenarios.



Table 4: Representative probability vectors produced by Coala, at the end of the third
round, while processing the Wolbachia-arthropods datasets.

Cluster pc pd ps pl #vectors

1 0.866 0.006 0.055 0.073 26

2 0.771 0.078 0.010 0.141 22

3 0.964 0.022 0.014 0.000 2



Table 5: Total number of solutions obtained by transforming the probability vectors (Table 4)
into cost vectors for Wolbachia-arthropods datasets.

Cluster cc cd cs cl Opt Solutions Acyclic solutions

1 0.144 5.116 2.899 2.623 917.475 5.4× 1043 No

2 0.260 2.551 4.595 1.961 1407.877 9.8× 1040 No

3 0.037 3.817 4.269 13.816 1375.725 1.6× 1051 Yes



Figures

Figure 1: Recoverable events for a coevolutionary reconstruction. The tube represents the
host tree and the dotted lines the parasite tree.
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Figure 2: Events during the generation of the parasite tree P̃ . The host tree has white vertices
and the parasite tree grey vertices. The association 〈v : a〉 indicates that an unmapped
parasite vertex v is positioned on the arc a of the host tree. The association [v : w] indicates
that the parasite vertex v is mapped to the host vertex w.
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Figure 3: For each simulated dataset, we ran Coala 50 times and, at the end of each round
(from 2 to 5), we took note of the cluster whose representative parameter vector had the
smallest χ2 distance to the probability vector used to generate the simulated dataset. The
histograms show the distribution of the smallest χ2 distance observed on each one of the 50
runs at the end of each round (for the simulated datasets v1 = θ1, v3 = θ3, v4 = θ4, and
v7 = θ7.). The solid and dotted vertical lines indicate median and mean values, respectively.
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Figure 4: For each simulated dataset, we ran Coala 50 times and, at the end of each round
(from 2 to 5), we took note of the cluster whose representative parameter vector had the
smallest χ2 distance to the probability vector used to generate the simulated dataset. The
histograms show the distribution of the event probabilities observed on the list of parameter
vectors which have the smallest χ2 distance on each run for the dataset v3 = θ3. The solid
and dotted vertical lines indicate median and mean values, respectively. The dashed vertical
line indicates the “target” value.
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Figure 5: Distribution of the probability values for each event type observed on the parameter
values accepted on the third round while processing the biological datasets 1 and 2.


