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COMPUTER MODELLING OF ROOTS BLOWER SYSTEMS 

Professor B.N. Cole, 
Mechanical Engineering Department, 
University of Leeds, 
Leeds, U.K. 

INTRODUCTION 
A great deal of work has already been done in 
investigating analytically the behaviour of Roots 
Blower machines in order to obtain a better under­
standing of their mode of operation and assess means 
of improving performance in operating conditions. 
The work described here is part of a continuing 
programme of such investigations. Firstly des­
cribed is an extension to the "characteristic equa­tion" approach given in ref.l. This paper also 
describes the mode of operation of the Roots Blower, 
and its performance both as a single stage machine 
and as a multistaged unit. The advantages of mult­
'staging arise particularly from the fall of effi­
ciency of a single stage Roots Machine as the pres­
sure ratio across it is increased, and also the in­
herent restriction of the design to relatively 
modest delivery pressures. Using m9re than one 
machine thus enables one to generate with improved 
efficiency pressures of which a single stage machine 
is just capable, or to enable pressures to be ob­
tained which would otherwise be beyond the range of 
a single stage machine; an additional practical 
bonus lies in the reduction of loading on the timing 
gears which can arise if the pressure rise across a 
single machine is reduced. By way of example of 
what might be expected, it is considered feasible 
that a competitive 3 stage Roots Machine could be 
devised for a pressure ratio of around 6:1 to pro­
vide a convenient workshop supply at about 90 psi. 
This arrangement would have the additional advantage 
of being clean and eliminate the need for filters to 
remove traces of oil contamination from the com­
pressor. Such a system is to be analysed in due 
course by considering 2 pairs of 2 stage machines 
with the second stage of the first pair identical to 
the first stage of the second pair, and will be 
reported at some later date. Here the analyses are 
particularly applied to 2 stage arrangements. The 
equations previously derived by this method have 
assumed each stage to be running at the same speed, and that the real leakage areas of the machine are directly related to the machine size, Extensions 
to the analysis described here allow for these con­
ditions to be relaxed, to give greater freedom in 
definition of the machine conditions. The equa­
tions are also presented for a machine operating 
under motoring conditions. Practical use if made 
of a Roots machine to motor for the purpose of 
metering gas, and whilst it is not usual to extract 
power from this situation, the behaviour of such a 
machine may now be investigated. These equations 
are also used in the 2 stage analysis for the situa­
tion where the second stage motors. 

Further benefits may be achieved from multistaging 
beyond those described above. Firstly intercooling 
may be allowed between the stages, and such a 
possibility is included in the characteristic equa-
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tion analysis. An alternative is to close-couple 
the stages to reduce to a minimum the size of the 
intervolume trapped between the stages. This is 
of benefit to the machine because of the changes in 
size of the trapped volume during parts of the 
machine cycle givin-g rise to some isentropic com­
pressions within the cycle and resulting improvement 
in efficiency, In this part of the paper, use is 
made of the equations developed previously for the 
geometry of the rotors (ref.2) and as a first 
approximation only an ideal arrangement with leak­
less machines is considered. 

NOTATION 

A 
a 
B 

s 

c 

F 
M 
m 
N 

e 
</> 

Leakage area 
Acoustic velocity 
Ratio of swept vols as of first to second 
stage 
Ratio of shaft speeds as of second to first 
stage 
Swept vol/rev (= 4 x val of a cell between 
rotor and casing) 
Leakage area factor 
Mass flow rate 
Mass 
Non-dimensional speed 
Shaft speed 
Gas constant 
Static temperature 
Volume 

(nc/Aa) 

Work input per unit mass of gas 
Ratio of specific heats (= 7/5 for air) 
Intercooler effectiveness 
Isentropic efficiency 

Volumetric efficiency 

Overall pressure ratio referred to intake 
pressure 
Stage pressure ratio 
Flow function of 6 

Suffixes 

1,2 Stage quantities 
L Leakage 
B Blowi~g condition 

.M Motoring condition· 

THEORETICAL MODELS EQR CRARACTERISTIC EQUATION 
The theoretical model used here was proposed by Cole, Groves and Imrie (ref.l) and is shown in fig.l. 
In the model the actual leakage paths around the 
rotor tips, end faces, and between the rotors them­
selves are replaced by a nozzle external to the -· 
machine. Perfect sealing is now assumed within the 
machine. The cross sectional area of the nozzle 
is initially taken to be equal to the total leakage 
area within the real machine, and flow through the 



nozzle assumed :isentropic, It has been fo"Wld that 
these assumptions overestimate the flow to some 
deg~e~, but a suitable correction can be made by an 
e~plrlcal factor to give close agreement of the pre­
dlcted performance with measured over a vide range 
of conditions. In this paper such a coefficient 
will be assumed to have been allowed for within the 
determination of the value of nozzle area. The 
principal assumptions of the analysis are as 
follovs:-

1) The working fluid is a perfect gas 
2) All processes are adiabatic 
3) Mixing processes proceed instantaneously to 

homogeneous equilibrium 
4) The leakage flow is considered isentropic to 

the throat of an equivalent area convergent nozzle. 
The subsequent throttling and mixing processes pro­
duce a ~ise of intake temperature. (Shaft leakage 
to outslde the machine is ignored for present pur­
poses). 

5).The delivery space acts as an infinite 
receiver 

6) Negligible wave motion effects 

Using these assumptions the equations describing the 
_machine performance may be derived and are given in 
ref .1. 

In t~e.case of a machine operating under motoring 
condltlons, providing the definitions of the 
variables are strictly adhered to the performance 
equations remain unchanged. The volumetric 
efficiency of the machine will, however, become 
greater than "Wlity signifying that a greater volume 
of gas is passing through the machine than would be 
the case if it were completely leakless. The 
characteristic equation, however, will appear in 
simplified form because the mixing now occurs on 
the delivery side of the machine (Appendix 1}. 

The characteristic equations of the machine are 
thus as follows: 

1) For a blowing condition: 

N2 ~:~J 2 = ~ ll ~~e nvr [ 1 + ~v, y ~ 1 • (e - 1~ 
• (1) 

or ~B = 

2) For a motoring condition: 

~ r 2 Y+ll~ 
where ~M = j ~ LeY e Y J 

y 

'[_g__JY+l 
for e ~ 0 + 1 

(2) 

y 

or ~M 
Y=l:r;;;; 2 y 

Cy + 1 l y + 1 = o. 484 for 8 f> 
l__g_JY-1 
LY +1 
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Also necessary for a complete solution are the 
following equations: 

nv3- 2nv2 + nv(l- ~) - ~.Y ~ 1.(8- 1) = 0 , , (3) 

N2 
where E = 2 ~ 2 82 y. B. 

w 1 :RT""" =- · (e - 1) 
o nv 

. . • ( 4) 

APPLICATION OF CHARACTERISTIC EQUATIONS TO TWO STAGE 
SYSTEM 
~is part of the analysis, in addition to the 
previous assumptions, it is assumed that the inter­
stage vol~e, whether cooled or not, is 'large' 
compared Wlth the stage volumes, and creates no 
pressure loss. Previous analyses of the 2 stage 
system have depended upon equal stage speeds and 
complete geometric similarity between the stages. 
These conditions are here relaxed by the intro­
duction of factors Sand F, where S is defined as 
the ratio of second stage shaft speed to first and 
F is defined by the condition · ' 

Al = B~ 
A

2 
F 

(5) 

such that putting F = 1 reverts to the complete 
geometric similarity condition. A further exten­
sion arises from keeping the equations in general 
form such that allowance may be made in the com­
puting for the leakage to become choked. Manipula­
tion of the equations applied to each stage yield 
the following results: 

For both stages blowing 

For second stage motoring 

+ n c 

(6) 

, , , (T) 

+ ....L. 1...:...1:.. ( 8 
nv2 Y 2 

- l)] 
• • • ( 8) 

1 ,Y - 1 +---·(e 
nvl Y 1 - 1~ 

• • • (9) 

For the limiting case where e
1 

= 1 and the second 
stage is blowing: 



+ l· Y-1. (a -1)1(1 - n ) n Y 1 c vl 

wl 1 
- =- (8 - 1) 
RT0 ~l l 

••• (11) 

.•• (12) 

• • • (13) 

••• (14) 

The solution of these equations on a digital com­puter may be approached from two viewpoints. 
Firstly given operating conditions may be taken by specifying the parameters G) and n and machine .conditions by N1 S and F. For a gi~en first stage pressure ratio the solution is obtained thus. The first stage volumetric efficiency is obtained by numerical means from equation (3), choosing the 
appropriate root if more than one should lie within the range searched. Simultaneous splution of 
equations (11) and (8) (or (11) and (9)) will yield nv2 and N2 • B is obtained from equation (6) and the specific work for each stage and the total from equations (12)-(14). Overall efficiency may thus now be derived. Hence this method of solution 
gives the sizes of a pair of machines that would be required for a given set of operating conditions 
and the performance which could be expected from them. A variation could be used to prefix the 
size ratio B and hence determine the relevant speed ratio S. A sample set of computed results is 
shown in fig.2. The initial results of this type 
of analysis showed that with S and F equal to unity, the optimum efficiency was given closely by the 
condition a1 = ~. However by varying S and F it is seen that this condition does not always hold. 

The alternative approach is to consider the per­
formance that might be expected from a pair of 
machines over their whole working range. In this case the machines are defined (non-dimensionally) by setting values to the parameters N1 , B, S, F and nc and the solution obtained for a given range of 
values of 81 by evaluating nvt as previously, 
evaluating llv2 from equation 6), subsequently solving for N2 and e2 from equations (ll) and (8) (or (ll) and (9)) and again obtaining the values of specific work and hence isentropic efficiency 
through equations (12)-(14). A sample set of 
results of these calculations is given in fig.3. 

Elementary checks on these programs may be carried out by allowing N1 to become large, simulating the ideal conditions of zero leakage area in the first stage machine. Under these conditions the first 
stage volumetric efficiency approaches unity and 
the resulting values derived approach the value 
obtainable from simplified expressions. In the 
second approach, at certain values of e1 the second 
stage will motor, and as 81 is reduced eventually 
the overall pressure ratio will fall to below unity. 
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Further reductions in 81 will eventually cause the computer program to give an error message when the work done by the first stage falls below unity as 
no allowance has been made for the first stage to motor. In the program so far developed, the limits imposed on e1 and 82 have been normally set at 2 as this is about the practical limit of most machines, However, trial runs have been made with 82 allowed to reach 20, and there does not appear from this to be an upper limit to the mathematical solution of 
the equations, 

Further possible investigations arise from these 
solutions. By adjustment of the value of N1, 
allowance may be made for the variation of the 
leakage area in the first stage machines. The 
second stage leakage area is then controlled by F in equation (5) and may either be restricted to its 
standard value or simultaneously (or independently) allowed to vary. Hence it may be predicted what 
possible variations are likely to arise due to the variation in "standard" machines due to the effect 
of normal machining tolerances on the leakage 
areas of the machines. .. Also consideration may be given to a pair of machines used in applications 
demanding varying operating conditions. In such a case it may be that benefits in efficiency can be 
obtained by suitable variation of the speed ratio 
between the stages. In such a case a suitable 
control system characteristic could be devised such that whatever the delivery pressure the relative speeds of the machines are chosen to give optimum 
economy at all times. 

CLOSE-COUPLED TWO-STAGE ARRANGEMENT 
Under conditions where it is not practicable to pro­vide suitable intercooling between the stages in a 
2 stage arrangement, some benefits are obtainable by mounting the machines in such a way that the inter­volume between them is kept to the smallest possible size, There comes a time between the transfer of ·. 
an amount of gas in the first and second stages 
when the volume trapped between the stages undergoes cpanges in size and hence the gas undergoes an 
amount of isentropic compression. However, the amount of this compression achieved depends upon the relative phasing of the rotors, and also on the 
geometry of the machines, particularly the size of the first stage delivery port and the second stage inlet port. In this analysis, ideal machines have been used as a first approximation, having zero clearances between rotor and casing and unit volu­metric efficiencies. The derivation of the equa­tions governing the system is given in Appendix 2 
and leads to the following governing equations, 
with notation as in fig.4. 

define 

+ vl] 

Y = : I Dvl + vi + v t I 
0 

For -45 < B < 0 define 

X = v~ ~v t + vi + v o + v 1] 
Y = v~ ~(vo + vl) +vi + vt J 

. . • (15) 

••• (16) 

(17) 

(18) 



whence 

= _____ ..::1 ___ __,...,. 

Y)[~: ~r- y[~r 
..• (19) 

(1 + 

[ Y-1·] ttl -.. -y--1. 
n. = ----:-:-~~-:~-------

:t.s D t;, [1 + l...:._!( IB It;, - 1 )] - 1 
• y 

• • • (21} 

To obtain optimum conditions equation (20) may be 
differentiated against D to give conditions 
governing minimum power expenditure, viz 

@ opt = y = 1 t Dy t;, ~ : ~r -1 - 1 1 .. (22) 

This condition has been used throughout the calcula-
tions. 

Because of the accuracy required in solving these 
equations where small differences of large numbers 
are involved, a computer was used. Equations 
giving the s~zes of the volumes involved for a 
typical pair of commercially available machines were 
taken from ref.2. The solutions have been obtained 
for a varying size of intervolume although it is 
considered that a size equal to one first stage cell 
vol~e would be about the smallest practical limit 
that could be achieved (fig.5). The results for 
varying rotor phasing are given in fig.6. The dis­
cont-inuity which arises at S = 0 is caused by the 
additional interaction of a second stage cell volume. 
A further investigation was that of altering the 
port sizes to note the effect of a delay in the 
communication of the first stage cell volume with 
the interstage volume (fig.T). In this case con­
siderations of a flow restriction through a port of 
reduced size do not arise since it is found that 
maximum efficiency is obtained with maximum port 
size that can be accommodated within a particular 
geometry. 

It has been found (ref.l) that with this arrangement 
certain undefined gas dynamic effects within the 
intervolume cause deviations from the expected 
figures in an actual machine. It would be prudent 
therefore :f such an arrangement were to be con­
sidered that some tests be carried out during the 
commissioning to ensure that the optimum arrangement 
had been achieved. 

Actual power savings with this system would appear 
to be small. However, if a situation arose where 
a 2 stage machine was required without intercooling 
being available between the stages, then the bene­
fits that might be obtained suggest this system 
should be considered. Further, in situations where 
the gas is not particularly required to be in a dry 
state, some cooling might be effected by means of 
water spray injection either at the inlet or between 
the stages, and again the benefits obtainable from 
this geometry might be advantageous. 

CONCLUSIONS 
This paper extends the means available for pre­
dicting and examining the operation of a pair of 
Roots Blowers. In the case of the characteristic 
equation approach, new methods are available for 
assessing the effects of different stage speeds and 
leakage areas, and will make it possible for easier 
optimisation of new designs and improvement of 
existing arrangements. Where i-~tercooling is not 
possible, enhanced efficiency by means of close 
coupling gives a way of making some small saving in 
power consumption • 
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APPENDIX 1 

Derivation of characteristic equation for Roots 
Motor 
The theoretical model is as shown in fig.l, but with 
the leakage taking place forward from the high pres­
sure (inlet) to low pressure (delivery) sides. The 
states of the gas are denoted by suffix 0 at inlet,l 
immediately downstream of the bloweF at plane B, ·and 
2 at delivery after mixing with leakage flow. 

In this model the leakage mass flow rate is denoted 
by ML, or mt per unit mass entering the system. M 
represents actual inlet mass flow to the system as a 
whole. As for the Roots blower, it may be verified 
that the leakage mass flow is given by, under the 
assumptions given in the text, 

[R. 
~ = mt,M = AE poJ RT

0 
~M (23) 

where ~M [

2 Y+l] ~ 
=~eY-er_ 

l 

2 y Y-1~ 
(Y+l) Y"+l for 6 ~ 

The volume flow rate through the machine :t.s g:t.ven by 

•• (24) 

where n is defined by (Actual volume throughput)/ 
(Ideal ~olume throughput in leakless machine) and is 
in this case >- 1. 
If unit mass be supposed induced in r revolutions, 
then the volume of air passing through the blower 
proper is given by 

v1 = Cr = (l - mt)V0 

Hence ~rom (24) and (25) 
m ,.1_.1.. 

t nv 

• . . (25) 

. (26) 

Since unit mass is delivered in r revolutions, and 
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actual mass flow rate is M at speed n 
M=E. 

r (27) 

Using equations (24), (25) and (271 
Tl p Yg.Cn P

0 'lv M = v 0 
(28) Cn RT = 2 

0 ao 

Combining equation (28) with (23) and using (26) 
leads to 

_ _1_)ygCnP0 nv _A ~g. 
(l n a - E Po RT

0 
~M 

v 0 
••• (29) 

which may be manipulated to yield the equation ( 2). 

APPENDIX 2 

Analysis of Close-Coupled 2 stage system 
The notation for this analysis is given in fig.4. 
It is assumed throughout that each stage has equal 
diameter ports, the blowers are assumed geometricaDW 
similar, and for the purposes of the calculations 
involute rotor profiles having minimum pressure 
angles have been considered. 

For the advanced system with relative rotor phasing 
such that 0 ~ e ~ 45°, the cycle events for a simple 
first stage cell volume are with X and Y defined by 
equations (15) and (16). 
1) Induction and carry round in first stage v

0 
at 

Po' To 
2) Communication and adiabatic mixing of cell volume 
with intervolume (Dv

1 + vi + vt) at P
2

, T
2 

to give 
(Dv1 +vi+ v

0 
+ vt) at P

1 , T1 whence 

P
0

v
0 

+ P2 (nv1 +vi + vt) 

Dv1 + vi + vt + v
0 

(30) 

3) Isentropic compression 1 (Dv
1 

+ vi + vt + v
0

) at 
P1 , T1 to [_D(vt + v

0
) +vi + v1] at P

3
, T

3 
whence 

= p rnvl + vi + vt + vo J y = p [1 + y J y (31) 
P3 1 L?vt + Dv

0 
+ vi + v1 1 D + X 

4) Cut off by second stage Dv o at P3' T3 
5) Isentropic compression 2 in intervolume, 
(Dvt + vi + v1 ) at P

3
, T

3 to (Dv1 + vi + vt) 

a Physical systom 

at 

Ztra 
cle:aranct 

Running 
clroroncr 

P
2

, T
2 

(ready for next communication) whence 

p = p ~ 
[Dvt + v. 

2 3 Dv1 + vi 
+ vl J y 
+ vt p3 [ ~] y (32) 

6) Transfer in second stage and backflow compression 
Dv

0 
at P3 , T

3 
to P4, T4 

In the case of a retarded system, an additional 
second stage cell volume is involved in the initial 
communication. Provided the definitions of X and Y 
are modified as in equations (17) and (18), the 
analysis proceeds identically to the advanced case. 
Eliminating P

2 
and P

1 
from equations (30)-(32) yields 

an expression for the interstage pressure ratio 
(although this is actually varying P2 , P1 , P

3 
• .) 

p3 1 
.- - - = = constant . (33) ~ - p y y 

o (l + y)(D + X) _ y(X) 
1 + y y 

By applying the principle of conservation of mass in 
the stages, evaluating the isentropic temperature 
rises during the compressions and applying the 
expression for temperature rise in a Roots Blower to 
the second stage, it may be shown that: 

+ --(-- 1) y - 1 ® ~-
y I; • (34) 

Finally equating the work input per unit mass to the 
change of enthalpy from states 0 - 4, and using 
expression (34) yields the specific work for the 
machine as given in equation (20). 
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Fig 2: 
and H 
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1-1500 
1.2000 
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1.6000 
1. 8000 
2.0000 

Fig 3: 

Tlvl f1v2 N2 B Specific nis 
work 

0.7487 0.3985 2.301 0.6040 3.1229 0.4133 
0.7244 0.4251 2,179 0.6999 2.8894 0.4467 
o. 7167 0.4333 2.142 0.7320 2.8340 0.4554 
0.7006 0.4504 2.069 0.8025 2.7428 0.4705 
0.6788 0.4731 1.977 0.9046 2.6678 0.4838 

Sample evaluations of blower sizes and performance for F ~ 1.5, s ~ 0.75, nc = 0.75,N1= 4 
= 3. 

82 nv1 nv2 N2 H Specific nis. 
work 

Failed - No rts of X2 
0.6932 0.8821 1.2940 1.845 0.7971 -0.0700 
0.8680 0.8630 1.2185 1.841 1.0416 0.1216 0.3373 
1.0004 0.8008 0.9874 1.824 1.4005 0.4999 0.7074 
1.0689 0.7487 0.8246 1.806 1-7103 0.8897 0.6519 
1.1871 0.7006 0.7016 1.785 2.1367 1.4303 0. 5928 
1.3050 0.6531 0.6038 1. 763 2.6100 2.0916 0.5277 

Sample evaluations of performance obtainable with F= 1.5, s-= 0.75, nc-= 0.75, N1 -= 4, B-= 1.25. 

0·1 

TWO STAGE SYSTEM 

SINGLE STAGE BLOWER 

1· 0 10 

9=3 

D-=0· 67S 
f]:.Q 

100 00 

I NTERVOLUME ~TIO vi tvo (LOG. SCALE) 

FIG 5. EFFECT OF INTERVOLUME SIZE 

Fl G 4. NOTATION FOR CLOSE-COUPLED SYSTEM. 
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