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SOME RECENT RESEARCH IN GAS DYNAMIC MODELLING OF

MULTIPLE SINGLE STAGE RECIPROCATING COMPRESSOR SYSTEMS.

Rowland S. Benson, Professor, Dept. of Mech. Eng., University of
Menchester Institute of Science and Technology.

Ahmet 5. Ucer, Lecturer, Dept. of Mech. Eng., Middle East Technical
University, Ankara, Turkey, (Formerly UNESCO Research Fellow at UMIST).

INTRODUCTION

Models for simulating single cylinder reciprocating
compressors have been suggested by Costagliola (1),
Wembsganss et al (2) and Bannister (3). These have
either neglected the dynamics of the intake and
delivery systems (1,2) or neglected the inertia of
the compressor valves (3). Several authors (L4-9)
have suggested methods for predicting the pressure
pulsations in compressor delivery systems, These
methods are essentially based on small wave theories.
These lead to an insight into the problems of pulsa-
ting flows in compressor systems, and give reasonahle
predictions of pulse frequency, but pulse amplitude
predictions, however, become steadily worse as the
amplitude of the pressure pulse increases. Extensive
research (10-13) on non-steady flows in internal
combustion gas exchange systems has lead to the
development of powerful computer programs for the
study of non-steady flows. Excepting for the mode
of operation of compressor automatic valves these
techniques can be readily applied to compressors and
their intake and delivery systems. This paper
reviews some recent researches on the epplication of
these methods to single cylinder compressors in
multi compressor installations, Space precludes a
detail review of this work, this has been given
elsewhere (14-16).

As a first step an experimental and theoretical
investigation was carried out on non-steady flow
through non return disk valves (17). This was used
as the basis for modelling the valve movement. Since
the generalized non-steady flow equations including
friction, heat trensfer, gradual area changes and
entropy gradients required extensive computing time
with the generation of computers available at the
commencement of the project, a modified theory was
developed in which the flow was assumed to be
isentropic in the pipe, but friction was included.
Simplifying assumptions were made and adjustments
inecluded in the calculations to allow for these
assumptions (14-16). To test the model, an
extensive test programme was carried out with a
large number of compressor systems with one, two and
three single cylinder compressors and receivers of
different capacity.

GAS DYNAMIC MODEL

The development of the algebraic expressions used in
the gas dynamic model have been given elsewhere (1l-
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16). It is proposed therefore to briefly summarise
the treatment, For caleulation purposes compressor—
Pipe systems may be subdivided into two parts, the
primary part comprising the intake and delivery
ripes and the secondary part the compressor cylinder,
the suction and delivery valves, the pipe junctions
and the receivers,

The calculations of the conditions in the primary
parts of the system involve the numerical solution
of the one-dimensional non-steady flow equations by
the method of characteristics (14), For each pipe
the distance-time field is subdivided into a mesh
system, At each point the non-dimensional speed of
sound A and particle velocity U are caleculated
through the Riemann variables A, 8 (A = A + 551 U,
B=A- Egl U). At each pipe end either X or B is
known but not both., The secondary or boundary
calculations evaluate the unknown Riemann variable
and the gas dynamic conditions at the pipe ends, If
the volumes at the boundaries can be neglected the
flow conditions are determined using quasi steady
equations of continuity and energy. If, however,
the volume at the boundary is significant then the
generalized first law of thermodynamics (equation
(2.20), ref.(18)) is used relating the conditions
within the volume to the flow rates as well as the
quasi steady equations of continuity and energy.

At the time of the commencement of the research
project, the allocated computer run times were
limited, it was therefore decided to simplify the
characteristics equations by neglecting heat transfer
and entropy changes and include friction only. Thus,
a modified homentropie theory wes developed {(1h).

It was subsequently found that the difference in
entropy levels in the various parts of the system as
well as the heat transfer in the pipe had an import-
and influence on the calculations within the pipe
and cylinder. By obtaining the mean entropy level
in the system and adjusting the pipe length for the
temperature variations due to heat losses the modi-
fied homentropic theory gave good results., It was
arranged that the mean entropy level could be
automatically calculated in the caleulation (15),
whilst the pipe length adjustments could be
predicted in advance (16).



With the present generation of computers time alloc-
ations become reasonsble and there is no difficulty
using the full non-homentropic theory which allows
for entropy gradients and heat transfer and the
approximations referred to are no longer necessary.
Work is proceeding on these lines.

The secondary or boundary conditions have been
based on theories (and experiments) used in internal
combustion engine gas dynamics (12,13). For the
compressor cylinder it is assumed that the pressure
and temperature are uniform throughout the cylinder.
The generalized first law of thermodynamics
(equation (2.20) ref,(18)) is applied to compute the
pressure and temperature changes from a knowledge of
the mass flows into and out of the cylinder as well
as the piston movement. For the compressor auto-
matic valves two problems arise., These are the
movenment of the valve (which depends on the pressure
difference across the valve as well as the spring
stiffness, the valve and spring mass, pressure drag
and viscous damping) and the flow mechanism through
the valve. From the work of Keddah and Woollatt
(17) it is possible to set up the equation of motion
of the valves. A second order differential equation
can be formulated and solved by Kutta-Merson
techniques. Experimental data are required to
evaluate the drag. The flow mechanism through the
valve is extremely complex, but based on internal
combustion engine experience it is possible to
simplify the flow system. The model is similar to
the model used for poppet velves (19). For outflow
from the cylinder to a pipe, it is assumed that the
flow through the valve is isentropic up to the
minimm effective area (or vena contracta). At this
point the pressure is assumed to be either equsl to
the pipe pressure (for subsonic flow) or to the cri-
tical pressure (for choked flow). The flow from the
minimum area to the full pipe area is assumed to be
adiabatic but irreversible at either constant press-
ure (for subsonic flow) or with a pressure drop to
pipe pressure (for choked flow). For flow from a
pPipe to the cylinder snother model is used. In this
case the flow is assumed to expand isentropically to
the cylinder pressure (for subsonic flow this press-
ure occurs at the minimum area; for sonic flow the
pressure at the minimum area is the critical press-
ure). Four sets of equations are set up for these
four possible flow conditions in terms of the press—
ure ratio across the valve, the velocity in the pipe,
the upstream stagnation speed of sound and the effe-
ctive area of the valve (expressed as a ratio of the
minimum area to the pipe area). From steady flow
blowing tests across the valve the effective ares
can be computed as & function of the overall press-—
ure ratio and the valve 1lift, (expressed as the non-
dimensional parameter n = lift/pipe diameter).
Typical experimental curves are shown in fig. 1,

Pressure receivers can be simulated as either pipes
of large bore with lengthwise wave action or by
vessels of constant volume with uniform pressures
and temperatures. Since in practice the pipe conn-
ections may not always be in the end planes of a
receiver the latter model is preferred. In this
model the generalized first law of thermodynamics
(equation (2.20) ref.(18)) is used for the receiver.
At the pipe ends adjacent to the receiver the press-

ures are assumed to_be equal to the receiver press-

ure for inflow. For outflow from the receiver to
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the pipe the ellipse of energy (equation (k,8) ref.
(18)) is used to relate the receiver pressure to
the gas velocities at the pipe end. At pipe junc-
tions, for example, s three way branch, the press-
ure is assumed to be the same at each pipe end and
the volume neglected (12). The valve pockets are
included in the pipe system by equivalent pipe
lengths (16).

The complete model is set up as a digital computer
program in a series of subroutines. A block diag-
ram is shown in fig. 2 which is self explanatory.
To reduce computation time the starting boundary
conditions in the delivery system correspond to the
set delivery pressure for the system, the controll-
ing parameter being 2 nozzle of known area at the
outlet from the delivery system. The size of the
nozzle is calculated from the compressor capacity
and speed. The calculation proceeds until there
are no substantial changes in the pressure diagrams
in two successive cycles, 1In practice this is
found to be four cycles, the third and fourth cycle
being almost similar,

EXPERIMENTAL PROGRAM AND TEST RESULTS

To test the model an extensive research progranme
has been carried out with three smsll air-cooled
compressors. FPhotographs of the system are shown
in figs. 3 and 4. Four different compressor
systems have been tested. These comprise s single
compressor with a delivery pipe, a single compre-
ssor with delivery pipe and receiver, two compre-
ssors with delivery pipes and receiver and three
compressors with delivery pipes and receiver, Four
different sized receivers have been examined rang-
ing in volume from approximately twice to twenty
times the compressor displacement volume. The
receivers' diameter to length ratios followed
normal commercial practice, All the compressors
vere driven from a single electric motor through a
vee tooth belt drive with variable speed control.
In the multi compressor tests various combinations
of phasing between compressor cranks have been
examined. Altogether some thirty eight different
combinations of speed, compressors, pipes and
delivery systems have been tested,

In addition to the conventional pressure, tempera-
ture and mass flow records the transient pressure
vas measured at various points in the pipe system
as well as the cylinder., The delivery valve move-
ment was measured with a contactless inductive
transducer. The results were recorded on two four
channel Tectronics oscilloseopes and analysed using
a chart reader with a five times full size optical
enlarger and outputted in digital form on paper
tape., In general, good agreement was obtained
between predictions and measurements. Some typical
results are shown in figs. 5 to 11. The pressure
diagrams for the receiver and the tail pipe are
shown gs pressure differences from the mean press-—
ure level, All the other pressure measurements are
in the convential form. It has not been possible
to obtain a dynamiec calibration of the valve move-
ment transducer due to zero drift. The results
shown are based on the static calibrations with the
maximum dynamic 1ift set equal to the maximum static
lift, Comparisons should therefore be made mainly
of the predicted frequency of valve flutter and the



measured flutter. Since the valve movement is
critical to the pressures in the cylinder and the
delivery and intake systems, the good agreement
between the pressure predictions and measurements
would indicate that the calibration technique used
for the valve lift is not unreasonable and a quant-
itative assessment of the valve movement is not out
of order.

A full interpretation of the results has been given
elsevhere (15,16). Figs, 5 to 10 give a represent—
ative range of results which have not been published
and supplement the results given elsevhere. Fig.5
shows a typicel result for a single compressor pipe
system without receiver, The model over-predicts
the valve flutter, nevertheless, the pressure dia-
grams are quite good. The influence of & receiver
added to the delivery system is shown in fig. 6.
The valve flutter is now reduced as predicted as
well as the pressure fluctuations in the tail pipe
(station 6). The influence of compressor speed is
quite clearly seen in fig, 7. The results for the
two compressor combinations are shown in fig. 8 for
the two compressor cranks in phase and in fig. 9
for the two compressor cranks 180° out of phase and
there is good agreement between the predicted
phenomena and the measured results., Finally, fig.
10 gives the results for three compressors, compre—
ssors B and C in phase and compressor A 180° out of
phase. Once again, there is good agreement between
the predicted results and the experiments.

COMMENTS AND CONCLUSIONS

In order not to duplicate previous published work
(14-16) and to keep within the space available,
this paper has been a descriptive exercise of the
development of a gas dynamic model to represent
single stage compressors in multi compressor insta-
llations. The model is fairly simple, being based
on extensive gas dynamic work on internal combustion
engines., For overall predictions of pressure
pulsations in compressor systems and valve move-
ments, the method is reasonsbly accurate and should
prove a useful design tool. A more sophisticated
model for the pipe system would include entropy
gradients and heat transfer. Such a model is
already available for internal combustion engines;
its adaptatlon to compressors is underway. The
vweakest link in the model is the representation of
the valve. At present, the model is grossly over-
simplified and depends on data obtained from blow-
ing tests. What is required is some method to
predict the data in advance from the valve geometry.
This is complex because it will inevitably involve
two or possibly three dimensional models. The
calculation clearly shows, as with the internal
combustion engine work, that steady flow models are
adequate for the boundary conditions in non-steady
flow calculations. Thus, non-steady effects need
not be included in model predictiomns of flow through
valves based on valve geometry.

The work described in this paper was completed over
two years ago, pressure of other work has prevented
a continuation of the research, Should funds
become available it is hoped to examine two-stage
compressors with and without 1nterc0011ng using
similar techniques to that deseribed in the paper,
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There is no limitation to the fluid being compressed
provided it is gaseous and obeys the gas laws., A
possible extension to gases obeying complex gas
laws is possible but would require changes in the
basic equetions. It is hoped that this review
paper will lead to stimulation of interest in appl-
ying the methods outlined in this paper to the
difficulties and complexities referred to above
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