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ABSTRACT 
In this study, the air-side pressure drop and heat transfer performance of plate-fin and microchannel coils were 

tested under clean and fouled conditions. The heat exchangers were tested with two different types of dust, 

ASHRAE Standard Dust and Arizona Road Test Dust. The ASHRAE dust was found to have a very significant 

impact on the pressure drop of the microchannel heat exchanger, increasing the air-side pressure drop of the 

microchannel heat exchanger by over 200% for a dust injection of 267g (1612.5 g/m
2
). Fouling of the microchannel 

heat exchanger with Arizona Road Test Dust was not found to increase the air-side pressure drop of the 

microchannel heat exchanger but was found to decrease the heat transfer rate by more than 10%. In addition, from 

studies of the evolution of the air-side pressure drop during the fouling process, it is seen that microchannel coils 

with louvered fins with fin pitch below 2.0 mm were significantly more prone to fouling than louvered heat 

exchangers with larger fin pitch. Particulate fouling of the wavy-plate-fin heat exchanger resulted in significantly 

lower reductions in heat transfer and increase in air-side pressure drop than for the microchannel heat exchanger. 

 

1 INTRODUCTION 

Over the last few decades there has been an increasing interest in air-side fouling of heat exchangers of many 

different constructions. From the numerous experimental studies carried out, a few overarching themes become 

clear. For one, fouling has a much more significant impact on air-side pressure drop than air-side heat transfer. In 

addition, the sensitivity of the heat exchanger to fouling is strongly dependent on the type of fouling as well as the 

particulars of the heat exchanger geometry.  

 

1.1 Experimental and Modeling studies of Air-side fouling 
Middis and Müller-Steinhagen (1990) studied asymptotic fouling resistance behavior of enhanced surface heat 

exchangers with particulate matter suspended in a liquid stream. They noted that the enhanced surfaces with more 

stagnation areas were more prone to foul.  

 

Zhang et al. (1992) investigated the addition of spoilers upstream of heat exchangers in order to introduce turbulence 

and decrease the deposition of particulate matter. They found that angling the spoilers at an angle of 30 degrees with 

respect to the incoming air stream resulted in the best performance.  

 

Kaiser et al. (2002) studied the deposition of an analog of dryer lint to a cooled probe. No heat transfer or pressure 

drop measurements were made, but a strong sensitivity to air humidity and particle concentration was found.  

One of the only studies which attempted to model particle deposition to a surface was the study carried out by Siegel 

(2003). This study focused on an understanding of the competing physical processes which result in particulate 

deposition on the surface. It was also found from this study that the impacts of fouling is a decrease in the air flow-

rate of 5-6% and a decrease in system efficiency of 2-4%.  

 

Ahn et al. (2003) collected field-installed fouled evaporators and tested them in a laboratory facility. For evaporators 

installed in the field for up to 7 years, the air-side pressure drop increased up to 45% over the duration of the tests. In 

addition, the heat transfer decreased by up to 14%. It is not clear what size heat exchangers were used, nor the total 

amount of dust on the heat exchangers.  

 

Lankinen et al. (2003) investigated the impact of air-side fouling on the compact heat exchangers with needle-fins 

using ASHRAE standard dust similar to that under investigation here. They found increases in air-side pressure drop 
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up to 200% and decreases in the overall heat transfer coefficient of 8% to 18% with the injection of 8.3 kg of dust 

into the air stream. Neither frontal area of the heat exchanger nor fin geometry was given.  

Pak et al. (2005) fouled one- and two-row HVAC condenser coils. They found that the two-row coils experienced an 

increase in air-side pressure drop up to 31%, while the maximum increase in air-side pressure drop for two-row coils 

was 37%. The heat transfer rate of the one-row coils decreased up to 12%, and that of the two-row coils decreased 

up to 5%. 300g of ASHRAE dust were used to foul the coil of frontal area 0.44 m
2
.  

 

Mason (2006) fouled a compact heat exchanger with straight and herringbone fins with sawdust particles. This study 

demonstrated that the smaller the fin spacing, the greater the increase in pressure drop, for both fin styles. This study 

also demonstrated the existence of two fouling regimes, firstly nucleation fouling where primarily large particles 

deposit. After passing a critical change over point, the pressure drop rapidly increases in the bulk fouling regime 

where a much higher percentage of the particles adhere to the fins. Mason also found that most of the fouling 

adhered to the front face of the coil.  

 

Haghighi-Khoshkhoo and McCluskey (2007) also investigated fouling heat exchangers with sawdust. They found a 

particle size which would always pass through the heat exchanger which was dependent on heat exchanger 

geometry. Neither the tube wall temperature nor fouling injection rate was found to have any impact on the rate of 

fouling deposition. The fouling was also found to occur on the front face of coil, resulting in little to no increase in 

heat transfer resistance, but significant increase in air-side pressure drop. Significant absolute increases in air-side 

pressure drop are shown, but the baseline air-side pressure drop is not given.  

 

Yang et al. (2007b) carried out experiments on the fouling performance of HVAC evaporators with upstream filters. 

When no filters were utilized upstream of the heat exchanger, the pressure drop always increased, up to an increase 

of 200% from the unfouled condition. Without filters, the air-side heat transfer also decreased, up to 14% for coils 

with 2 passes. When filters were used, it was found that slight improvements in heat transfer performance were 

realized for heat exchangers 8 rows deep due to fin surface enhancement.  

 

1.2 System-level impact 
Condensers and evaporators do not operate individually, but are typically integrated into larger HVAC systems. As a 

result, it is critical to investigate the impact of fouling at the system level. Yang et al. (2007a) investigated the 

system-level impacts of the heat exchanger fouling results presented in Yang et al. (2007b), from which they found 

that the impact of the fouling was a decrease in system efficiency of up to 10%.   Krafthefer (1986) found that the 

pressure drop of fouled coils can cause a doubling of the air-side pressure drop after 5-7 years. With a doubling of 

the air-side pressure drop over the evaporator, the efficiency of the heat pump decreased by 18%.  Breuker (1998) 

investigated the impacts of various different faults on rooftop air conditioning units. With a 56% blockage of the 

front area of the condenser, the net result was a decrease in cooling capacity of 10.9% and a 17.9% decrease in the 

system efficiency due to the increase in condensing pressure.  

 

2 Testing Procedure 
2.1 Heat Exchangers Tested 
Three different heat exchangers were tested in the current study. All of the heat exchangers were designed as 

refrigerant condensers, but there are some significant differences in construction between the heat exchangers. Heat 

exchanger A is a plate-fin style condenser. Heat exchangers B and C are both Microchannel condensers with 

louvered fins. Measurements of heat transfer performance and air-side pressure drop of heat exchangers A and B 

were made with under clean and fouled conditions, the details of which are presented in Section 4. After conducting 

the full battery of thermo-hydraulic tests on heat exchangers A and B, subsequent air-side pressure drop 

measurements were made on heat exchangers A, B & C during the course of the fouling process in order to quantify 

the propensity of a given heat exchanger to foul. The heat exchangers, which were tested in this study, are shown in 

Table 1.  
Table 1 Geometry of heat exchangers from this study 

 

Key Type  Frontal Area Fin Pitch Fin Type 
 

A  Plate-Fin heat exchanger 40x50 cm  2.0 mm  Wavy  

B  Microchannel HX  40x50 cm  1.3 mm  Louvered 

C  Microchannel HX  40x50 cm  1.1 mm  Louvered 
 



 

 2147, Page 3 
 

International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2010 

 

2.2 Test Facility 
All three of the heat exchangers were installed in a forced flow wind tunnel with nominal internal cross section of 

60x60cm. Since the heat exchangers tested in this study have 40x50 cm frontal areas, they were installed in reducing 

sections to permit their use in the wind tunnel.  The heat exchanger testing facility operates by passing relatively 

warm water through the coil and cooler air over the tubes and fins of the heat exchanger in order to provide the 

cooling effect. The warm water is provided by a water loop with a controllable water heater in order to set the water 

inlet temperature.  A schematic of the test setup is shown in Figure 1. The balance of the heat provided by the 

variable-power heater and the heat removed by the heat exchanger allows for control of the water inlet temperature.  

 
Figure 1 Schematic of Wind Tunnel used for heat exchanger testing 

 

 
Figure 2 Field installed heat exchanger 

demonstrating large amount of fibrous loading 

 

On the air side, conditioned air from the laboratory is drawn into the blower where it is accelerated to the desired 

duct air velocity under variable frequency control of the fan speed. In order to eliminate variation in supply air 

temperature due to variation in laboratory air temperature, the air is always heated up to above the ambient 

temperature. Steam valves installed after the blower humidify the air if necessary by adding moisture to the air 

stream. After the flow has been appropriately conditioned, it passes through a section of flow straighteners to ensure 

that the flow is aligned with the duct. Then the air flow velocity is measured with a pitot-tube array. Prior 

investigators found the velocity profile over the duct cross-section to be very uniform. A mixing section is 

subsequently used to thoroughly mix the air flow. After mixing, dust is injected into the air stream as described in 

section 2.4, the air passes through the heat exchanger, and the air is filtered through bag filters prior to exhausting 

outdoors.  

 

The air-side pressure drop of the heat exchanger is measured based on the wall pressures upstream and downstream 

of the heat exchanger. At a cross-section, the pressure taps are connected to average the pressure over the four walls 

of the wind tunnel. The upstream and downstream averaged pressure taps are then connected to a differential 

pressure sensor with full scale range of 249.1 Pa (1.0” H2O) and uncertainty of 2.49 Pa (1% of full scale) to measure 

the air-side pressure drop over the heat exchanger. For the final segment of the fouling process for heat exchanger C, 

a differential pressure sensor with full scale range of 2491 Pa (10” H2O) was used to measure air-side pressure drop 

since the air-side pressure drop exceeded 249.1 Pa. The pressure drop of the pitot tube array is measured with a 

differential pressure sensor with full scale range of 24.91 Pa (0.1” H2O) and uncertainty of 0.062 Pa (0.25% of full 

scale).  

 

The temperatures of the air stream upstream and downstream of the heat exchanger were measured with 3x3 grids of 

K-type thermocouples with estimated uncertainty of 0.5°C. The mean temperature over each grid was used in further 

calculations of enthalpies. The mean air temperature measured at the upstream temperature grid is used in the 

calculation of the heat exchanger inlet air density. The relative humidity was also measured upstream and 

downstream of the heat exchanger with uncertainty of 1% of the measurement. Over all the tests carried out, the 

maximum difference between the upstream and downstream measurements of humidity ratio was 4.0 %, and most 

points were within 2.0 %. Since there is no condensation or evaporation of water in the heat exchanger, the humidity 

ratio should be constant over the heat exchanger. The low difference in humidity ratio suggests that the dry bulb 

temperatures and relative humidities were properly measured.  
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For the water loop, heat exchanger inlet and outlet temperatures were measured with T-type thermocouples with 

uncertainty of 0.5°C, and the water mass flow rate was measured with a Coriolis mass flow meter with uncertainty 

of 0.4%.  

 

2.3 Testing points 
Heat exchangers A and B were tested at a wide range of state points in clean and fouled conditions. For heat 

exchangers A and B, the water and air mass flow rates both varied, though the ratio of the air to water mass flow 

rates was held nominally constant at 4.184 in order to achieve similar temperature differences for both air and water 

streams when passing through the heat exchanger. The testing points shown in Table 2 were used for heat 

exchangers A and B under clean and fouled conditions.  

Table 2 Nominal Testing Points 

Parameter Value  

Ta,i [∘C]  25.0  

Tw,i [∘C]  42.0  

ϕi [%]  40.0  

wmɺ  [kg/s]  0.103, 0.132, 0.153, 0.179, 0.208 

amɺ  [kg/s]  4.184 ⋅ wmɺ   

 

 

2.4 Dust and Dust injection 
Two different types of dust were tested with the heat exchangers. The first style of dust is ASHRAE Standard Dust, 

which is typically used for testing of air filters, as described in ASHRAE Standard 52.1. The distinguishing 

characteristic of this dust is the high volumetric fraction of cotton lint. The mass composition of this dust is 72% A2 

fine Arizona Test Dust, 23% carbon black powder, and 5% second cut cotton linters milled in a Wiley Mill fitted 

with a 4 mm screen. While this dust is a good analog for residential dust, it can also approximate exterior dust for 

condensers installed near fouling sources. Field installed condensers have demonstrated high levels of fibrous 

loading, as seen in Figure 2. This is particularly a problem near agricultural installations, as noted by Mason (2006).  

 

In areas with little fibrous content in the fouling matter, Arizona Road Test Dust may be a better analog. Arizona 

Road Test Dust is a component of the ASHRAE Standard Dust, but can also be obtained individually. Arizona Road 

Test Dust is available in a range of particle size distributions, and A2 Fine Arizona Road Test was selected. The 

mass composition of this dust is approximately 72% SiO2, 12.5% Al2O3, all other components being less than 3% 

each. Figure 3 shows the particle size distribution of the A2 Fine Test Dust. 80% of the particles are between 1 and 

30 µm in diameter.  

 

In order to foul the heat exchanger, batches of approximately 33.3 g of dust (either ASHRAE or Arizona) are 

massed on a scale and spread out on the feeding tray of the dust depositor shown in Figure 4. A gear drive slowly 

moves the dust tray towards the aspirator head, and the metering wheel rotates in sync with the tray in order to 

control the rate of dust being drawn into the aspirator head. The rate of dust injection is therefore controlled by the 

amount of dust added to each tray. The rate of feed of the dust injector is approximately one tray every 20 minutes, 

for a rate of dust injection of 100 g of dust per hour.  

 
Figure 3 Particle size distribution of A2 Arizona Road Test Dust 

Figure 4 Dust Injector 
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During the fouling process, the duct air velocity was held constant at 1.5 m/s, for a coil face velocity of 2.8 m/s. In 

order to maintain the duct air velocity, the fan speed was manually increased throughout the fouling process. Lower 

air velocities could not be used repeatably since the dust falls out of suspension for lower air velocities.  

 

3 DATA ANALYSIS 
 

The air velocity in the duct is measured with pitot tubes and is calculated from the application of Bernoulli’s 

equation along a stream line, which yields  

 
2 pitot

duct

duct

p
u

ρ

∆
=  (1)  

 

where the air density ρduct is calculated based on the temperature at the pitot tubes and the ambient pressure. From 

the air velocity it is therefore possible to calculate the air mass flow rate, given by  

 
a duct duct duct

m u Aρ=ɺ  (2)  

where the actual duct cross sectional area Aduct is (0.372 m
2
). For heat exchangers A and B, the coil frontal area is 

less than the duct cross-sectional area, and the face velocity can be calculated from  

 duct

face duct

face

A
u u

A
=  (3)  

The air-side heat transfer is therefore given by  

 
, ,( )a a a o a im h hQ = −ɺ  (4)  

where ha,o and ha,i are humid air mixture enthalpies. The water-side heat transfer is given by  

 
, , ,( )w w p w w i w om c TQ T= −ɺ  (5)  

The heat exchanger is a cross-flow type heat exchanger. For each test, the inlet temperature difference between the 

water and air inlet streams (∆T1) was held at a nominal value of 17°C, but to correct for slight differences in inlet 

temperatures, the overall heat transfer of the coil is presented as qw⁄∆T1. The water-side heat transfer measurement is 

used here rather than the air-side heat transfer since the measurement uncertainty is lower. In addition, the water-

side heat transfer measurement devices are more robust and less sensitive to outside perturbances.  

Since the ambient pressure in the lab can vary somewhat over the year, it is necessary to correct the air-side pressure 

drop for the ambient pressure. In general the air side pressure drop between two plates (like the fins) is proportional 

to the air density. Thus a corrected air-side pressure drop can be based on a standard density of air of 1.2 kg/m
3
, and 

expressed as  

 
3

, ,

,

]1.2 [ /
a corrected a measured

a measured

kg m
p p

ρ
∆ = ∆  (6)  

The corrected air-side pressure drop is generally close to the measured pressure drop since the air density in the 

laboratory was typically near 1.17 kg/m
3
.  

 

4 RESULTS 
 

4.1 Thermo-hydraulic tests with fouling 
As described above, tests were carried out with heat exchangers A & B under clean and fouled conditions. Figures 5 

and 6 present results of air-side pressure drop and heat transfer for heat exchanger A. Considering first the clean data 

points, it can be observed that as the flow rates of water and air increase, the overall heat transfer also increases. 

This is because the higher flow rates result in improved air- and water-side heat transfer coefficients, which 

ultimately result in improved heat transfer. As the mass flow rate of air increases, the face velocity increases as well, 

resulting in higher air-side pressure drops over the coil.  
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Figure 5 shows that the impacts of fouling with ASHRAE dust and Arizona dust on air-side pressure drop are 

significantly different. With the injection of 500g of Arizona dust, there is no measureable increase in air-side 

pressure drop. On the other hand, when 400g of ASHRAE dust is injected into the air stream, the air-side pressure 

drop increases 55.6% from the clean pressure drop for a duct air velocity of 2.0 m/s. On an absolute basis, the 

increase in air-side pressure drop due to fouling increases as the flows of air and water are increased.  

Figure 6 shows that the impact of fouling with either ASHRAE dust or Arizona dust on heat transfer for heat 

exchanger A is not very significant, though the net impact of fouling is to decrease the heat transfer rate. At the 

highest flow rates of water and air, fouling results in decreases in heat transfer of 2.9% and 5.3% for ASHRAE and 

Arizona dusts respectively.  

 

In general, the microchannel-style heat exchanger B is significantly more sensitive to fouling than the plate-fin heat 

exchanger A. Figure 7 shows that with the injection of only 135g of ASHRAE dust, there is a 45.5% increase in air-

side pressure drop at a duct air velocity of 2.0 m/s. Figure 8 shows that for the Arizona dust, there is a small overall 

decrease in air-side pressure drop with the injection of 500g of dust. This is believed to be due to the Arizona dust 

blocking up the louvers, resulting in a higher percentage of duct-directed flow straight through the heat exchanger 

rather than the louver-directed flow. Since the straight-through path is less circuitous, a lower pressure drop would 

be experienced.  

 
Figure 5 Pressure drop of HXA with fouling 

 
Figure 6 Heat transfer of HXA with fouling 

 

 

Figure 7 Pressure drop of HXB with fouling 

 

Figure 8 Heat transfer of HXB with fouling 

At the highest air and water flow rates, the injection of 135g of ASHRAE dust results in up to a 5.2% reduction in 

heat transfer, while the Arizona dust results in up to 13.1% reduction in heat transfer. This significant reduction in 

heat transfer with the Arizona test dust is believed to be due to two factors - the louver blockage as described earlier 

as well as the blanket of low thermal-conductivity dust covering the extended surfaces. The macro photographs in 

the next section will help to visually explain these results.  

 

For the ASHRAE dust, the fouling of the microchannel heat exchanger (B) with 135g of dust and the plate-fin heat 

exchanger (A) with 400g of dust result in similar decreases in heat transfer and increases of air-side pressure drop. 

Thus it is possible to state quantitatively that the microchannel heat exchanger is more strongly impacted by the 

fouling with ASHRAE dust. Similarly, fouling both heat exchangers A and B with 500g of Arizona dust results in a 

larger decrease in heat transfer for the microchannel heat exchanger (B). The microchannel design is more reliant on 
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surface enhancement in order to decrease the air-side thermal resistance, and more sensitive to pertubations of the 

flow patterns within the heat exchanger.  

 

4.2 Fouling Phenomena 
The differences in fouling behavior between ASHRAE and Arizona Road Test Dust for heat exchangers A and B 

can be better understood by considering macro photographs of the heat exchangers with and without fouling. Figure 

9 shows photographs of the heat exchangers under the fouling levels investigated in the thermo-hydraulic tests. For 

the ASHRAE dust, the particulate matter of the dust tends to build up on the front face of the coil for both heat 

exchangers A and B, forming a mat. At the extreme case, as in heat exchanger C fouled with 267g of ASHRAE dust, 

the coil is nearly entirely blocked. The same behavior is seen for heat exchanger B (microchannel) under similar 

levels of fouling.  

 

 
Figure 9 Macro photographs of heat exchangers fouled with dust 

Heat Exchanger A Clean Heat Exchanger A Fouled with 400 g 

ASHRAE Test Dust

Heat Exchanger A Fouled with 500 g 

Arizona Road Test Dust

Heat Exchanger B Clean Heat Exchanger B Fouled with 135g 

ASHRAE Test Dust

Heat Exchanger B Fouled with 500 g 

Arizona Road Test Dust

Heat Exchanger C Clean Heat Exchanger C Fouled with 267 g 

ASHRAE Test Dust
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For the Arizona Road Test Dust, the particulate matter coats all surfaces of the heat exchanger enhanced surface, 

particularly the stagnation regions. The thermal conductivity of the Arizona test dust is lower than that of the fin 

material, resulting in the significant decrease in heat transfer. The relatively thin film of particulate matter results in 

an insignificant increase in air-side pressure drop due to a negligible blockage of the frontal area.  

 

4.3 Fouling Evolution 
Mason et al. (2006) previously investigated the air-side particulate fouling behavior of a heat exchanger; the results 

of one test are shown in Figure 10 for reference. It can be seen from Figure 10 that fouling occurs in two phases with 

very different behavior. At the beginning of the test, a relatively small amount of particulate matter adheres to the 

coil in the so called nucleation regime, resulting in a relatively slow linear growth of the air-side pressure drop. After 

a critical point, nearly all the particulate matter adheres to the heat exchanger; this is called the bulk fouling regime, 

and the air-side pressure drop increases very rapidly. 

 

 
Figure 10 Evolution of the air-side pressure drop during  

the fouling process (Adapted from Mason et al. (2006)) 

 

Similar tests were carried out on heat exchangers A, B, and C with ASHRAE dust. Qualitatively similar pressure 

drop evolutions were seen, though heat exchanger B fouls more strongly. Figure 11 shows the fouling evolutions of 

the three heat exchangers tested here compared with other heat exchangers from literature. The amount of fouling 

injected is divided by the frontal area of the heat exchanger in order to provide a fair comparison among the heat 

exchangers of different sizes. The heat exchangers fouling tests selected from literature were those with sufficiently 

well characterized tests, tests with louvered fins, and tests in which the heat exchanger fouling was conducted with 

ASHRAE dust in order to make the most fair comparison between the studies. The specifications of the heat 

exchangers from the literature are summarized in Table 3.  

 
Table 3 Heat Exchangers from literature fouled with ASHRAE Test Dust 

Author  Name Afrontal  Fin Type  Fin Pitch [mm] 

Pak et al.  HX01 488 x 902 mm Plain fins  1.15  

Pak et al.  HX02 488 x 902 mm Louvered fins  1.15 

Pak et al.  HX04 488 x 902 mm One-by-one louvered fins 1.15  

Pak et al.  HX05 488 x 902 mm Continuous louvered fins 1.15  

Yang et al. HX8L 610 x 610 mm Louvered wavy fins  3.17  

Yang et al. HX4L 610 x 610 mm Louvered wavy fins  2.19  

Yang et al. HX2L 610 x 610 mm Louvered wavy fins  1.81  

Bell et al.  N/A  610 x 610 mm Louvered fins  2.81  

 

In general, these results suggest that as the amount of injected dust is increased, the air-side pressure drop will 

increase monotonically. The significant difference in air-side pressure drop between the results of Yang et al. and 

Pak et al. can be reconciled by considering the fouling regime. While the results from Pak et al. are from the 

nucleation regime, the results from Yang et al. are from the bulk fouling regime.  
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All the heat exchangers investigated in this study exhibit the same two-regime fouling process. Both heat exchangers 

A and C begin with a slow rate of increase of air-side pressure drop with fouling, hit a critical fouling amount and 

begin to foul much more quickly. For the plate-fin heat exchanger (A), the rate of bulk-fouling is still fairly low. In 

contrast, the microchannel heat exchangers (B and C) exhibit very high rates of fouling in the bulk-fouling regime. 

For a clean heat exchanger B, the injection of only 33.1g of dust results in an increase of pressure drop of 10%.  

 

For the louver-finned heat exchangers, as the fin pitch decreases, the propensity to foul increases, which is 

consistent with the results presented in Mason et al. (2006). In order to compare the bulk-fouling behavior of the 

louvered fin heat exchangers, the pressure drops for heat exchangers B and C from the last two points were linearly 

extrapolated to the fouling amount of Bell et al. (2011) and Yang et al. (2007b) of 1612.5 g/m
2
 ASHRAE dust per 

unit heat exchanger frontal area. This provides a conservative estimate of the pressure drop at this fouling flux since 

the rate of increase of air-side pressure drop for the microchannel heat exchangers is higher than linear. Figure 12 

shows the sensitivity to the fin pitch of the fouled pressure drop of the louvered finned heat exchangers in the bulk 

fouling regime. A regression was empirically fit to the data in order to approximate the shape of the curve.  

 

 
Figure 12: Literature survey of impact of ASHRAE Dust 

Fouling (δ: Fin Pitch) 

 

 
Figure 13: Increase in air-side pressure drop as a 

function of fin pitch for louvered fins with 1612.5 g/m
2
 

ASHRAE dust injected 

 

Another major factor impacting fouling behavior is the louver geometry. Considering the air-side pressure drops for 

the results from Pak et al. (2005), Bell et al. (2010) and heat exchangers B and C, it can be observed that the fin 

louvering plays a significant role. All of these heat exchangers have the same amount of dust injected per face area 

(about 600 g/m
2
), all have louvered fins, and all have similar louver fin pitch. Thus, the only variable is the details of 

the fin louvers. While the details of the louvering of the heat exchangers of Pak et al. or Bell et al. are not available, 

some differences can be noted between heat exchangers B and C. Heat exchanger B is more aggressively louvered; 

that is, the louvers protrude more significantly into the air stream, providing for more “scooping” of the air, resulting 

in a smaller effective fin pitch. In addition, the louvers of heat exchanger B begin at nearly the leading edge, while 

the louvers of heat exchanger C begin about 4.7mm from the front face of the heat exchanger. A thorough 

understanding of the impact of louver geometry on fouling behavior is critical but is beyond the scope of this paper.  

 

CONCLUSIONS 
 

Thermo-hydraulic tests were carried out on plate-fin and microchannel heat exchangers under fouling conditions 

with ASHRAE and Arizona dust. From these tests, the following conclusions are possible:  

• The ASHRAE dust results in a much larger increase in air-side pressure drop than the Arizona dust.  

• Arizona dust results in a larger decrease in heat transfer than the ASHRAE dust  
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• The microchannel coils tested were more sensitive to fouling by either Arizona or ASHRAE dust than the 

plate-fin heat exchanger  

• Smaller fin pitches with louvered fins result in higher sensitivities to particulate fouling. 

 

NOMENCLATURE 

 
 Variable  Definition (Units) 

 A Area (m
2
) 

 cp Specific heat (kJ/kg-K) 

 h Enthalpy (kJ/kg) 

 mɺ  Mass flow rate (kg/s) 

 u Velocity (m/s) 

 ∆p Pressure Drop (kPa) 

 Q Heat Transfer Rate (kW) 

 T Temperature (°C) 

 ρ Density (kg/m
3
) 

 δ Fin pitch (mm) 

 

   Subscript  Description 

 a  Air 

 a,i Air inlet 

 a,o Air outlet 

 duct Duct 

 face Face 

 w Water 
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