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GEOMETRIC PROGRAMMING: AN ENGINEERING TOOL FOR COMPRESSOR DESIGN 

D. T. Phillips 
Associate Professor 

School of Industrial Engineering 

K. M. Ragsdell 
Assistant Professor 

School of Mechanical Engineering 
Ray W. Herrick Laboratories 

Purdue University 
West Lafayette, Indiana 47907 

ABSTRACT 

Geometric programming is a new optimization technique developed to solve nonlinear engineering design problems subject to either linear or nonlinear constraints. This paper outlines the procedure and illustrates its use with a series of examples. These examples include a compressor design, and a compressor transmission line problem. Geometric programming solutions not only yield optimal design parameters, but also generate certain invariant cost distributions unique to the geometric programming methodology. 

THEORY 

Geometric programming is a mathematical programming technique developed to solve nonlinear programming problems subject to linear or nonlinear constraints. The basic theory was originally developed by Richard Duffin and Clarence Zener [1] using the arithmetic - geometric mean inequality; hence the name geometric programming. 

Define a nonlinear objective function in N variables and T terms of the following form: 0 

MINIMIZE 

(1) 

constrained by M inequality constraints 
given by, ,-_ N ~~ 
~~x)~ ~ O.:.t C..rt. ~~. ~ : ~;2) 

/'Ill\ ..;. I J '2., :r_:, J • • • I I"'\ . 
where: 

a .N>\t:: -t 1 > t,"' I) '2.J ~.J •• .. " T_, ·J 1\'i\'= o) t,~ .. '"/1 
(J""""' ~ ~ ± 1 ; M\ = I J Z J ~-' • • r .J M j 
C'JIIlo\-t)O ) i-=1)21 ~···1 T.wt j -i<1""Jl/ZJ·'j'1 
1'Nl >" o ~ "'1-=JJ '-;, ~1 ··:, N. 

This formulation will be designated as the Primal Geometric Program (PGP). It is conventional to refer to the value of T-(N+l) as the degrees of difficulty in a geo-
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metric program. Fundamental to the solution of nonlinear programming problems in the form of PGP is the Dual Geometric Program (DGP), given by the following: 

( 4) 

(5) 

Wo, =J 
(J = ±! 

and it is understood that 
L &M \c...-"< w,.,o... ]O:..t=w~ 

lM -~o L WM\t - .i ~ 

The variables uv~eare properly designated the geometric programming dual variables. The a; a-D-f: andO"Mtt variables are 1ntroduced in order to absorb the signs of each term and constraint, and are called signum functions. The complete dual formulation 1s found in reference [2] and will not be repeated here. 

In developing the dual problem, a dual constraint is generated by each primal variable, as is the normality condition given in (4). A dual variable is generated by each term in the primal problem. Hence when T = N+l the dual constraints are sufficient to uniquely determine all dual variables. Once the dual variables of the DGP have been determined, then (3) can be evaluated since the signum functions and the cost coefficients are known from the problem formulation. Wilde and Beightler have shown that the following relationship holds at optimality: 

.}(w,...,.*J = Yt~) C7J 



That is, at optimality the values of the 
primal and dual objective functions are 
equal. Using this result, one can obtain 
the values of the optimal primal variables 
from the set of dual variables through the 
following relations: 

" ~ * J. Cot. 1T ')(""' "' Wot. o-Y t~) = Wot:.rr .f (t.JJ,.J< 8 > 
Ill\'" I 

and 

JWi=lt.-a,• .. •ftll (9) 
) '} :) ) 

t"" I 2. ~ .,.., -r 
1'}"') .1~ 

Note that although equations (8) and (9) 
are nonlinear, they all possess only a 
single term. Hence, the equations are 
linear in a logarathmic transformation~ 

In order to avoid unnecessary confusion, a 
word is in order regarding notation. Note 
that all variables and constants are doubly 
subscripted except for the exponents of the 
primal variables, which contain three sub
scripts. Observe the following symbology: 

SUBSCRIPTS 

1st 
subscript: 

2nd subscript: 

3
rd subscript: 

For example; 

the equation 

the term 

the variable 

WIWit 

t ~term. twt"~qua tion . 

c~~o represents the ob
jective function; 

~}O represents a con
straint). 

lA iWI t. "Y\ 

~variable. 
i. term. 

'Wt "1.4. equation . 

Hence, the position of every variable with
in the problem formulation is easily deter
mined through its subscripts. In order to 
illustrate these concepts, consider the 
following example [3]. 

EXAMPLE I: FILL-DIRT TRANSPORT 

Suppose you are a fill-dirt contractor and 
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you have been hired to transport 400 cubic 
yards of dirt across a large river. In 
order to transport the material, a contain
er must be constructed. The following in
formation is available. 

a) Each round trip costs $0.10. 

b) The material for the container costs: 
1) bottom: 20.00 $jsq. yd. 
2) sides: 5.00 $jsq. yd. 
3) ends: 20.00 $/sq. yd. 

Now, we wish to design a container which 
will minimize to total cost associated with 
the prescribed task. From the given data 
a nonlinear program can be formulated. 

MINIMIZE: 
4o 

Y(~) = w~ + ZOX, X'z. + lDX'1 X~ +40~,)(3 (10) 

The DGP is given by the following: 

subject to: 

w.,, + Woz... + t.u0 !1 -+ tu04 Ill I 

- tu01 + l<lb2.. + ltl.,., ::: 0 

- IU01 + t..U.,z. + WO<f. =s t!) 

- ~~ r%~ -+-4&+ =o 

and 

Note that 0'"= l 
~~ ;; {fo, = a;,_ : (T04--=: I 

IA.Jo!IO =I 
From the previous theory, the minimal cost 

is given by Y"'c;c> ... .f(w-..) and .ftw .. -t-) 
is found by maximizing+tw~~subject to the 
four linear equality constraints. However, 
for this particular problem the DGP pos
sesses exactly four constraints with four 
unknowns. Hence, the optimal (unique) dual 
variables are given by the solution of these 
equations. 

wt = 1/t; .,, 
~a.: iJt; 
at,. = 'It;, 
tct,= 1/t; 

Note that what caused this phenomena is the 
fact that T - (N+l) ~ 0. In other words, 
we have zero degrees of difficulty. An in
teresting characteristic of geometric pro
gramming is that at optimality of the DGP, 
if all signum functions are positive, the 
Ul~ variables are actually the percent of 
optimal cost attributed to that particular 
term in the primal objective function. 
Hence, we know the following is true: 



Construction Costs: 1/5 of the total cost 
is attributed to the 
bottom, sides, and ends 
of the container re
spectively. 

Transportation Costs: 2/5 of the total 
cost is attributed 
to hauling the dirt. 

An interesting thing has now occurred; we know the distribution of the project cost without knowing the project cost itself! The optimal cost is now recovered from 
:;;ation (llia )Z/-; to )•Is( IO )Ys( 4o )V~ 
t (w""'.,_) = ( i/s ( YS !1-s Ys :Joo. 
The optimal design variables are now easily recovered using equations (8) and (9): 

4o x~' K.z.-' t;' .. f'( w.,-c) ( .?fs) = 4l> 
J.a K, Xz. = .t"(w4ort"} ( Ys) = zo 
1 o x.1 x3- = rtw.tott") ( Y'i) = 10 

Solving these equations, which are linear in the logarithms, we obtain: 

* J;. J. K, = 1..0, Xz -=0.5 J Xs =1.0 

EXAMPLE II: FILL-DIRT REVISITED 

Now suppose that a field engineer tells you that the cost per trip has doubled to $.20 per trip. What is the best operating policy now? A moments reflection on equations (4) and (5) yield the fact that the dual solution variables remain the same! That is; 
#... Jt .Jt. I/. ~ :y~ Wot. = WD~-:= w.,4 : rS ) w,,: 7. 

The cost distributions at optimality are exactly the same. This occurs since the dual constraints from which the optimal solution is obtained depend only upon the exponents of the primal variables. Hence, provided the exponent structure remains the same, the optimal cost distribution is invarient with respect to changes in the technological coefficients. This characteristic is uniquely revealed through the Geometric Programming technique. Unfortunately, this characteristic is only true provided the problem is characterized by zero degrees of difficulty. Note that although the cost distribution remains unchanged, the optimal cost will change since the dual objective function does depend upon the cost coefficients. The new cost is readily obtained, and is given by: 

~ (c C.Uen )ow [ go J 21
:S":J!C +<wAttt) : [ 4o ]21'$ 2{S =- 1~2.. NEw ~ 

The new optimal design variables are calculated as before: 
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;l x. ::- 2,3()0 

Note that although the optimal cost distribution remained unchanged, the design variables adjusted themselves to maintain the cost configuration. In simple terms, the container became larger due to the increased transportation cost. 

EXAMPLE III: GAS TRANSMISSION SYSTEM 

Consider a gas pipeline transmission system: 

• • • 0 

where compressor stations are placed ~ miles apart. Assume that the total annual cost of the transmission system and its operation is [4): 

(12) 

where; 

o~ pipe inside diameter, inches. 
~ = compressor discharge pressure, psia. 
L= length between compressor stations, miles. 

r = compression ratio ~ f.jp]_ 

Furthermore, assume that the flowrate is: 

[ ~p,•- Ps.')p<. ] !11. Q-=-:S.~~ fL ($CF/~.) (13) 

with f = friction factor = !/, oos-D ~ (14) 

Find the values for the design parameters P, ~ and r which will deliver 100 million cubic feet of gas per day (4.17 SCF/hr) with minimum total cost. 

Note that the problem as stated contains four design variables· and one equality constraint. It will be convenient to use equation (13) to eliminate one of these variables. Using q = 4.11·10foSa:/..tv.. and the definition r~ P./1\ ; equation (13) can be restated; 

[ 

10 -as.~~ p -:& Y' J.'t(·IO l.. 'D 
l l f"~- J ) 

Yz. 

1 
(15) 



Substituting this expression into (12), re
arranging terms, and ignoring the constant 
4,c;. 1o" we obtain: 

C ( VJ L..
1 
r) = 8.1.1 •tO'S C':t..r 0% (r':J) v,_ 

+ 3.t..'t ·1o4 D + fq,;1·Jo'- J.: 1 
<
16

' 

+ ,.,'1·w8 r• C r·~,) 
In order to represent equation (16) in the 
form of equation (1),' define: 

)(\:: L ' 1(2 ::- V' ' ~ = p . 

Hence, the problem statement becomes: 
s r. -If,.( t. 

MINIMIZE: Y(K)= 8."' ·10 x, t. xz. X3 x2.-1 J 2. 

~ 3.C.,1·1o4 X3 + t...C,1·JO~ ~-· 
+ 1.,2,· 10

8 
](.-· ex;'' .. _,) (17) 

Note, that this objective function is not 
yet in the proper format, but by defining 
a new variable 

X !. (X - l) * 2 
the equivalent problem statement is: 

-..~, ) t; Vz -Va. 
MINIMIZE: ,(~ -: f.~l •10 X1 X.,.. X,~ 

(18) 

+ B -1 .m c. _, 
...J. 5. <-,·tO x3 + 1.1Z:to Kl X'J. -1e,S.4!.·1o x, (19 > 

>(. x·z + ., -a.!: .i 
subject to: ·~ ~ ~a 

and 
(20) 

The problem can now be solved using geo
metric programming. Note that one of the 
signum functions is negative <:r~ and 
that there is one degree of difficulty, 
T - (N+l) ~ 6 - (4+1) = l. Proceeding 
from equations (3) through (6) one obtains 
the DGP: Cj, 

MAxiMIZE: .f(uJ ) .,. r(,f.f.(•lO )w"•(~·ld\•104)~ 
~": ~ %, ""o:r. 

(J·:!•ID&)Uio!o(.,&o'S~'f"'o.t.( c.u,o)w"/~ ~121) 
"~ \ w,4'1- / W,1 ~uh)J 

subject· to: W411 1 -+ w.,'l.""' Wo'!t - """c>+ = 0 

· .'7 WOI- ~~ + Alo<f ::- t:l 

~~ t-.u,cq,)-::tfA+, -2.Wn .. -= o 
-. ,., w,, + Woz. l!l,:; 

-. '? ""'"' + w, = 0 

Wit> - ~~ - ~at = o 
W'"'"= ~ o IIM.~DJ I J t~/ 2,., •• · T....,. 

Note that the~e are six equ~lityJconstraints 
and seven dual variables in the DGP. 
Hence, a true optimization exists. The 
DGP cart be solved in any convenient fashion. 
tn this case, an efficient solution tech
nique would be to solve for any six dual 
variables in terms of a seventh and sub
stitute these variables out of f (.W""'~) to 
obtain an unconstrained objective function 
in only one variable. This problem is now 
easily solved using a one-dimensional 
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search scheme. Using this technique, the 
following dual solution was obtained. 
w~-=-".4.S~z.. MJ,~= tJ. 2:z7w, 

~ -.z...b. 5094 A?:= 0.'751'? 
~,. .. fi.JI?Z.O 4 ~.d. t:l7"1~ 

~"" 4.9Zd0 

Therefore, -f1wMl-t.)'=·2.q?.8D·I04-~ "Yfx). 
Using equations (8) and (9) we obtain the 
optimal design variables: 

xt= J.IS1 J ><:= 2.4. Eo , ~= ?2../o!:ID J ><= oA-10. 

And in terms of the original problem state
ment; 

and #. 
C ~ !>.40i·JDt, -$/"'lr'. 

Although this last example required some 
algebraic manipulations and a one-dimen
sional search, the geometric programming 
technique often yields the optimal solution 
to engineering design problems almost by 
inspection. A final example will serve to 
illustrate this advantage. 

EXAMPLE IV: OPTIMAL STAGED COMPRESSOR 

A classical problem in compressor design is 
that of finding the interstage pressures 
for an adiabatic reversible compression of 
an ideal gas. From thermodynamics, orte 
seeks to minimize the energy consumption of 
an N stage system whose work is described 
by; 

RST[ P,. ol. ( P, ,c; P..a )"' 

y ( P~. ~~~;· ~ ~~ = ~ ( -p.) + Pr.) _. ... ~(Pil-, < 2 2 > 

where: 

fs= inlet pressure. 

PN = outlet pressure. 

R: gas constant. 

-tJJ 

S= molar flow rate. 

if: inlet temperature. 

0(.: ('le.-1)/~ -l= (Cp/c,.). 
I 

The PGP is: 

MINIMIZE: 

)(. )"" ll(a.·~ ( 4. )ol. 
'/lf.)::C.(c, -+c.~.)+···_.(.. JC,J.., (23) 

where: 

are constants. 

-% =- e M= , z ~ ... 1"4-t. 
'¥\MJ J).l J 



The constraints of the DGP are obviously: 
41.,1 + wj!!z + · • · + ~"" :::: 1 

dWC'II -o< .W.,z '= d (24) 
D< 4161 -c:K w0~: a 

• .. 

Note that there is exactly one more term 
than th-ere are variables in the primal 
problem. Hence, the program possesses zero 
degrees of difficulty. From (24) we see 
that at optimality all dual variables are 
equal! This implies that all compressor 
stages contribute equally to the minimiz
ing energy policy, and all compressor 
ratios must be equal. With a little ex
perience in dealing with geometric pro
gramming, this result could be deduced by 
inspection of equation (22). The dual 
constraints were formulated to verify the 
final conclusion. 

CLOSURE 

In this paper we have attempted to illus
trate the use of Geometric Programming 
in solving nonlinear engineering design 
problems. A series of examples are solved 
with emphasis placed on compressor related 
design formulations. The power of geo.
metric programming lies in the fact that 
often a complex nonlinear engineering de
sign problem can be solved through the 
solution to a set of linear equations. In 
addition, certain invarient cost distri
bution parameters can be obtained for some 
zero degree of difficulty problems, as a 
normal byproduct of the procedure. This 
technique can be of real value in the de
sign of compressor systems. 
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