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Abstract—The elimination tree for unsymmetric matrices is a
recent model playing important roles in sparse LU factorization.
This tree captures the dependencies between the tasks of some
well-known variants of sparse LU factorization. Therefore, the
height of the elimination tree corresponds to the critical path
length of the task dependency graph in the corresponding parallel
LU factorization methods. We investigate the problem of finding
minimum height elimination trees to expose a maximum degree
of parallelism by minimizing the critical path length. This
problem has recently been shown to be NP-complete. Therefore,
we propose heuristics, which generalize the most successful
approaches used for symmetric matrices to unsymmetric ones.
We test the proposed heuristics on a large set of real world
matrices and report 28% reduction in the elimination tree heights
with respect to a common method, which exploits the state of
the art tools used in Cholesky factorization.

Keywords-sparse LU factorization; critical path scheduling;
elimination tree; unsymmetric matrices.

I. INTRODUCTION

The standard elimination tree [37] has been used to expose
parallelism in sparse Cholesky, LU, and QR factorizations [1],
[3], [22], [31]. Roughly, a set of vertices without ances-
tor/descendant relations corresponds to a set of independent
tasks that can be performed in parallel. Therefore, the total
number of parallel steps, or the critical path length, is equal
to the height of the tree on an unbounded number of pro-
cessors [32], [38], [39]. Obtaining an elimination tree with
the minimum height for a given matrix is NP-complete [35].
Therefore, heuristic approaches are used. One set of heuristic
approaches is to content oneself with the graph partitioning
based methods. These methods reduce some other important
cost metrics in sparse Cholesky factorization, such as the fill-
in and the operation count, while giving a shallow depth
elimination tree [20]. When the matrix is unsymmetric, the
elimination tree for LU factorization [15] would be useful to
expose parallelism as well. In this respect, the height of the
tree, again, corresponds to the number of parallel steps or the
critical path length for certain factorization schemes. In this
work, we develop heuristics to reduce the height of elimination

trees for unsymmetric matrices. To the best of our knowledge
no previous work looked at this problem on its own.

Let A be a square sparse unsymmetric matrix and G(A)
be its standard directed graph model (more formal definitions
are later in Section II). Then, the minimum height of an
elimination tree of A corresponds to the directed graph
parameter cycle-rank of G(A) [14]. Gruber [19] shows that
computing the cycle-rank is NP-complete, justifying the need
for heuristics for large problems. Consider the directed graph
Gd obtained by replacing every edge of a given undirected
graph G by two directed edges point at opposite directions.
Then, the cycle-rank of Gd is closely related to the undirected
graph parameter tree-depth [33, p.128], which corresponds to
the minimum height of an elimination tree for a symmetric
matrix. One can exploit this correspondence in the reverse
sense in an attempt to reduce the height of the elimination
tree while producing an ordering for the matrix. That is, one
can use the standard undirected graph model corresponding
to the matrix A + AT , where the addition is pattern-wise.
This approach of producing an undirected graph for a given
directed graph by removing the direction of each edge is used
in solvers such as MUMPS [3] and SuperLU [9]. This way,
the state of the art graph partitioning based ordering methods
(designed for Cholesky factorization) can be used. We will
compare the proposed heuristics with such methods. One can
also use some local ordering heuristics [2]; but as analogous
with the case of symmetric matrices, these would not be very
effective in reducing the height of the elimination tree (we
show evidence on this later in Section V).

The height of the elimination tree, or the critical path length,
is not the only metric for efficient parallel LU factorization
of unsymmetric matrices. Depending on the factorization
schemes, such as Gaussian elimination with static pivoting
(implemented in GESP [29]) or multifrontal based solvers
(implemented for example in WSMP [21]), other metrics
come into play (such as, the fill-in, the size of blocking
in GESP based solvers, e.g., SuperLU MT [10], the maxi-
mum/minimum size of fronts for parallelism in multifrontal
solvers, or the communication). Nonetheless, the elimination



tree helps to give an upper bound on the performance of
the suitable parallel LU factorization schemes under a fairly
standard PRAM model (assuming unit size computations,
infinite number of processors, and no memory/communication
or scheduling overhead). Furthermore, our overall approach
is based on obtaining a desirable form for LU factorization,
called bordered block triangular (or BBT for short, which is
summarized in Section III) form [15]. This form simplifies
many algorithmic details of different solvers [15], [17] and is
likely to control the fill-in, as the nonzeros are constrained to
be in the blocks of a BBT form. If one orders a matrix without
a BBT form and then obtains this form, the fill-in can increase
or decrease [16]. Hence, our BBT based approach is likely to
be helpful for LU factorization schemes exploiting the BBT
form as well in controlling the fill-in.

The organization of the paper is as follows. Section II
contains basic definitions and background. In Section III, we
present two common LU factorization schemes and show
the relation between task dependencies and the elimination
tree. We propose heuristics to reduce elimination tree height
in Section IV. Section V gives the experimental results and
Section VI concludes the paper.

II. BASICS

A graph G is an ordered pair (V, E) of a set V =
{v1, . . . , vn} of n vertices and a set E of 2-element-subsets,
called edges, of V . A graph G is called bipartite if V can be
divided into two disjoint sets U and V such that {u, v} ∈ E
implies u ∈ U and v ∈ V , or vice versa.

A directed graph (digraph) G is a graph where each edge
(u, v) ∈ E is an ordered pair of vertices of V . We define
Gs = (V, Es) as the graph associated with digraph G such
that Es = {{vi, vj} : (vi, vj) ∈ E}. A digraph G is called
complete if (u, v) ∈ E for all vertex pairs (u, v).

Let G = (V, E) be a digraph. A sequence of vertices
u0, . . . , uk is called a path of length k from u0 to uk if
(ui, ui+1) ∈ E for all 0 ≤ i < k. A vertex u is said to
be connected to v if there is a path from u and v. G is called
strongly connected if u is connected to v for each pair (u, v)
of vertices. A cycle is a path that begins and ends at the same
vertex. G is called acyclic if it contains no cycles, and we call
such a digraph as directed acyclic graph (dag).

A digraph G′ = (V ′, E′) is said to be a subgraph of G =
(V, E) if V ′ ⊆ V and E′ ⊆ E . We call G′ as the subgraph of
G induced by V ′, denoted as G[V ′], if E′ = E ∩ (V ′×V ′).
For a vertex set S ⊆ V , we define G − S as the subgraph
of G induced by V − S, i.e., G[V − S]. A vertex set C ⊆ V
is called a strongly connected component of G if the induced
subgraph G[C] is strongly connected, and C is maximal in the
sense that for all C ′ ⊃ C, G[C ′] is not strongly connected. A
transitive reduction G0 is a minimal subgraph of G such that
if u is connected to v in G then u is connected to v in G0 as
well. If G is acyclic, then its transitive reduction is unique.

A rooted tree T is an ordered triple (V, r, ρ) where V is
the vertex set, r ∈ V is the root vertex, and ρ gives the
ancestor/descendant relation. For two vertices vi, vj such that

ρ(vj) = vi, we call vi as the parent vertex of vj , and call vj
as a child vertex of vi. With this definition the root r is the
ancestor of every other node in T . The children vertices of a
vertex are called sibling vertices to each other. The height of
T , denoted as h(T ), is the number of vertices in the longest
path from a leaf to the root r.

Let T = (V, r, ρ) be a rooted tree. An ordering σ : V ↔
{1, . . . , n} is a bijective function. An ordering σ is called
topological if σ(ρ(vj)) > σ(vj) for all vj ∈ V . Finally, a
postordering is a special form of topological ordering in which
the vertices of each subtree are ordered consecutively.

Let A be an n×n unsymmetric matrix with m off-diagonal
nonzero entries. The standard digraph G(A) = (V,E) of A
consists of a vertex set V = {1, . . . , n} and an edge set
E = {(i, j) : aij 6= 0} of m edges. We may use D(A)
whenever the digraph is acyclic. Moreover, we may adopt GA

and DA instead of G(A) and D(A) when a subgraph notion
is required, respectively.

An elimination digraph Gk(A) = (Vk, Ek) is defined for
0 ≤ k < n with the vertex set Vk = {k + 1, . . . , n} and the
edge set

Ek =

{
E : k = 0
Ek−1 ∪ {(i, j) : (i, k), (k, j) ∈ Ek−1} : k > 0

.

We also define V k = {1, . . . , k}, for each 0 ≤ k < n.
We assume that A is irreducible and the LU-factorization

A = LU exists where L and U are unit lower and upper tri-
angular, respectively. Since the factors L and U are triangular,
we refer their standard digraph models as D(L) and D(U),
respectively. Eisenstat and Liu [15] define the elimination tree
T(A) as follows. Let

PARENT(i) = min{j : j > i and j
D(L)
===⇒ i

D(U)
===⇒ j} ,

then PARENT(i) corresponds to the parent of vertex i in T(A)
for i < n, and for the root n, PARENT(n) = ∞. The
authors also give an equivalent formulation that is defined
over G(A). In this alternative, for any i 6= n, PARENT(i) = j
whenever j > i is the minimum such that the vertices i and
j lie in the same strongly connected component of subgraph
GA[V j ]. Currently the algorithm with the best worst-case time
complexity has a running time of O(m log n) [26]—another
algorithm with the worst-case time complexity of O(mn) [16]
performs well in practice as well.

We now illustrate some of the definitions. Figure 1a displays
a sample matrix A with 9 rows/columns and 26 nonzeros.
Figure 1b shows the standard digraph representation G(A)
of this matrix. Upon elimination of vertex 1, the three edges
(3, 2),(6, 2), and (7, 2) are added, and vertex 1 is removed,
to build the elimination digraph G1(A). On the right side,
Figure 1c shows the elimination tree T(A) where height
h(T(A)) = 5. Here, the parent vertex of 1 is 3, as GA[{1, 2}]
is not strongly connected but GA[{1, 2, 3}] is (thanks to the
cycle 1 → 2 → 3 → 1). The cross edges of G(A) with
respect to the elimination tree T(A) are represented by dashed
directed arrows in Figure 1c. The initial order is topological,
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(c) Elimination tree T(A)

Fig. 1: A sample 9×9 unsymmetric matrix A, the corresponding digraph G(A) and elimination tree T(A).

Algorithm 1 ROW-LU(A)
for i ← 1 to n do

TROW(i):
for each k < i st aik 6= 0 do

for each j > k st akj 6= 0 do
aij ← aij − akj × (aik/akk)

which would be true for any matrix by definition, but not
postordered in this instance. However, 8, 1, 2, 3, 5, 4, 6, 7, 9 is
a postordering of T(A), and does not respect the cross edges.

III. EQUIVALENCE BETWEEN CRITICAL PATH LENGTH
AND ELIMINATION TREE HEIGHT

In this section, we summarize rowwise and columnwise LU
factorization schemes, also known as ikj and jik variants [11],
here to be referred as row-LU and column-LU, respectively.
Then, we show that the critical path lengths for the parallel
row-LU and column-LU factorization schemes are equivalent
to the elimination tree height whenever the matrix has a certain
form.

Let A be an n × n irreducible unsymmetric matrix, and
A = LU, where L and U are unit lower and upper triangular,
respectively. Algorithms 1 and 2 display the row-LU and
column-LU factorization schemes, respectively. Both schemes
update the given matrix A so that the U = [uij ]i≤j factor
is formed by the upper triangular (including the diagonal)
entries of the matrix A at the end. The L = [`ij ]i≥j factor
is formed by the multipliers (`ik = aik/akk for i > k)
and a unit diagonal. We assume a coarse-grain parallelization
approach [23], [31]. In Algorithm 1, task i is defined as
the task of computing rows i of L and U, and denoted as
TROW(i). Similarly, in Algorithm 2, task j is defined as the
task of computing the columns j of both L and U factors,
and denoted as TCOL(j). The dependencies between the tasks
can be represented with the digraphs D(LT) and D(U), for
row-LU and column-LU factorization of A, respectively.

Figure 2 illustrates the mentioned dependencies. Figure 2a
shows the matrix L + U corresponding to the factors of
the sample matrix A given in Figure 1a. In this figure,
the blue hexagons and green circles are the fill-ins in L
and U, respectively. Subsequently, Figures 2b and 2c show

Algorithm 2 COLUMN-LU(A)
for j ← 1 to n do

TCOL(j):
for each k < j st akj 6= 0 do

for each i > k st aik 6= 0 do
aij ← aij − aik × (akj/akk)

the task dependency digraphs for row-LU and column-LU
factorizations, respectively. The blue dashed directed edges in
Figure 2b, and the green dashed directed edges in Figure 2c
correspond to the fill-ins. All edges in Figures 2b and 2c show
dependencies. For example, in the column-LU, the second
column depends on the first one, as the values in the first
column of L are needed while computing the second column.
This is shown in Figure 2c with a directed edge from the first
vertex to the second one.

We now consider postorderings of the elimination tree
T(A). Following the existing notation [15], let T [k] denote
the set of vertices in the subtree of T(A) rooted at k.
For a postordering, the order of siblings is not specified
in general sense. A postordering is called upper bordered
block triangular (BBT) if the topological order among the
sibling vertices is respected, that is, a vertex k is numbered
before a sibling vertex ` if there is an edge in G(A) that is
directed from T [k] to T [`]. Similarly, we call a postordering
a lower BBT if the sibling vertices are ordered in reverse
topological. As an example, the initial order of matrix given
in Figure 1 is neither upper nor lower BBT, however, the order
8, 6, 1, 2, 3, 5, 4, 7, 9 would be an upper BBT (see Figure 1c).
The following theorem shows the relation between a BBT
postordering and the task dependencies in LU factorizations.

Theorem 1 ([15]): Assuming the edges are directed from
child to parent, T(A) is the transitive reduction of D(LT) and
D(U) when A is upper and lower BBT ordered, respectively.

We follow this theorem with a corollary which provides the
motivation for reducing the elimination tree height.

Corollary 1: The critical path length of task dependency
digraph is equal to the elimination tree height h(T(A)) for
row-LU factorization when A is upper BBT ordered, and for
column-LU factorization when A is lower BBT ordered.

Figure 3 demonstrates the discussed points on a matrix

3



1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

(a) The matrix L+U

8

46

9

1

7

2

5

3

(b) Task dependency digraph D(LT)

8

46

9

1

7

2

5

3

(c) Task dependency digraph D(U)

Fig. 2: The filled matrix L+U (a), task dependency digraphs D(LT) for row-LU (b) and D(U) column-LU (c).
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1 2

3

5 64

7 8

9

(b) The digraph D(L̃T)

Fig. 3: The filled matrix of matrix Ã = L̃Ũ in BBT form (a)
and the task dependency digraph D(L̃T) for row-LU (b).

Ã, which is the permuted from A of Figure 1a with the
upper BBT postordering 8, 6, 1, 2, 3, 5, 4, 7, 9. Figure 3a and 3b
show the filled matrix L̃ + Ũ such that Ã = L̃Ũ, and
the corresponding task dependency digraph D(L̃T) for row-
LU factorization, respectively. As seen in Figure 3b, there
are only tree (solid) and back (dashed) edges with respect
to elimination tree T(Ã), due to the fact that T(Ã) is the
transitive reduction of D(L̃T) (see Theorem 1). In the figure,
the blue edges refer to fill-in nonzeros. As seen in the figure,
there is a path from each vertex to the root, and a critical path
1 → 3 → 5 → 7 → 9 has length 5 which coincides with the
height of T(Ã).

IV. REDUCING ELIMINATION TREE HEIGHT

We propose a top-down approach to reorder a given matrix
leading to a short elimination tree. The bigger lines of the
proposed approach form a generalization of the state of the
art methods used in Cholesky factorization (and are based on
nested dissection [18]). We give the algorithms and discussions
for the upper BBT form; they can be easily adapted for the
lower BBT form.

A. Theoretical basis

Let A be an n × n sparse unsymmetric irreducible matrix
and T(A) be its elimination tree. In this case, a BBT decom-
position of A can be represented as a permutation of A with
a permutation matrix P such that

ABBT =


A11 A12 . . . A1K A1B

A22 . . . A2K A2B

. . .
...

...
AKK AKB

AB1 AB2 . . . ABK ABB

 , (1)

where ABBT = PAPT , the number of diagonal blocks K>1,
and Akk is irreducible for each 1 ≤ k ≤ K. The border
AB∗ is called minimal if there is no permutation matrix P′ 6=
P such that P′AP′T is a BBT decomposition and A′B∗ ⊂
AB∗. That is, the border AB∗ is minimal if we cannot remove
columns from AB∗ and the corresponding rows from AB∗,
permute them together to a diagonal block, and still have a
BBT form. We give the following proposition aimed to be
used for Theorem 2.

Proposition 1: Let A be in upper BBT form and the border
AB∗ be minimal. The elimination digraph Gκ(A) is complete
where κ =

∑K
i=1 |Akk|.

Proof: Let us consider the elimination digraph Gκ(A) =
(Vκ, Eκ) with Vκ = {κ + 1, . . . , n}. Let G = G0 = G(A).
Since AB∗ is minimal, G[V κ ∪ {b}] is strongly connected for
all κ < b ≤ n. Take any vertex pair (b1, b2) such that κ <
b1 6= b2 ≤ n, and any vertex v ∈ V κ. Then, b1 is connected to
v in G[V κ ∪ {b1}] and v is connected to b2 in G[V κ ∪ {b2}].
Thus, b1 is connected to b2 in G[V κ ∪ {b1, b2}]. Due to the
Fill Path Theorem [36], (b1, b2) ∈ Eκ.

The following theorem provides a basis for reducing the
elimination tree height h(T(A)).

Theorem 2: Let A be in upper BBT form, and the border
AB∗ be minimal. Then,

h(T(A)) = |AB∗|+ max
1≤k≤K

h(T(Akk)) .

Proof: Let κk =
∑k
i=1 |Akk| for 1 ≤ k ≤ K, and κ be

the total size of the diagonal blocks, i.e., κ = κK . For any 1 ≤
k ≤ K, PARENT(κk) = κ+1. This is because of three facts: (i)
each diagonal block is strongly connected; (ii) the last vertex in
each block is the root of the corresponding subtree, (iii) and the
border is minimal—if the vertex κ+ 1 does not form a strong
component containing vertices from all blocks, we could have
a smaller border. Due to Proposition 1, the elimination digraph

4



Algorithm 3 PERMUTE(A)
if |A| < τ then

PERMUTEBT(A) I Recursion terminates
else

ABBT ← PERMUTEBBT(A) I As given in (1)
for k ← 1 to K do

PERMUTE(Akk) I Subblocks of ABBT

Gκ(A) is complete, and hence PARENT(b) = b + 1, for κ <
b < n. Thus, h(T(A)) is equal to size of the border AB∗ plus
the maximum height of elimination trees of diagonal blocks
Akk for 1 ≤ k ≤ K.

The theorem says that the critical path length in the parallel
LU factorization methods summarized in Section III can be
expressed recursively in terms of the border and the critical
path length of a block with the maximum size. This holds
for row-LU scheme when the matrix A is in an upper BBT
form, and for column-LU scheme, when A is in a lower BBT
form. Hence, having a small border size and diagonal blocks
of similar size is likely to lead reduced critical path length.

B. Recursive approach: PERMUTE

We propose a recursive approach to reorder a given matrix
so that the elimination tree is reduced. Algorithm 3 gives
the overview of the solution framework. The main procedure
PERMUTE takes an irreducible unsymmetric matrix A as its
input. It calls PERMUTEBBT to decompose A into a BBT
form, ABBT. Upon obtaining such a decomposition, the main
procedure calls itself on each diagonal block Akk, recursively.
Whenever the matrix becomes sufficiently small (its size gets
smaller than τ ), the procedure PERMUTEBT is called in
order to compute a fine BBT decomposition in which the
diagonal blocks are of unit size, here to be referred as bordered
triangular (BT) decomposition, and the recursion terminates.

C. BBT decomposition: PERMUTEBBT

Permuting A into a BBT form translates into finding a
strong (vertex) separator of G(A), where the strong separator
itself corresponds to the border AB∗. Regarding to Theorem 2,
we are particularly interested in finding minimal borders.

Let G = (V, E) be a strongly connected directed graph. A
strong separator (also called directed vertex separator [27]) is
defined as a vertex set S ⊂ V such that G − S is not strongly
connected. Moreover, S is said to be minimal if G − S′ is
strongly connected for any proper subset S′ ⊂ S.

The algorithm that we propose to find a strong separator
is based on bipartitioning of digraphs. In case of undirected
graphs, typically, there are two kinds of graph partitioning
methods which differ by their separators: edge separators
and vertex separators. An edge (or vertex) separator is a
set of edges (or vertices) whose removal leaves the graph
disconnected.

A BBT decomposition of a matrix may have three or more
subblocks (as seen in (1)). However, the algorithms we use
to find a strong separator utilize 2-way partitioning, which
in turn constructs two parts, each of which may potentially

Algorithm 4 FINDSTRONGVERTEXSEPARATORES(G)
ΠES ← GRAPHBIPARTITEES(G) I ΠES = {V1, V2}
Π1 7→2 ← FINDMINCOVER(G, E2 7→1)
Π27→1 ← FINDMINCOVER(G, E1 7→2)
if |S1 7→2| < |S27→1| then

return Π1 7→2 = {Ṽ1, Ṽ2, S1 7→2} I Ṽ1 7→ Ṽ2

else
return Π2 7→1 = {Ṽ1, Ṽ2, S2 7→1} I Ṽ2 7→ Ṽ1

have several components. For the sake of simplicity in the
presentation, we assume that both parts are strongly connected.

We introduce some notation in order to ease the discussion.
For a pair of vertex subsets (U,W ) of digraph G, we write
U 7→W , if there may be some edges from U to W , but there
is no edge from W to U . Besides, U ↔ W and U 6↔ W are
used in a more natural way, that is, U ↔W implies that there
may be edges in both directions, whereas U 6↔ W refers to
absence of such an edge between U and W .

We cast our problem of finding strong separators as fol-
lows: For a given digraph G, find a vertex partition Π∗ =
{V1, V2, S}, where S refers to a strong separator, and V1, V2
refer to vertex parts, so that S has small cardinality, the part
sizes are close to each other, and either V1 7→ V2 or V2 7→ V1.

1) Edge-separator-based method: The first step of the
method is to obtain a 2-way partition ΠES = {V1, V2} of G
by edge separator. We build two strong separators upon ΠES

and choose the one with the smaller cardinality.
For an edge separator ΠES = {V1, V2}, the directed cut

Ei 7→j is defined as the set of edges directed from Vi to Vj ,
i.e., Ei 7→j = {(u, v) ∈ E : u ∈ Vi, v ∈ Vj}, and we say that
a vertex set S covers Ei 7→j if for any edge (u, v) ∈ Ei 7→j ,
either u ∈ S or v ∈ S, for i 6= j ∈ {1, 2}.

Initially, we have V1 ↔ V2. Our goal is to find a subset of
vertices S ⊂ V so that either Ṽ1 7→ Ṽ2 or Ṽ2 7→ Ṽ1, where Ṽ1
and Ṽ2 are the sets of remaining vertices in V1 and V2 after
the removal of those vertices in S, that is, Ṽ1 = V1 − S and
Ṽ2 = V2−S. The following theorem serves to the purpose of
finding such a subset S.

Theorem 3: Let G = (V,E) be a digraph, ΠES = {V1, V2}
be an edge separator of G and S ⊆ V . Now, Ṽi 7→ Ṽj if and
only if S covers Ej 7→i, for i 6= j ∈ {1, 2}.

Proof: Take any i 6= j ∈ {1, 2}. (i) We assume that
S covers Ej 7→i. Suppose there is an edge (u, v) such that
u ∈ Ṽj ⊆ Vj and v ∈ Ṽi ⊆ Vi. Then, u 6∈ S and v 6∈ S,
and S does not cover (u, v), which is a contradiction. (ii) We
assume that Ṽi 7→ Ṽj . Take any edge (u, v) such that u ∈ Vj ,
v ∈ Vi. Since Ṽi 7→ Ṽj , either u 6∈ Ṽj or v 6∈ Ṽi. Thus, u ∈ S
or v ∈ S.

The problem of finding a strong separator S can be encoded
as finding a minimum vertex cover in the bipartite graph whose
edge set is populated only by the edges of Ej 7→i. Algorithm 4
gives the pseudocode. As seen in the algorithm, we find two
separators S17→2 and S2 7→1, which cover E2 7→1 and E17→2, and
result in Ṽ1 7→ Ṽ2 and Ṽ2 7→ Ṽ1, respectively. At the end, we
take the strong separator with the smaller cardinality.
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Fig. 4: A sample 2-way partition ΠES = {V1, V2} by edge separator (a), bipartite graphs and covers for directed cuts E27→1

and E17→2 (b), and the matrix view of ΠES .

In this method, how the edge separator is found matters.
The objective for ΠES is to minimize the cutsize Ψ(ΠES)
which is typically defined over the cut edges as follows:

Ψes(ΠES) = |Ec| = |{(u, v) ∈ E : π(u) 6= π(v)}| , (2)

where u ∈ Vπ(u) and v ∈ Vπ(v), and Ec refers to set of
cut edges. We note that the use of the above metric in Algo-
rithm 4 is a generalization of a method used for symmetric
matrices [30]. However, Ψes(ΠES) is loosely related to the
size of the cover found in order to build strong separator. A
more suitable metric would be the number of vertices from
which a cut edge emanates or the number of vertices to which
a cut edge is directed. Such a cutsize metric can be formalized
as follows:

Ψcn(ΠES) = |Vc| = |{v ∈ V : ∃(u, v) ∈ Ec}| . (3)

The following theorem shows the close relation between
Ψcn(ΠES) and the size of the strong separator S.

Theorem 4: Let G = (V,E) be a digraph, ΠES = {V1, V2}
be an edge separator of G, and Π∗ = {Ṽ1, Ṽ2, S} be the strong
separator built upon ΠES . Then, |S| ≤ Ψcn(ΠES)/2.

Proof: Let Vc denote the directed cut vertices, as defined
in (3), induced by ΠES . Then, V1 ∩ Vc and V2 ∩ Vc are
valid covers for E27→1 for E17→2, respectively. Then, |S| =
min{|S17→2|, |S17→1|} ≤ min{|V1 ∩ Vc|, |V2 ∩ Vc|}. Hence,
|S| ≤ |Vc|/2 = Ψcn(ΠES)/2.

Apart from the theorem, we also note that optimizing (3)
is likely to yield bipartite graphs which are easier to cover
than those resulting from optimizing (2). This is because of
the fact that all edges emanating from a single vertex or many
different vertices are considered as the same with (2), whereas
those emanating from a single vertex are preferred in (3).

We note that the cutsize metric as given in (3) can be mod-
eled using hypergraphs, which is a generalization of graphs in
which each edge (so called hyperedge) may connect more than
two vertices. The hypergraph that models this cutsize metric
has the same vertex set as the digraph G = (V,E), and a
hyperedge for each vertex v ∈ V that connects all u ∈ V
such that (u, v) ∈ E. For a given matrix, this hypergraph is

called the column-net hypergraph model [4]. Any partitioning
of the vertices of this hypergraph that minimizes the number
of hyperedges in the cut induces a vertex partition on G, with
an edge separator that minimizes the cutsize according to the
metric (3). A similar statement holds for another hypergraph
constructed by reversing the edge directions (called the row-
net model [4]).

Figures 4 and 5 give an example for finding a strong sepa-
rator based on an edge separator. In Figure 4a, the red curve
implies the edge separator ΠES = {V1, V2} such that V1 =
{4, 6, 7, 8, 9}, the green vertices, and V2 = {1, 2, 3, 5}, the
blue vertices. The cut edges of E2 7→1 = {(2, 7), (5, 4), (5, 9)}
and E17→2 = {(6, 1), (6, 3), (7, 1)} are given in color blue
and green, respectively. We see two covers for the bipartite
graphs corresponding to each of the directed cuts E27→1 and
E17→2 in Figure 4b. As seen in Figure 4c, these directed cuts
refer to nonzeros of the off-diagonal blocks in matrix view.
Figure 5a gives the strong separator Π2→1 built upon ΠES by
the cover S2→1 = {1, 6} of the bipartite graph corresponding
to E1→2, which is given on the right of 4b. Figures 5b and 5c
depict the matrix view of the strong separator Π2→1, and
the corresponding elimination tree, respectively. It is worth
mentioning that in matrix view, V2 proceeds V1, since we use
Π2→1 instead of Π1→2. As seen in 5c, since the permuted
matrix (in Figure 5b) has an upper BBT postordering, all cross
edges of the elimination tree are headed from left to right.

2) Vertex-separator-based method: A vertex separator is a
strong separator restricted to that V1 6↔ V2. This method is
based on refining the separator so that either V1 7→ V2 or
V1 7→ V2. The vertex separator can be viewed as a 3-way
vertex partition ΠV S = {V1, V2, Ŝ}. As in the previous method
based on edge separators, we build two strong separators upon
ΠV S and select the one having the smaller strong separator.

The criterion used to find an initial vertex separator can be
formalized as

Ψvs(ΠV S) = |Ŝ| . (4)

Algorithm 5 gives the overall process to obtain a strong
separator. This algorithm follows Algorithm 4 closely. Here,
the procedure that refines the initial vertex separator, namely
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Fig. 5: Π27→1, the strong separator built upon S27→1, the cover of E17→2 given in 4b (a), the matrix ABBT obtained by Π27→1

(b) and the elimination tree T(ABBT).

Algorithm 5 FINDSTRONGVERTEXSEPARATORVS(G)

ΠV S ← GRAPHBIPARTITEVS(G) I ΠV S = {V1, V2, Ŝ}
Π1→2 ← REFINESEPARATOR(G,ΠV S , 1→ 2)
Π2→1 ← REFINESEPARATOR(G,ΠV S , 2→ 1)
if |S1→2| < |S2→1| then

return Π1→2 = {Ṽ1, Ṽ2, S1→2} I Ṽ1 → Ṽ2

else
return Π2→1 = {Ṽ1, Ṽ2, S2→1} I Ṽ2 → Ṽ1

REFINESEPARATOR, works as follows. It visits the separator
vertices once, and moves the vertex at hand, if possible, to V1
or V2 so that Vi 7→ Vj after the movement, where i 7→ j is
specified as either 1 7→ 2 or 2 7→ 1.

D. BT decomposition: PERMUTEBT

The problem of permuting A into a BT form can be decoded
as finding a feedback vertex set, which is defined as a subset
of vertices whose removal makes a digraph acyclic. In matrix
view, a feedback vertex set corresponds to border AB∗ when
the matrix is permuted into a BBT form (1), where each Aii,
for i = 1, . . . ,K, is of unit size.

The problem of finding a feedback vertex set of size less
than a given value is NP-complete [24], but fixed-parameter
tractable [6]. In literature, there are greedy algorithms that
perform well in practice [28], [34]. In this work, we adopt the
algorithm proposed by Levy and Low [28].

For example, in Figure 5, we observe that the sets {5}
and {8} are used as the feedback-vertex sets for Ṽ1 and
Ṽ2, respectively, which is the reason those rows/columns are
permuted last in their corresponding subblocks.

V. EXPERIMENTS

We investigate the performance of the proposed heuristic,
here to be referred as BBT, in terms of the elimination tree
height and ordering time. We have three variants of BBT: (i)
BBT-es, based on minimizing the edge cut (2); (ii) BBT-cn,
based on minimizing the hyperedge cut (3); (iii) BBT-vs,
based on minimizing the vertex separator (4). As a baseline,
we used MeTiS [25] on the symmetrized matrix A + AT .

MeTiS uses state of the art methods to order a symmetric
matrix and leads to short elimination trees. Its use in the
unsymmetric case on A + AT is a common practice. BBT is
implemented in C and compiled with mex of MATLAB which
uses gcc 4.4.5. We used MeTiS library for graph partitioning
according to the cutsize metrics (2) and (4). For the edge cut
metric (2), we input MeTiS the graph of A + AT , where the
weight of the edge {i, j} is 2 (both aij , aji 6= 0) or 1 (either
aij 6= 0 or aji 6= 0, but not both). For the vertex separator
metric (4), we input the graph of A+AT (no weights) to the
corresponding MeTiS procedure. We implemented the cutsize
metric given in (3) using PaToH [5] (in the default setting)
for hypergraph partitioning using the column-net model (we
did not investigate the use of row-net model). We performed
the experiments on a Quad-Core AMD Opteron Processor
8356 with 32 GB of RAM.

In the experiments, for each matrix we detected dense rows
and columns, where a row/column is deemed to be dense
if it has at least 10

√
n nonzeros (as in some other ordering

problems [7]). We applied MeTiS and BBT on the submatrix
of non-dense rows/columns, and produced the final ordering
by appending the dense rows/columns after the permutations
obtained for the submatrices. The performance results are
computed as the median of eleven runs.

Recall from Section IV-B that whenever the size of the
input matrix is smaller than the parameter τ , the recursion
terminates in BBT variants and a feedback-vertex-set-based
BT decomposition is applied. We first investigate the effect of
τ in order to suggest a concrete approach. For this purpose, we
build a dataset of matrices, called UFL below. The matrices in
UFL are from the UFL Sparse Matrix Collection [8] chosen
with the following properties: square, 5K ≤ n ≤ 100K,
nnz ≤ 1M, real, and not of type Graph. These criteria enable
an automatic selection of matrices from different application
domains without having to specify the matrices individually.
Other criteria could be used; ours help to select a large set of
matrices each of which is not too small and not too large to be
handled easily within Matlab. We exclude matrices recorded as
Graph in the UFL collection, because most of these matrices
have nonzeros from a small set of integers (for example
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Tree Height (h(A)) Ordering Time
τ -es -cn -vs -es -cn -vs
3 0.81 0.69 0.68 1.68 3.53 2.58

50 0.84 0.71 0.72 1.26 2.71 1.91
250 0.93 0.82 0.86 1.12 2.12 1.43

TABLE I: Statistical indicators of the performance of BBT
variants on the UFL dataset normalized to that of MeTiS with
recursion termination parameter τ ∈ {3, 50, 250}.

{−1, 1}) and are reducible. We further detect matrices with
the same nonzero pattern in the UFL dataset and keep only
one matrix per unique nonzero pattern. We then preprocess
the matrices by applying MC64 [12] in order to permute
the columns so that the permuted matrix has a maximum
diagonal product. Then, we identify the irreducible blocks
using Dulmage-Mendelsohn decomposition [13], permute the
matrices to block diagonal form and delete all entries that lie in
the off-diagonal blocks. This type of preprocessing is common
in similar studies [16], and corresponds to preprocessing for
numerics and reducibility. After this preprocessing, we discard
the matrices whose total (remaining) number of nonzeros is
less than twice its size, or whose pattern symmetry is greater
than 90%, where the pattern symmetry score is defined as
(nnz(A)−n)/(nnz(A+AT)−n)− 0.5. We ended up with
99 matrices in the UFL dataset.

In Table I, we summarize the performance of the BBT
variants as normalized to that of MeTiS on the UFL dataset
for the recursion termination parameter τ ∈ {3, 50, 250}. The
table presents the geometric means of performance results over
all matrices of the dataset. As seen in the table, for smaller
values of τ , all BBT variants achieve shorter elimination trees
at a cost of increased processing time to order the matrix. This
is because of the fast but probably not of very high quality
local ordering heuristic—as discussed before in Section IV-D,
the heuristic here does not directly consider the height of
the subtree corresponding to the submatrix as an optimization
goal. Other τ values could also be tried but we find τ = 50
as a suitable choice in general, as it performs close to τ = 3
in quality and close to τ = 250 in efficiency.

From Table I, we observe that BBT-vs method performs
in the middle of the other two BBT variants, but close to
BBT-cn, in terms of the tree height. All the three variants
improve the height of the tree with respect to MeTiS. Specif-
ically, at τ = 50, BBT-es, BBT-cn, and BBT-vs obtain
improvements of 16%, 29% and 28%, respectively. The graph
based methods BBT-es and BBT-vs run slower than MeTiS,
as they contain additional overheads of obtaining the covers
and refining the separators of A+AT for A. For example, at
τ = 50, the overheads result in 26% and 171% longer ordering
time for BBT-es and BBT-vs, respectively. As expected,
the hypergraph based method BBT-cn is much slower than
others (for example, 112% longer ordering time with respect to
MeTiS with τ = 50). Since we identify BBT-vs as fast and of
high quality (it is close to the best BBT variant in terms of the
tree height and the fastest one in terms of the running time),
we display its individual performance results in detail, with

τ = 50, in Figure 6. In Figures 6a and 6b, each individual point
represents the ratio BBT-vs / MeTiS, in terms of tree height
and ordering time, respectively. As seen in Figure 6a, BBT-vs
reduces the elimination tree height on 85 out of 99 matrices in
the UFL dataset, and achieves a reduction of 28%, in terms of
the geometric mean, with respect to MeTiS (the green dashed
line in the figure represents the geometric mean). We observe
that the pattern symmetry and the reduction in the elimination
tree height highly correlate after a certain pattern symmetry
score. More precisely, the correlation coefficient between the
pattern symmetry and the normalized tree height is 0.6187 for
those matrices with pattern symmetry greater than 20%. This
is of course in agreement with the fact that LU factorization
methods exploiting the unsymmetric pattern have much to gain
on matrices with lower pattern symmetry score and less to gain
otherwise than the alternatives. On the other hand, as seen in
Figure 6b, BBT-vs performs consistently slower than MeTiS,
with an average of 91% slow down.

We now investigate the performance of BBT variants on the
matrices used by Eisenstat and Liu [16] in their original work
on the elimination tree. The set of these matrices is called EL
below. We note that EL dataset contains matrices on which LU
factorization methods that exploit the unsymmetric nonzero
pattern make sense (if for example a matrix is symmetric,
there is nothing to exploit; if the symmetry score is high,
there is only little to gain). Therefore, the reductions in
the elimination tree height achieved by the BBT variants on
these matrices represent the potential gain in a selected set
of practical problems. We applied the same preprocessing
as before. A matrix, with the name Lucifora/cell2 is
not included, since it has the same nonzero pattern with
Lucifora/cell1 (we note that the all matrices in EL,
except Lucifora/cell1, are contained in UFL).

Table II presents the performance results of BBT variants
with τ = 50 on the matrices from the EL dataset in terms
of both the elimination tree height and ordering time (in
seconds). The second and third columns respectively shows
the number of rows/columns (n), and the number of nonzeros
(nnz) of corresponding matrices. The fourth column of the
table gives the pattern symmetry of the matrices computed
after preprocessing. The first half of the remaining columns
show the tree heights and the second half gives ordering time
results for the methods MeTiS and BBT. The performance
results for MeTiS are given as their exact values, whereas
the performance of the three BBT variants is presented after
normalizing with respect to those of MeTiS.

Table II reveals that the proposed BBT-es, BBT-cn, and
BBT-vs methods obtain, respectively, 24%, 35%, and 31%
reduction in the elimination tree height with respect to MeTiS,
on average, on the EL dataset (the rankings are in accordance
with the previous results). Upon a closer look at the data,
we see that except two instances, BBT-vs performs better
than BBT-es, whereas BBT-cn performs uniformly better
than BBT-es. The reason that BBT-vs obtains better results
than BBT-es is twofold. First, finding vertex separators with
specialized heuristics on undirected graphs usually leads to
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Fig. 6: BBT-vs / MeTiS performance on the UFL dataset. Dashed, green lines mark the geometric mean of the ratios.

Properties Tree Height (h(A)) Ordering Time
MeTiS BBT (τ = 50) MeTiS BBT (τ = 50)

name n nnz sym -es -cn -vs (sec) -es -cn -vs
Bai/rw5151 5151 20199 0.0% 260 0.72 0.48 0.63 0.040 1.00 2.00 2.00
Hollinger/g7jac040 11790 107383 1.5% 991 0.78 0.57 0.63 0.200 1.30 2.55 1.80
Hohn/fd18 16428 63406 2.1% 389 0.81 0.75 0.74 0.160 1.50 5.12 1.87
Hohn/fd15 11532 44206 2.1% 329 0.78 0.73 0.71 0.100 1.60 5.20 1.90
Hohn/fd12 7500 28462 2.4% 273 0.74 0.71 0.69 0.060 1.67 5.33 1.83
Nasa/barth4 6019 23492 2.9% 154 0.66 0.37 0.45 0.040 1.25 3.00 2.00
Grund/bayer10 13436 71594 3.2% 204 0.74 0.58 0.59 0.180 1.11 2.83 1.83
Grund/bayer02 13935 63307 3.9% 170 0.76 0.59 0.66 0.140 1.36 3.36 2.00
Nasa/barth5 15606 61484 6.4% 157 0.71 0.49 0.66 0.120 1.25 3.17 2.17
Hamrle/Hamrle2 5952 22162 7.3% 103 0.68 0.58 0.62 0.040 1.50 4.25 2.00
Nasa/barth 6691 26439 8.7% 142 0.70 0.55 0.69 0.040 1.75 5.00 2.25
Hohn/sinc12 7500 283992 14.6% 1614 0.74 0.66 0.66 0.400 1.30 2.35 1.62
TOKAMAK/utm5940 5940 83842 37.7% 488 0.80 0.71 0.81 0.100 1.90 4.80 1.90
Goodwin/goodwin 7320 324772 40.2% 443 0.84 0.95 0.83 0.210 2.90 7.10 2.43
Graham/graham1 9035 335472 42.7% 544 0.88 0.93 0.80 0.200 3.00 7.05 2.75
Averous/epb1 14734 95053 57.4% 418 0.77 0.78 0.75 0.130 2.00 7.77 2.00
Lucifora/cell1 7055 30082 66.2% 194 0.65 0.58 0.88 0.040 1.50 5.25 2.00
Shen/e40r0100 17281 553562 79.3% 620 0.90 1.04 0.84 0.360 3.39 8.22 2.75
min 0.65 0.37 0.45 1.00 2.00 1.62
max 0.90 1.04 0.88 3.39 8.22 2.75
geomean 317 0.76 0.65 0.69 0.109 1.64 4.31 2.04

TABLE II: Performance results of EL dataset in terms of elimination tree height (h(A)) and ordering time for the methods
MeTiS, BBT-es, BBT-cn and BBT-vs. The performance values of BBT variants are given as normalized to those of MeTiS.
BBT variants use the recursion termination parameter τ = 50. Matrices are in the nondecreasing order of pattern symmetry.

smaller separators than finding first an edge cut and then re-
fining it with the bipartite cover algorithms (this is observed in
MeTiS). On top of this, we refine the resulting separator using
the heuristic discussed in Section IV-C2, potentially yielding
much better separator size with BBT-vs than BBT-es. The
reason that BBT-cn obtains better results than BBT-es is
related to the difference in the objective functions (2) and (3).
As said before, BBT-cn is likely to obtain bipartite graphs that
have smaller covers than those that are obtained by BBT-es.
The ratio of the size of the covers to the number of vertices
and to the number of edges in the covered bipartite graphs
were smaller in BBT-cn than BBT-es in the EL dataset.

We also examined the height of the elimination trees ob-
tained by Eisenstat and Liu [16, Table 3] with a local ordering
heuristic [2] on the same dataset. We have noted that the

height of those trees are uniformly larger than those obtained
by the three BBT variants (the geometric mean of the tree
heights normalized with respect to MeTiS was 2.79 on the
EL dataset). This is in accordance with the observations for
the Cholesky factorization [20], where the graph partitioning
based methods usually lead to shallower trees than the local
ordering methods.

The fill-in generally increases [16] when a matrix is re-
ordered into a BBT form with respect to the original ordering
using the elimination tree. We noticed that BBT-vs almost
always increases the number of nonzeros in L (by 157% with
respect to MeTiS in the EL dataset). However, the number
of nonzeros in U almost always decreases (by 15% with
respect to MeTiS in the EL dataset). This observation may be
exploited during Gaussian elimination where L is not stored.
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VI. CONCLUSION

We investigated the elimination tree model for unsymmet-
ric matrices as a means of capturing dependencies among
the tasks in row-LU and column-LU factorization schemes.
Specifically, we focused on permuting a given unsymmetric
matrix to obtain an elimination tree with reduced height in
order to expose higher degree of parallelism by minimizing
the critical path length in parallel LU factorization schemes.
Based on the theoretical findings, we proposed a heuristic,
which orders a given matrix to a bordered block diagonal
form with a small border size and blocks of similar sizes, and
then locally orders each block. We presented three variants
of the proposed heuristic. These three variants achieved, on
average, 24%, 31%, and 35% improvements with respect to a
common method of using MeTiS (a state of the art tool used
for the Cholesky factorization) on a small set of matrices. On
a larger set of matrices, the performance improvements were
16%, 28%, and 29%. The best performing variant is about
2.71 times slower than MeTiS on the larger set, while others
are slower by factors of 1.26 and 1.91.

As a future direction, we believe that a direct method to
find strong separators would give better performance in terms
of both quality and ordering runtime.
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