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ABSTRACT 

The selection of the optimal commercial oil to be used as lubricant in a refrigerating system with carbon dioxide 
(CO2) as working fluid is not solved yet, though POE and PAG oils give acceptable results. Only a real knowledge 
of the oil structure and thermodynamic behavior of the oil+refrigerant mixture allows a proper selection of the 
lubricant. Then, a systematic study on the solubility of CO2 in some commercial POE oils and their precursors is 
underway at our laboratory, and several measurements have been performed till now. Here, an investigation on the 
solubility of CO2 in commercial POE lubricants with different ISO standard viscosity is presented on the base of 
measurements performed at temperatures from 283 K and 343 K. The results are discussed and compared with the 
solubility of precursors in view of the development of thermodynamic models able to predict the properties of the 
mixture oil+refrigerant. 

1. INTRODUCTION 

Natural fluids are amongst the most promising refrigerants due to their zero global warming potential (GWP) when 
directly emitted into the atmosphere. Among them, great attention is put on carbon dioxide (CO2) as alternative to 
synthetic hydrofluorocarbons (HFC) in the refrigeration systems. However, its employment still presents different 
technical unsolved problems: one of them is the proper choice of the lubricant for each application. Though polyol 
ester oils (POE) and polyalkylene glycol oils (PAG) are widely used with carbon dioxide with acceptable results, 
several troubles can appear in the refrigerating machine depending on the working conditions due to undesired 
thermophysical behavior of the mixture oil+refrigerant, that is the actual working fluid circulating in the machine. 
The unavoidable solution of CO2 into the oil, present in the compressor and the circuits, can determine, depending 
on temperature and pressure, phenomena such as the formation of two liquid phases due to immiscibility, the 
buoyancy of lubricant rich liquid on the refrigerant rich liquid due to barotropic behaviour, a strong reduction in oil 
viscosity etc.. These phenomena can provoke damages to the compressors because of reduced oil return or reduced 
lubricating power of the oil, but also negatively influence the heat transfer efficiency in evaporator and condenser. A 
good knowledge of the thermodynamic behavior of the CO2 + lubricant systems is then essential for the selection of 
the proper oil. Numerous thermophysical properties need to be considered, but understanding phase behavior of the 
CO2+lubricant mixture, with particular reference to solubility, is of special importance. The extensive production of 
accurate experimental data on solubility is essential to support the development of both predictive and correlative 
thermodynamic models, as already proposed in the literature (e.g. Yokozeki, 1994, Elvassore et al., 1999, Mermond 
et al., 1999, Hauk and Weidner, 2000, Huber et al., 2002, Takigawa et al., 2002, Fleming and Yan, 2003, 
Teodorescu et al., 2003, Youbi-Idrissi et al., 2003, Tsuji et al., 2004, Ikeda et al., 2004, García et al., 2004, 
Quiñones-Cisnerosa et al., 2005, Marcelino Neto et al., 2007, Youbi-Idrissi and Bonjour, 2008), to enable the proper 
calculation of the mixtures properties and the consequent proper design of HVAC system components. 
In the last years, a project on the study of solubility of CO2 in lubricants has been started at our laboratory, and 
several data on both commercial oils and precursors belonging to two homologous series of pentaerythritol tetralkyl 
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esters (n-alkyl esters and 2-methyl alkyl esters), have been produced (Bobbo et al., 2005, Bobbo et al., 2006a, 
Bobbo et al., 2006b, Bobbo et al., 2007a, Bobbo et al., 2007b, Bobbo et al., 2008, Fedele et al., 2008a, Pernechele 
et al., 2008a, Pernechele et al., 2008b, Fedele et al., 2008b). 
In this paper, solubility measurements of CO2 in three different commercial POE oils, produced by the same 
company but with different ISO standard viscosity, are presented in the range between 283 K and 343 K, with the 
aim to evaluate the possible correlation of solubility and standard viscosity of the lubricant. 
The results are then compared to those referring to some POE precursors, to derive some information on the 
influence of oil molar mass and structure. The data have been also successfully correlated with a model already 
applied in previous works. 

2. EXPERIMENTAL SECTION 

2.1 Materials 
Carbon dioxide (CO2), with 99.95% purity, was supplied by Air Liquide. 
The three commercial POE lubricants object of the analysis are Icematic SW 32, Icematic SW 46 and Icematic SW 
68. To eliminate the non-condensable gases, each sample was put under vacuum and then used with no further 
purification. An elementary analysis was performed for the three commercial oils with the aim to estimate their 
molar mass assuming they are formed by mixtures of pure linear or branched pentaerythritol tetraalkyl esters. These 
pure esters, as demonstrated in Bobbo et al. (2006b), are present in Icematic SW 32 and are generally indicated as 
precursors of the commercial POE lubricants. The relation between the results of the elementary analysis (i.e. the 
determination of the amount of C, H and O in the oil sample) and the molar mass of the sample analysed was 
calibrated on two mixtures of pure pentaerythritol tetraalkyl esters prepared at our laboratories: one composed by a 
series of linear chained compounds (PECs) and the other by a series of branched chained compounds (PEBMs) with 
different molar masses. Since the molar mass of these compounds is known, it was possible to calculate the molar 
masses of the two known mixtures and then to compare the calculated values to the results obtained from the 
elementary analysis, getting an agreement within 1% and confirming the reliability of the method. The estimated 
molar masses of the three commercial lubricants are reported in Table 1. 

Table 1: Molar mass for the three commercial POE oils, estimated by elementary analysis, and PECs and PEBMs  

SW 32 SW 46 SW 68 PEC4 PEC6 PEC8 PEBM5 PEBM7

Molar mass  
(kg kmol-1) 554 593 634 416.5 528.7 640.9 472.6 584.8 

2.2 Experimental apparatus and procedure 
A specifically built apparatus, based on the static synthetic method, was used to perform the isothermal solubility 
measurements. It was already described by Bobbo et al. (2005), even if slightly modified as explained in Bobbo et 
al. (2008),  and here only the main outlines are given. 
The equilibrium was reached in a stainless steel cell, with a calibrated volume of about 180 cm3, endowed with glass 
windows for observing the mixture and with an internal helical stirrer to force the vapor through the liquid. The cell 
was immersed in a water thermostatic bath, in which temperature was controlled by a heating resistance regulated by 
a PID controller, which compensated the cooling capacity of an external auxiliary thermostatic bath, with a stability 
of about 0.01 K. Temperature was measured by means of a 100  platinum resistance thermometer with an 
uncertainty of about 0.02 K, while pressure was measured by means of a Druck DPI 145 with a full scale of 35000 
kPa and an uncertainty of 20 kPa. A calibration was performed to find a relationship between the level of a 
calibration liquid inside the cell, measured by means of a cathetometer (Gaertner Scientific M940LE), and its known 
volume. During the measurements, the liquid volume inside the cell is then obtained through this relationship by 
measuring the level of the meniscus separating the vapor and the liquid phases. Oil was directly charged in the cell 
by means of a glass syringe after opening the upper side of the cell, with an estimated mass uncertainty of 0.001 g. 
After this, the cell was closed, connected to the measurement circuit and evacuated. Then, a known amount of CO2
was transferred in the cell from the sample bottle simply by exploiting the pressure difference. The CO2 charged 
mass was measured gravimetrically. At constant temperature, the equilibrium was reached and the level of the liquid 
phase into the equilibrium cell was measured by means of the cathetometer, with a resolution of 0.0001 mm and an 
estimated uncertainty in the level’s measurement of 0.05 mm. The liquid volume was calculated with the meniscus 
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Figure 1: solubility of CO2 in commercial lubricants Icematic SW 32, SW 46 and SW 68 expressed in terms of 
mass fraction (left) and molar fraction (right).

level by means of the calibration equation and subtracted from the total one of the cell, obtaining the vapor phase 
volume and then the CO2 mass in vapor phase, through the density calculated with Refprop 8.0 database (Lemmon 
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et al., 2007)). Considering the vapor phase formed by pure CO2 only, due to the low oil vapor pressure, the mass of 
CO2 solved in the liquid was calculated by a simple subtraction from the total mass charged. So, the uncertainty in 
the liquid composition measurements was estimated to be from 0.002 (high CO2 mole fraction) to 0.02 (low CO2
mole fraction). 

3. RESULTS AND DISCUSSION 

3.1 Experimental data 
Four isotherms at 283.15, 303.15, 323.15, and 343.15 K were measured for each of the three systems CO2 + SW 32, 
CO2 + SW 46, and CO2 + SW 68. An average of 12 points per isotherms was measured, for a total of 143 
experimental data. All the experimental data are shown in Figure 1 in terms of mass (left side) and molar fraction 
(right side). It is useful to underline that the isotherms at 283.15 K and 303.15 K are below the critical temperature 
of carbon dioxide and the maximum pressure for these isotherms corresponds to the saturation pressure of carbon 
dioxide. The isotherms at 323.15 K and 343.15 K are over the critical temperature of carbon dioxide and then the 
maximum pressure (and the corresponding mass/molar fraction) is limited by the maximum acceptable pressure 
inside the measurement cell, i.e. 10000 kPa. For each oil, the molar fractions were calculated from the experimental 
mass fractions through the molar mass evaluated as explained in paragraph 2.1. 
The figure shows a similar trend for the solubility of CO2 in the different oils, both in terms of mass fraction and 
molar fraction. It is clear, as it could be expected, that the solubility increases when the temperature decreases. The 
solubility in terms of molar fraction shows a clear negative deviation from the ideal behavior (i.e. pressures are 
lower then predicted by the Raoult’s law), showing a prevalence of attractive forces between carbon dioxide and oil 
molecules. However, at temperatures below the CO2 critical temperature (304.1 K) and at high molar fractions, the 
deviation is positive, showing a prevalence of repulsive intermolecular forces. 
The solubility of CO2 in the three oils is quite similar at every temperature, but has not trend related to the standard 
oil viscosity. At a given pressure, the solubility in SW 32, i.e. the less viscous oil, is the highest, but the solubility in 
SW 68, i.e. the most viscous oil, is higher than in SW 46. This could suggest that the viscosity of the three oils is 
different due to a different mix of pure precursors. 
A direct comparison among the solubility of CO2 in the three commercial oils and some precursors belonging to 
pentaerythritol tetraalkyl esters linear (PECs) and branched (PEBMs) chained series (Bobbo et al., 2005, Bobbo et 
al., 2006b, Bobbo et al., 2007a, Bobbo et al., 2007b, Bobbo et al., 2008, Fedele et al., 2008a, Pernechele et al.,
2008a, Pernechele et al., 2008b, Fedele et al., 2008b) is presented in Figures 2 and 3, where the solubility expressed 
in terms of mass and molar fraction is shown for the different oils at the temperature of 283.15 K (similar 
considerations could be done at other temperatures). 
As shown in figure 2, in terms of mass fraction PECs have a wider range of solubility than commercial oils. PEC6 
has a solubility similar to the average solubility of commercial oils, while PEC8 has a lower solubility and PEC4 a 
higher solubility. A different situation arises when the solubility is expressed in terms of molar fraction: due to the 
effect of the different molar masses, PECs show in general a lower solubility than commercial oils and PEC8 is the 
precursor with the higher solubility.  
A similar analysis can be performed for the PEBMs on the base of figure 3: PEBMs have higher solubility than the 
three commercial oils in terms of mass fraction, with PEBM5 more soluble than PEBM7, but slightly lower 
solubility when it is expressed in molar fraction, with PEBM7 showing slightly higher solubility than PEBM5. It 
must be underlined that expressing the solubility in terms of mass fraction is more useful for practical purposes, but 
the more rigorous and thermodynamically significant definition is in terms of molar fraction. 
However, it is evident that no conclusions can be taken on the nature of the commercial oils on the base of this 
analysis and only the knowledge of the real compositions of the commercial oils would allow a comprehension of 
the relation between the properties of the precursors and those of the commercial oils. 
A more complex structure of commercial oils can be deducted also from Figure 4, where the saturation pressure at 
343.15 K for each oil has been expressed as a function of molar mass for several fixed molar fractions. It is evident 
that the dependence of solubility on molar mass is linear for the pure precursors PECs (the behaviour of PEBMs 
cannot be evaluated, since they are only two), while a more complex dependence is shown by the commercial oils .  
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Figure 2: comparison between the solubility in molar fraction and mass fraction of CO2 in commercial lubricants 
Icematic SW 32, SW 46 and SW 68 and the solubility in PEC precursors at 283.15 K. 
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Figure 3: comparison between the solubility of CO2 in molar fraction and mass fraction in commercial lubricants 
Icematic SW 32, SW 46 and SW 68 with the solubility in PEBM precursors at 283.15 K. 
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3.2 Immiscibility 
As already said, one of the potential problems in applying commercial oil in refrigerating machines is given by the 
possible immiscibility of the lubricant with the refrigerant (here carbon dioxide). This phenomenon can determine 
oil accumulation inside the heat exchanger tubes, reducing heat transfer capabilities, and lowering the oil 
transportation to the compressor, resulting in an overall decrement of the refrigeration cycle performance and 
possible damages to the compressor. For this reason we investigated also the limits of miscibility of carbon dioxide 
in the three POEs as a function of temperature. After charging the cell, temperature was changed till the appearance 
of a cloudy point in the liquid phase was observed. Changing composition by adding CO2, it was possible to define 
at least part of the LLE saturation temperature at which a second liquid phase appears. A miscibility gap was found 
for SW 46 and SW 68 at temperatures higher than 292.2 K and 296.6 K, respectively. However, due to experimental 
limits, the gap could be investigated in the range of mass fraction between roughly 0.5 and 0.85. The results are 
summarized in Figure 5. The LLE temperature limit is lower (around 5 K at a given composition) and the miscibility 
gap looks wider for the SW 46 oil than for SW 68. No miscibility gap was observed for the oil SW 32. 
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Figure 5 : limits of miscibility for CO2 in SW 46 and SW 68. 

3.3 Data correlation 
Data were correlated using the PR EoS (Peng and Robinson, 1976) with the Huron-Vidal mixing rules (Huron and 
Vidal, 1979) and the UNIQUAC equation for the gE at infinite dilution. To perform the needed correlation it is 
necessary to express the solubility (that corresponds actually to a vapor liquid equilibrium) for the studied systems in 
terms of molar fraction and approximate a model for the oils structure, considering the commercial oils are actually 
a mixture of pure precursors. The average molar masses used in the modeling for the studied oils are those obtained 
with the methodology previously described based on the elementary analysis and reported in Table 1. Considering 
the uncertainty in the method applied, reported results must be considered as ‘approximated’ as the data were not 
validated with other methodology. 
The molecular parameters involved in the model were obtained assuming an average structure of the lubricants 
represented by the following formula:  

C-[CH2-COO-CH(CH3)-(CH2)n-CH3]4

where the number n denotes the effective number of -CH2- group in the acid fatty part of POE. This number has 
been tuned to the assumed molecular mass of oils. A linear dependence on temperature was assumed for the 
parameters used in the model: 

a22= a22(0)+ a22(1) T (1) 

12= 12(0)+  12(1) T (2) 
 21=  21(0)+  21(1) T (3) 
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The coefficients of Equations (1-3) are reported in table 2. 
The correlation was performed in a classical way, i.e. assuming equal fugacities of the components in the coexisting 
vapor and liquid phases and, in addition, assuming that vapor phase consists of pure CO2.
The experimental data treated in the described methodology could be well correlated with the model and 
methodology applied. The results of the correlation are synthetically reported in table 2.                  
It is worth to mention, here, that the model detects the LLE equilibrium with quantitative agreement with the 
experimental observation of the second liquid phase. The overall deviations are within estimated experimental 
uncertainty; however, greater deviations were observed for concentrations close to the region of the second liquid 
phase appearance. More detailed results and the interpretation of the data treatment will be published soon in a 
separated paper. 

Table 2: parameters used in the model and deviations of model from experimental data 
           

a22(0) a22(1) 12(0) 12(1) 21(0) 21(1)  P 
(kPa)

 P 
(%)

AAD P 
 (kPa)

AAD P 
(%)

Oil

SW 32 216140 -1137.24 0.489419 0.000368 0.304211 -0.000600 7.9 0.2 27.8 0.9 
SW 46 240223 -1208.40 0.434181 0.000207 0.278831 -0.000294 8.4 0.1 37.9 1.0 
SW 68 287473 -1043.25 0.459931 0.002089 0.276120 -0.000116 5.8 0.1 40.6 1.5 

4. CONCLUSIONS 

This paper presents a series of measurements on the solubility of carbon dioxide in three commercial POE oils 
characterized by different ISO standard viscosity. The analysis of the results, and a comparison with the solubility of 
pure precursors (PECs and PEBs), has shown that the behaviour of commercial oils is more complex than that of 
precursors in relation to the standard viscosity and the molar mass. Moreover, the interpretation of the results in 
relation to the pure precursors properties would be possible only after determining the molecular structure and 
composition of the commercial oils. The immiscibility of the commercial oils was studied also, showing miscibility 
gaps for the SW 46 and SW 68 oils in the range of temperature explored. The solubility data were successfully 
correlated with a model based on Peng-Robinson equation of state and Huron-Vidal mixing rules. 

NOMENCLATURE 

AAD absolute average deviation (-)  absolute deviation (-)  
P Pressure (kPa)  
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