
Purdue University
Purdue e-Pubs

International Compressor Engineering Conference School of Mechanical Engineering

1974

An Introduction to Optimization Methods for
Engineering Design
K. M. Ragsdell
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/icec

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Ragsdell, K. M., "An Introduction to Optimization Methods for Engineering Design" (1974). International Compressor Engineering
Conference. Paper 150.
https://docs.lib.purdue.edu/icec/150

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4955855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ficec%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Ficec%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/icec?utm_source=docs.lib.purdue.edu%2Ficec%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html

AN INTRODUCTION TO OPTIMIZATION METHODS FOR ENGINEERING DESIGN

K. M. Ragsdell
Assistant Professor

School of Mechanical Engineerin9
Purdue University

West Lafayette, Indiana 47907

ABSTRACT

The engineering design process is a multi­faceted endeavor. Ideation, modelling, analysis, decision making and optimization certainly play important roles. Optimi­zation is a natural design activity, and is enjoying ever increasing usage due in large part to the increasing availability of high speed digital computers. This paper discusses several optimization meth­ods which seem to be useful in a design environment. References are given to sti­mulate and guide additional study.

THE ENGINEERING DESIGN PROCESS

"The design process is a trial and error sequence of choices among a number of al­ternatives, in which each decision is af­fected by compromise between a number of conditions and constraints. It demands meticulous attention to detail, coordina­tion of a wealth of information, the search for ideas at each stage, and an over-all necessity to achieve the best performance at the lowest cost in the shortest time" [1].

Thoughts of this type lead to a morpho­logy or structure of design as shown in Figure 1. Very often a given designer will, through experience or prejudice, elevate the importance of certain elements to the discredit of the others. A fair examination of the engineering design process will show these elements to be, at the very least, of importance. There is, in fact, a rather strong relationship and interaction between the various ele­ments. For instance, analysis may moti­vate refinements in the modelling or vice­versa; computation may suggest a problem reformulation or suggest additional needs and/or resources. Design is truely an iterative process.

It is quite common for several feasible designs to exist for a given mechanical system. We choose between these candidate designs according to some criteria or in­dex of merit. That is, we choose an ob­jective for the design, such as minimum cost, maximum reliability, maximum strength ,etc. We seek a combination of

395

PROBLEM DEFINITION

MODEL DEVELOPMENT

Figure 1: A Morphology of Design

the design variables which gives a design meeting our objective, often in the pre­sence of constraints. These constraints define feasible combinations of the design variables. For instance, in the design of a helical coil spring, we can not allow negative values for the wire diameter. Ex­perience indicates that certain combinations of material, wire diameter, and coil dia­meter will cause premature failure, and these regions should obviously be avoided. For years machine design has been an art where the number of constraint equations plus the objective was exactly equal to the number of design variables. Very often "rules-of-thumb" were substituted for con-

straints or objectives. Optimization al­
lows us to treat this process more formal­
ly, and with increased opportunity for
success. Optimization is truely a natural
design activity [2].

NONLINEAR PROGRAMMING

Nonlinear programming is a misnomer. A
nonlinear program.is not a computer pro­
gram, although digital computers play an
important role in the area. A nonlinear
program is a formal design situation, much
like those discussed earlier, where the ob­
jective and constraint functions are non­
linear in the design variables. Formally
then, we define a nonlinear program with
the following notation:

MINIMIZE:
F (x); x (1)

SUBJECT TO,

¢k<"x> .., o, k 1, 2, 3, ••• , K (2)

AND,

1jJ t (xl - o, t = 1, 2, 3, ••• , L (3)

where

x = a column vector of design variables,
x1 , x 2, x 3 , ••• , xN; where N is the

number of design variables.

F(x) ~ a nonlinear scalar function of the
design variables called the ob­
jective function.

K nonlinear constraint functions.
These functions delimit regions
in the design space, because of
the inequalities.

L nonlinear constraint functions.
These functions vastly reduce the
number of candidate designs, be­
cause they require specific com­
binations of the design variables.

We shall call the solution to this non­
linear program, xM where M signifies the

number of steps or iterations required to
achieve the solution from a prescribed
starting point, x

0
• This paper very

briefly examines several useful methods or
algorithms for finding xM. But before the

methods let us solidify the formulation by
example.

A Simple Example

A Rectangular Storage Bin. Consider the

396

D II.....__ _ ____,
I._ a -+1 I,...._ __ c --....

Figure 2: Open-Top Rectangular Storage
Bin

storage bin shown in Figure 2. We wish
to design the bin, that is, choose the de­
sign variables a, b, and c such that a pre­
scribed volume can be stored with minimum
cost. Let us assume that cost is surface
area. The nonlinear program is-:

MINIMIZE:

F(x) ~ 2x2 (x1 + x 3) + x1x 3 ;

X = [b JT - R3 a, ,c , XE:

SUBJECT TO,

¢k(xl ~"" 0, k ~ 1, 2, 3

wl (x> ~ V* xlx2x3 "' 0

(4)

(5)

(6)

Where in this case the ¢k's are called non­

negativity restraints. We see that

N = 3, K = 3, L = 1

V* is the prescribed volume which the so­
lution design must store. An interesting
variation on this problem occurs in the
design of grain storage bins. The stored
material has a prescribed angle of repose,
8 and the bin sides are allowed to slant
to introduce an additional degree of de­
sign freedom.

METHODS FOR THE SINGLE VARIABLES CASE

Problems without constraints have been
given considerable attention in the past.
This is due in part to the fact that un­
constrained problems are significantly
easier to handle than the constrained
variety. Later we shall see that the con­
strained problem can be reformulated as a
sequence of unconstrained problems, hence,
the contemporary need for unconstrained
methods. Similarly many of these uncon­
strained methods call for a one dimensional
search in N-space. This coupled with the
fact that some very interesting problems
can be formulated with a single degree of
design freedom, motivates the need for de­
pendable one dimensional methods.

Bounding the Minimum

Let us seek the minimum, x* of a function,
F (x) of a single variable, x, as shown in

F(X) I
I

~x, Ax2--Ax
: I I

I
I
I
I

~~~--~~----------~~x x*x 
2 

Figure 3: Searching Along a Line 

Figure 3. In most useful methods there 
are two distinct phases to the search; a 
bounding phase and a refinement phase. 
In the bounding phase, which we discuss here, two values of x, a and b are sought 
which bracket the minimum point x*. 

This bounding of the minimum can be a­
chieved quite simply assuming an initial 
estimate of x*, x . Let us insist that 0 

and 

Increment x, 

F(x) > F(x*). 
0 

(8) 

(9) 

(10) 

and check if the minimum is being ap- , 
preached; 

(11) 

If (11) is not satisfied either ~x1 is too 
large or (8) is violated and we are look­ing in the wrong direction. Assume then 
that ~x1 is sufficiently small and (11) is 
satisfied. Now let ~x2 = 2~x1 to get 

(U) 

Now test to see if the minimum has been bounded, when: 

(13) 

If this is true, we may stop with the 

In Figure 3 we see tha x 3 would be the 
last point generated, and x* is bounded 
between x 1 and x

3
• Recognize that only 

three points must be handled at a time, 
and recall the procedure in the following algorithmic form. 

Bounding a Local Minimum 

1. given x
0

• 

2. calculate F (x
0

) = FO. 

3. let ~X = 1 a small value. 

4. let X =X 1 0 + ~xl. 

s. calculate F(x1 ) = Fl 

6. is Fl < FO? 

yes: go to 7. 
no: let ~x1 = ~x1/2 and go to 4. 

9. calculate F(x
2 ) = F2. 

10. is F2 < Fl? 

yes: let FO Fl, Fl = F2, 
x

0 
= x 1 , x

1 = x 2 and go to 7. 

no: stop, x* has been bounded between 
x

0 
and x

2 . 

Remember that this algorithm assumes that 
~x1 is taken in the correct direction from 
x

0
, and a local, not global minimum is 

sought. 

knowledge that the minimum is bounded be- F(X) tween x
0 

and x 2 • If (13) is violated, 
generate-an additional point x 3 , 

with 

x3 = x2 + t-.x3 

t-.x3 = 2~x2 , 

and test this point; 

(14) 

Figure 4: A Bounded Minimum Point 
(15) 

397 



Exhaustive Search [3,4] 

Let us assume that x* is bounded from a­
bove and below as shown in Figure 4. That 
is, we are certain that the minimum of 
F(x), x* is in the interval a to b; 

a :>: x* :>: b {16) 

Therefore, we have an original interval of 
uncertainty of b - a; 

IU(O) = b - a (17) 

Now we wish to reduce this interval of un­
certainty to a tolerable level. To do so 
let us sample F(x) at N equally spaced in­
terior points; a< x. < b, i = 1,2,3, •.•• N, 

~ 

and examine the value of F(x.) at each 
~ 

point. At the completion of this exhaust­
ive search the interval of uncertainty will 
be: 

IU(N) = 2H = 2 (~~~) (18) 

where 

{19) 

The fractional reduction of the original 
in·terval is; 

therefore 

FR(N) - IU(N) 
- IU{O) (20) 

halfing is a member. 

Let us adopt as a new strategy a sequence 
of M stages containing N sample points. At 
the first stage the function will be sa~pl­
ed at N equally spaced pqints ~nd a qew 
interval of uncertainty will be eq~ql tp 
2H, where H is the original point spacing. 
At the second stage only this 2H interval 
will be considered further, with N ad­
ditional sample points, and so on. The 
fractional reduction in the interval of 
uncertainty after M such stages is: 

M 
FR{N)M = 

m=l 

IU(N)m 

IU(N) l 
Ill-

(25) 

wrere IU(N) = IU(O) as before. 
0 

There-

fore we see, 
IU(N) M 

FR (N)M = IU(O) 
2 }M = {N+l . 

Let ~ equal the total number of f~nction 
evaluations; 

Tl MN 

and FR (N)M = {-2_1 n/N 
N+l 

Nln(l/FR(N)M) 
so ~ = In[ (N + 1)/2] 

(26) 

(47) 

(28) 

(29) 

Now what is the value of N which will make 
Tl a minimum for a given value of FR(N)M? 

FR (N) {b-a} { 1 } 2 N+l b:a · (21) Since N must be an integer, N = 3 is the 
best policy at each stage. So 

and for a given FR(N), N is: 

Let us say 
Then IU(N) 

Therefore, 

N _ 2-FR (N) 
- FR (N) 

that we wish to 
.02 and 

N= 100 IU(O) 

find 

- 1 

if IU(O) = 2.0 we see 

N= 199. 

(22) 

x* + • 01. 

(23) 

that 

{24) 

to locate x* with a tolerance of .01 using 
the exhaustive search scheme. We can do 
better than this, as we see in the next 
section. 

Interval Halfing: A Sequential Search 

We see that the exhaustive search scheme 
causes us to waste much time in unpromis­
ing regions of the original interval. A 
better strategy is to execute a sequence 
of increasingly refined searches in the 
most promising interval at each stage. 
This is the basis of the famil~ of se­
quential search methods, of wh~ch interval 

FR{3) = {3~1} = 4 ( 3 0) 

Hence, the name interval halfing. Notice 
that something very.interesting.happens 
when interval halfing is employed; the 
center function evaluation is saved at all 
stages except the first. Tr~ating the first 
stage differently; 

Tl' = Tl + 1 ( 31) 

wher n' 
ations. 

total number of function evalu-

Tl = 2M. 

M = number of stages. 

Tl' = 2M+ 1 

n'-1 
and FR(3)n' = {~} (~) 

which gives 

Tl' 
2tn ( 1/FR (3) 1J , ) 

1 + { .-Ln2 } 

(32) 

(33) 

(34) 

398 



Therefore, to achieve a fractional re­duction of .01 as before~· ~ 15 function evaluations will be required using the in­terval halfing scheme, which compares quite favorably with the 199 required before. Additionally, the logic of interval half­ing is easily automated, because we deal with only three points at a time. 

METHODS FOR THE UNCONSTRAINED CASE 

Now let us consider the situation where there are N design variables and no con­straints, so 

K = L = 0 in (2) and (3). 

The situation becomes more complex and much of the thinking of the previous sec~ tion does not directly extrapolate. Al­most all methods have two phases; choice of a direction in N-space and minimization in this direction, choice of a new direct­ion, etc. We shall discuss here a few methods which have proven to be dependable. 

+ • 
x 

x, 
Figure 5: Hooke and Jeeves Method 

Hooke and Jeeves [5] 

Given a starting point the Hooke and Jeeves method moves toward the minimum point using a sequence of one dimensional trials followed by a pattern move. The general scheme is shown in Figure 5 for a function of two variables. Variable x 1 is 
incremented a small amount in the positive direction and the function is evaluated, and tested: 

-where X 

F (xl < F (xl (35) 

( 36) 

If (35) is satisfied the trial was a suc­cess in the positive direction. If this trial was a failure, i.e., (35) violated; a point in the opposite direction is gen­erated; 

(37) 

and tested as before. Note that both trials may fail. In any case, the search 

399 

proceeds to the next variable, x
2 , in similar fashion, 

(38) 

and (35) is applied. This process con­tinues until all variables have been in­cremented, after which a pattern direction is established. One trial is performed in the pattern direction, as shown in the figure, before returning to the univariate searching. The process terminates when no progress can be made for even small ~x's. The simplicity of the method speaks for itself. 

cauchy [6] 

cauchy's method is often called the method of steepest descent, since it employs the local gradient in the move logic. Strickly speaking an entire class of methods exists employing the local gradient. Consider a family of trial points, x: 

where 

g(xl 

X = x ~ a g(X) (39) 

x trial point in N-space. 
x = current location in N-space. 
a = step length parameter. 

aF oF 
[axl' ox2' 

oF JT d" t . . . ' ax = gra ~en 
N vector. 

The simple gradient method results when a is chosen and held as a constant through­out the search. This method is easy to execute, but will surely be slow in ap­proaching the minimum point,_since the gradient approaches zero as x approaches the solution, xM. 

The situation can be improved by choosing a at each step. It would seem reasonable to select a to give the maximum decrease in the function in the direction dictated by g(x). That is choose a* such that 

g(X:) = 0. (40) 

Obviously, this will require a one dimen­sional search method similar to the pre­viously discussed methods. The exact me­chanics of executing a line search in N­space are discussed in the next section. When a* is so determined we have the method of steepest descent. This method will re­quire fewer steps than the simple gradient method, but is still too slow to be prac­tical for functions usually encountered in design. 



Searching a Line in N-Space 

The previous and following methods use a 
common move prescription in N-space. 

X== x - a P(X) (41) 

Where P(x)is the direction of search, and 
is different for each method. Each method 
calls for a single var.iable search along a 
line in the N-dimensional design space de­
fined by P(x). Using the previous discus­
sion the following algorithm is useful: 

Line Search in N-Space 

1. set a = o. 

2. calculate F (x (a.) ) = FO. 

3. set a = a small value. 

4. let X X - a. P <x> 

5. calculate F (;;(a)) Fl 

6. is Fl < FO? 

yes: go to 7. 

no: let a. = a/2 and go to 4. 

7. set a 2a 

8. let x = x- a P(x). 

9. calculate F(x(a)) = F2. 

10. is F2 < Fl? 

yes: let FO = Fl, Fl = F2, and go to 7. 

no: a* has been bounded, begin inter­
val halfing. 

Fletcher-Reeves [7] and Davidon-Fletcher­
Powell [8] 

These methods use the move prescription 
given in (41), with the search direction 
P(x) given below: 

P(x) = g(x), simple gradient (Cauchy). 

P(x) g(x) + q(x), conjugate gradient 
(Fletcher-Reeves). 

P(x) = Ag(x), variable metric (Davidon­
Fletcher-Powell). 

(42) 

(43) 

(44) 

With each of these methods a.* is found 
directly at each step. The Fletcher-Reeves 
search direction is chosen to maintain con­
jugacy of the sequence of directions: 

q<x> = g(~l:g<~> P(xl 
g(x) g(x) 

(45) 

where we consider three contiguous points in 

400 

the search, x, x, x. Therefore, P(~) 
previous search direction. This method 
possesses the property called quadratic 
convergence. Given a generalized quad­
ratic function: 

F(xl 

where a = a scalar. 

(46) 

E a column vector of constants. 

H = an N x N matrix of constants. 

the Fletcher-Reeves method will find the 
solution, xM in N steps or less from an 

arbitrary starting point, x . 
0 

The Davidon-Fletcher-Pawell method changes 
the search direction by updating the mat­
rix A: 

A AT A AT A 

A = A + ox ox A 6g 6g A (47) 
AT A 

6~? A 6g ox [',g 

where 
A 
A metric at last step. 
A 

6X previous step = X - x. 

[',g = gradient change g(x>- g (x). 

The method begins with A as any positive 
definite matrix, such as the identity 
matrix, I. It is interesting to note that 
for a quadratic function with A = I at the 
start, the variable metric method performs 
exactly as the1conjugate gradient method. 
Also if A = H- at the start, one step 
convergence is achieved for a quadratic 
function, because the Newton method is 
generated. F£r a nonquadratic function A 
approaches H- in a finite number of steps. 
Restarting is necessary when the positive 
definiteness of the A matrix is violated. 
The method is quadratically convergent. A 
disadvantage is the need to carry a full 
N x N matrix throughout the search. 

Miele's Memory Gradient Method [8] 

Miele's memory gradient method is a gen­
eralization of the Fletcher-Reeves con­
jugate gradient method. The move pre­
scription is: 

A 

X X ag(x) + ~ ox (48) 

A 

where ox x x = previous step, and a and 
S are free parameters to be found at each 
step. A closer look, than space will al­
low, at conjugate gradient algorithms is 
necessary to see the connection with 
Miele's method. Briefly, there are really 
two free parameters at each point in the 
conjugate gradient method. One of these 



par~ete~s i~ selected assuming a quad­rat1c ob]ect1ve function. The other para­meter, a, is found directly to help ac­commodate the nonquadratic effects. In the memory gradient method, no such concession is made to quadratic objective functions. Published numerical results indicate an in­crease in the rate of convergence over the Fletcher-Reeves method, especially in the initial stages of the search. The move prescription is very simple, but requires a ~wo d~mensional search at each generic po~nt, x. This two dimensional search is a major practical disadvantage of the method. 

METHODS FOR THE CONSTRAINED CASE 

In the previous discussion we have seen that in most practical engineering design problems the variables are constrained in some way. These constraints normally ap­pear in one of two forms7 inequalities or equalities, as given in (2) and (3). Many very practical design problems contain variables which must take on discrete values, and other problems possess vari­ables which exhibit randomness. These two latter complications are of tremendous practical importance, but will be ignored here. We consider here three fundamental­ly different procedures for handling the constrained problem. 

The Penalty Function [9] 

Consider the following function 

P(x) = F(x) + 1'iJ (X, R, ¢, f) (49) 

which we call a generalized weighted pen­alty.function. ~is the penalty term, and 1s constructed so that feasible points (~oints which satisfy the constraints) are g1ven favored treatment. Also we wish to choose ~ such that the unconstrained minimum of P(X) can be easily found, and has a solution which is related to ~· the 
solution to the constrained problem. Choosing ~ is very much an art, and much work remains to be done in this area. A penalty term which has proven to be useful is: 

K 

tiJ(x, R, ¢, l> = R2 I! {-1-} + (]:) 
k=l ¢k (X:> R 

L 

~ {~-t(x)}2 (50) 
{=1 

where R, the penalty parameter is chosen as a small positive value, say 1.0, to start and decreased toward zero after each unconstrained minimization. We assume 

401 

that the starting point, x , is feasible 0 
with re~pect to the inequality constraints, and not~ce that the weight of the inequali­ty violations are decreased, and the weight of the equality violations are increased after each minimization phase. The major advantage of the penalty approach is the ease of usage. We have taken a relatively complex problem and broken it down into a sequence of more simple unconstrained pro­blems, which can be solved with the pre­viously discussed methods. 

Currently a great deal of effort is being expended in the development of penalty functions [10,11], and this author expects metho~s to app7ar.soon which will be vastly super1or to ex1st~ng methods, especially for large problems. 

The Griffith and Stewart Method [12] 

This method is formulated to take advantage of the very powerful linear programming methods currently available, such as the Revised simplex ~ethod [13]. Basically the method works as follows. Given a feasible starting point, x , expand each of the 0 
functions, F(X), ¢k(x), k = L 2, 3, ••. , 
K, ~{(x), { = l, 2, 3, ••• , L about the 
point x

0
, retaining only linear terms. 

Solve the linear program which results, and expand and linearize about the new point, etc. In order to obtain any success with the method, the changes in the design vari­ables must be limited at each phase. The Revised Simplex Method vill return a point which resides on at least two of the linear­ized constraints, and which may not be in the neighborhood of the current point. Therefore, the method must be forced to take small steps. The method has proven to be effective for problems where the ob­jective and constraint functions are near­ly linear. The method will often be very slow or not converge at all for very non­linear problems. 

The constrained Derivative Method [14,15] 
This method was developed to handle the nonlinear problem with equality constraints, but can be used for the full problem with the introduction of slack variables in each of the inequality constraints such that they appear as transformed equality con­straints. This amounts to a bookkeeping difficulty which we will not consider fur­ther here. 

Divide the design variables, x, into two clases called the state and decision vari­ables7 



- c- -JT X= y, Z {51) 

where the decision variables are completely 
free, and the state variables are slaves 
used to satisfy the constraints. That is, 
whenever a decision variable is changed all 
state variables are adjusted to maintain 
feasibility. Now, the constrained deri­
vative (also known as the reduced gradient) 
is the rate of change of the objective 
function with respect to small changes in 
the decision variables, with the state 
variables adjusted to maintain feasibility. 
The strategy then is to find a set of de­
cision variables which make the constrain­
ed derivative zero. Any of the uncon­
strained methods can be used to achieve 
this goal. The constrained derivative 
method is probably the most powerful method 
currently known for the nonlinear program­
ming problem. 

CLOSURE 

This survey is not intended to be complete, 
but does in the author's opinion offer 
concepts which are useful in a design en­
vironment. Many other methods have been 
proposed, and are worthy of careful con­
sideration. In fact a newcomer to the 
area can feel like a Prince in his father's 
harem, with so many methods waiting to be 
used, which from a practical viewpoint must 
be applied one at a time. The fact that 
these methods have practical application 
has and is being demonstrated in the open 
literature. The best method for a given 
problem or class of problems is very much 
an open question. There is a real need 
for additional comparative data on the 
performance of the various methods on pro­
blems with varying degrees of difficulty 
[16, 17, 18]. Careful collection and 
analysis of this data should lead to even 
better methods. 

There are several geniunely useful text­
books in the area. The ones by Fox [19], 
Siddall [20], Himmelblau [21], and Bev­
eridge and Schechter [22] are particularly 
noteworthy. Codes have varying degrees 
of availability. The package by Siddall 
[23] called Opti-Sep is user oriented, 
definitely useful, and available. 

REFERENCES 

1. 
A Philosophy 
1966, p. 69. 

2. Seireg, A., "A Survey of Optimization 
of Mechanical Design," ASME Trans­
actions: Journal of Engineering for 
Industry, 1971. 

402 

3. Mischke, c. R., An Introduction to 
computer-Aided Des~gn, Prent~ce-Hall, 
1968. 

4. 

s. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Wilde, D. J. Optimum Seeking Methods, 
Prentice-Hall, 1964. 

Hooke, R. and Jeeves, T. A., "Direct 
Search Solution of Numerical and 
statistical Problems," JACM, 8(2), 212-
229, 1961. --

cauchy, A., "Method generale pour la 
resolution des systems d'equations 
simultanees," Comptes Rendus deL' 
Academie des Sciences, 25, 536-538, 
1847. 

Fletcher, R. and Reeves, c. M., 
"Function Minimization by Conjugate 
Gradients," Computer Journal, vol. 7, 
no. 2, 1964. 

Miele, A- and CantrelL J. W., "Study 
on a Memory Gradient Method for the 
Minimization of Functions," JarA, vol. 
3, no. 6, 1969, p. 459. ----

Fiacco, A. v., and McCormick, G. P., 
Nonlinear Programming: Sequential 
Unconstrained Minimization Techniques, 
John Wiley, 1968. 

Powell, M- J. D-, "A Method for Non­
linear Constraints in Minimization 
Problems," Optimization, Academic 
Press, 1969, page 283. 

Schuldt, s. B., Personal Communication, 
Honeywell Corp., 1974. 

Griffith, R- E. and Stewart, R. A., 
"A Nonlinear Programming Technique 
for the Optimization of Continuous 
Processing systems," Management 
Science, val. 7, 1961, pp. 379-392. 

Kuo, NUmerical Methods and Computers, 
Addison-Wesley, 1965, Chapter 15, p. 
278. 

Wilde, D. J. and Beightler, C. S., 
Foundations of Optimization, Prentice­
Hall, 1967, Chapter 2. 

Abadie, J. and Carpentier, J., "Gen­
eralization of the Wolfe Reduced 
Gradient Method to the Case of Non­
linear Constraints," Optimization, 
Academic Press, 1969, page 37. 

16. Colville, A. R., "A Comparative Study 
of Nonlinear P_rogr.a.mming Codes, " 
Proceedings of the Princeton Symposium 
on Mathematical Programm1ng, Kuhn, H., 
ed., 1970, pp. 487-501. 

17. Eason, E. D. and Fenton, R. G., "A 
Comparison of Numerical Optimization 



Methods for Engineering Design," ASME paper no. 73-DET-17, June, 1973. 

18. Ragsdell, K. M., National Science 
Foundation: Research Initiation 
Grant, GK-42162, "Optimization Tech­niques for Engineering Design," April, 1974. 

19. Fox, R. L., Optimization Methods for Engineering Design, Addison-Wesley, 1971. 

20. Siddall, J. N., Analytical Decision­Making in Engineer~ng Des~gn, Prentice­Hall, 1972. 

21. Himmelblau, D. M., Applied Nonlinear Programming, McGraw-Hill, 1972. 

22. Beveridge, G. s. G., Schechter, R. s., Optimization: Theory and Practice, McGraw-Hili, 1970. 

23. Siddall, J. N., "Opti-Sep: Designers' Optimization Subroutines," McMaster university, Canada, 1971. 

403 


	Purdue University
	Purdue e-Pubs
	1974

	An Introduction to Optimization Methods for Engineering Design
	K. M. Ragsdell

	tmp.1318282214.pdf.C_eMX

