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ABSTRACT 
Water droplets on micro-patterned surfaces consisting of parallel grooves tens of microns in width and depth is 
considered, and a method for calculating the droplet volume on these surfaces is presented. This model which 
utilizes the elongated and parallel-sided nature of water droplets condensed on micro-grooved surfaces requires 
inputs from two water droplet images at = 0 and = 90 — namely, the droplet major axis, minor axis, height, and 
two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the 
chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to 
occur along the side of the droplet because of the surface energy barrier to wetting caused by the grooves—a
behavior that was observed experimentally. When applied to water droplets condensed onto a micro-grooved 
aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the 
droplets analyzed. This method is useful for estimating the volume of retained water droplets on micro-textured 
surfaces where the surface micro-channels are aligned parallel to gravity and both heat and mass transfer occur.

1. INTRODUCTION
In a broad range of air-cooling applications, water retention on the heat transfer surface is problematic, because it 
can reduce the air-side heat transfer coefficient, increase the core pressure drop, and provide a site for biological 
activity. In refrigeration systems, the accumulation of frost on the heat exchanger requires periodic defrosting and 
attendant energy expenditures. When water is retained on these surfaces following the defrost cycle, ice is more 
readily formed in the subsequent cooling period, and such ice can lead to shorter operational times between defrost 
cycles. Thus the drainage of water, whether from condensation or melting frost, is very important to the overall 
performance of heat transfer systems.

The objective of this work was to devise a method for predicting the volume of a water droplet that has condensed 
onto a micro-grooved heat transfer surface using only a few simple parameters that can be gleaned from two droplet 
images—a frontal image and a side image. A method for accurately calculating the droplet volume is a necessary 
aspect to water retention modeling and droplet distribution functions. Thus the engineering value of this research
rests in its direct application to the modeling and control of condensate on heat transfer surfaces used in 
dehumidification and air-cooling systems. This work also provided a better understanding of the anistropic 
wettability of a highly controlled surface microstructure which might facilitate new surface designs with improved 
liquid drainage behavior. As part of an effort to provide guidance for the design of these surfaces, the applicability 
of current models, tacitly based on an assumption of isotropic wetting, and their ability to provide reliable prediction 
of water droplet volume on these new surfaces was also evaluated. Because droplet shapes on surfaces with 
anisotropic wetting behavior are different from those on conventional, isotropic surfaces, existing models were 
observed to be either inadequate or less accurate.

In an early theoretical study of the effect of surface heterogeneity on the contact angle of stripwise patterned 
surfaces, Neumann and Good (1972) found that for line widths below about 0.1 m, the amplitude of the periodic 
contortion of the three-phase contact line is less than about 1nm, which is indistinguishable from a straight line. 
Therefore, at these scales, the roughness should not affect the hysteresis, and anisotropic wetting should not occur. 

* Assistant Professor, corresponding author, sommerad@muohio.edu
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This proposition was later supported by the theoretical work of Schwartz and Garoff (1985) which examined the 
capillary rise and resulting anisotropic wetting of vertical, doubly periodic patterned surfaces using energy-
minimization techniques. In a study of droplets on a grooved substrate, Oliver, Huh, and Mason (1977) examined 
droplets of PPE and mercury on parallel-grooved nitrocellulose surfaces and found that the mercury droplets were 
nearly spherical while the PPE droplets were cylindrical. Using a mechanistic approach, Oliver and co-workers 
showed that the Cassie-Baxter equation was not valid for the case of cylindrical droplets on these parallel-grooved 
surfaces and developed a new expression for the apparent contact angle from a two-dimensional force balance. 

Morita, et al. (2005) offered insight into the anisotropic wetting of micro-patterned fluoroalkylsilane monolayer 
surfaces with alternating hydrophilic/hydrophobic lines of width 1-20 m. They observed that the static and 
dynamic contact angles of a droplet oriented orthogonally to the stripes were 10-30 larger than those of the droplet 
oriented parallel to the stripes. Sliding angle data showed low tilt angles for droplets sliding parallel to the stripes, 
but droplets sliding orthogonally to the stripes resisted tilt angles of more than 80 . The only paper identified that 
addresses the condensation of water vapor onto a superhydrophobic grooved surface is the work of Narhe and 
Beysens (2004). In this work, groove structures were prepared from a silicon wafer by dicing it and then treating it
with fluoroalkylsilane. The contact angles were 130 2 and 110 2 in the directions orthogonal and parallel to 
the groove, respectively. 

In another related work, Chen, et al. (2005) examined the apparent contact angle and shape of water droplets on 
parallel-grooved surfaces using both numerical and experimental approaches. Equilibrium drop shapes were 
predicted numerically by minimizing the system free energy while simultaneously constraining the drop volume to a 
fixed value. Both the initial drop shape and the number of occupied channels were specified as inputs. It was found 
that multiple equilibrium shapes were possible, and the final predicted shape depended largely upon the number of 
channels on which the drop resided. The apparent contact angle viewed along the channels was typically larger than 
the contact angle viewed perpendicular to the channels. This behavior, attributed to the pinning of the droplet against 
the pillars, was observed both numerically and experimentally. In their model, droplet volume, contour shape, and 
contact angle are all needed a priori in arriving at the equilibrium droplet shape. 

Dussan V and Chow (1983) studied static droplet shapes at critical conditions on an inclined surface for a drop 
contact line with straight-line segments on the sides. In this view, the droplet was assumed to be elongated and 
parallel-sided. This analysis was valid only in the limit of small contact angle, and Dussan V (1985) later extended 
this work to allow for larger contact angles. The model provided closed-form expressions for the maximum volume, 
speed, and wetted area of a droplet on a surface of inclination, , but it required knowledge of the advancing and 
receding contact angles, A and R, as well as the slope of the contact angle with respect to the speed of the contact 
line, R and A. The most limiting restriction of this analysis was its assumption of small contact angle hysteresis. 
Dussan V (1987) later included the effects imposed by the motion of the surrounding fluid, but again the analysis 
was limited to a droplet with small contact angles and small hysteresis. 

Briscoe and Galvin (1991) studied the critical volume of sessile and pendant droplets and found that the critical 
surface inclination angle, c, scaled with V-2/3 for sessile droplets, where V is the volume of the droplet at incipient 
motion. They compared their data to the prediction of maximum volume given by Dussan V (1985) and reported 
reasonable agreement. The theoretical equation by Dussan V, however, under-predicted the maximum volume by as 
much as 23% with smaller errors occurring at small inclination angles. In a finite element solution of the Young-
Laplace equation, Brown, et al. (1980) were able to solve for the shape of droplets on various surfaces of inclination. 
Their analysis did acknowledge the variation of the contact angle around the base contour, but it only considered the 
case of a circular base contour and predicted the horizontal contact angle, H, to be intermediately located between 
the maximum and minimum contact angles of the drop, a behavior counter to experimental observations. Their 
approach, which required the specification of the tilt angle and base contour radius, also assumed that the droplet 
volume was known a priori.

Extrand and Kumagai (1995) studied contact angle hysteresis, droplet shape, and the retentive force for water and 
ethylene glycol droplets at the critical condition on polymer and silicon surfaces using a tiltable plane. They found 
that surfaces with large contact angle hysteresis produce more elongated drops. In a numerical study of droplets at 
the critical condition, Dimitrakopoulos and Higdon (1999) solved for the droplet configuration that produced 
minimum contact angle hysteresis (i.e. A- R) for a specified advancing angle A and Bond number. 
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In two recent reports by El Sherbini and Jacobi (2004a,b), droplet shapes were studied experimentally. The droplet 
shape was approximated using a ‘two-circle method’ in which the droplet profile is fitted with two circles sharing a 
common tangent at the apex of the droplet. The volume was then calculated by integrating the profile around the 
circumference of the base. This method was found to accurately predict the volume of droplets, knowing only the 
contact angle and shape of the three-phase contact line. Their work was developed for conventional surfaces of 
homogeneous roughness. In the work of El Sherbini and Jacobi, the base contour was assumed to be elliptical and 
continuous. Again, observations of droplets on surfaces with micro-etched grooves indicate that the modeling 
approach used on conventional surfaces does not readily extend to topographically anisotropic surfaces.      

Understanding the behavior, shape, and size of water droplets is the key to understanding droplet retention on a 
surface. Significant research has already been reported on analytical and numerical methods for calculating droplet 
volume on smooth surfaces as well as homogeneously rough surfaces. However, no calculation method was found 
that specifically addresses the volume calculation of condensed water droplets on parallel, micro-grooved surfaces. 
The inability of existing models to satisfactorily calculate the droplet volume is largely ascribed to the unusual 
variation of the apparent contact angle around the base of the drop, the discontinuity of the three-phase contact line, 
and the elongated, parallel-sided droplet shape. Therefore, if functional topography is to be useful as a method for 
manipulating wettability for the purpose of controlling condensation or water drainage on heat transfer surfaces,
then new models and methods are needed.

2. EXPERIMENTAL THEORY AND METHODS
The contact angle that a liquid droplet forms on a horizontal surface is described by the classical equation by 
Young (1855),

LV

SLSVcos (1)

where SV , SL, and LV are the interfacial free energies per unit area of the solid-vapor, solid-liquid, and liquid-
vapor interfaces, respectively. The specific contact angle that a water droplet forms on a surface has long been used 
as a gauge of the hydrophobicity of the surface. However, depending on how the water droplet forms on a rough 
surface, at least two different wetting regimes can exist. The first form, known as the “wetted surface,” occurs 
when the water droplet completely fills the surface asperities. This particular wetting regime, which may result 
from melting frost or condensing water vapor, is usually described by Wenzel’s theory of wetting (1936). The 
second type known as the “composite surface” occurs when the droplet is suspended over the asperities, leaving air 
trapped beneath it. This form of wetting frequently occurs when the droplet is injected by syringe onto a surface 
having sufficiently small surface features. “Composite surfaces” are described by Cassie-Baxter’s theory of wetting 
(1944). By themselves, large contact angles associated with a hydrophobic surface do not ensure that a surface 
easily sheds water. Therefore, the sliding angle is a useful criterion when evaluating the water drainage behavior of 
surfaces. The sliding angle is the critical angle for a water droplet of known mass to first begin sliding down an 
inclined surface. 

The objective of this research was to develop a new method for calculating the volume of water droplets on parallel-
grooved aluminum surfaces, and as such it was important to understand how such modeling might depend on the 
wetting modes described by the Wenzel and Cassie-Baxter models. To explore the Wenzel mode of wetting (the 
focus of this research), a Peltier stage was utilized to condense water vapor onto the micro-grooved surface 
generating droplets that wet the surface. Still images were obtained using a charge coupled device (CCD) camera 
around the base of the droplet and analyzed to obtain the apparent contact angle and dimensions of the droplet. The 
grooves were aligned with gravity because that configuration appeared to be the most promising for promoting
drainage (see Fig. 1). The micro-grooved surfaces were produced using standard photolithographic practices and a 
reactive ion etching technique described in Sommers and Jacobi (2006). Parallel channels approximately tens of 
microns in width and depth, running the length of the surface, were etched into plates of aluminum alloy 1100 
(99.9% pure Al), 63.5 mm by 63.5 mm by 3.2 mm in size. On the backs of the plates, two holes were drilled to a 
depth of approximately 2.5 mm and threaded to allow for backside mounting to a Peltier cooling stage. The plates 
had an average roughness, Ra, of 25-35 nm prior to etching. After undergoing etching, the plates were analyzed 
using a Cambridge S-360 scanning electron microscope and an Alpha-Step profilometer to determine the surface 
geometry accurately. Scanning electron microscope images of one of these surfaces are included below in Figure 2. 
(A list of all manufactured surfaces can be found in Table 1.)



2282, Page 4 

International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2008

               Table 1 Etched Sample Characteristics
 

 

 

 

 

 

 
Figure 1 Contact angle measurement configuration 

with channels oriented parallel to gravity.

                NOTE: * – indirect measurement

Figure 2 SEM images of Sample 6 having an etch depth of approx. 6.2 m are shown.

3. VOLUME CALCULATION METHOD

Because these surfaces possessed unusual wetting characteristics, it was necessary to reexamine all aspects of 
droplet modeling on these surfaces. One of these revisited aspects was the ‘two-circle model’ developed by El 
Sherbini and Jacobi (2004). The two-circle method was originally developed with the purpose of providing a reliable 
method for calculating the volume of a droplet as a function of its diameter and contact angles on a homogeneous 
surface. If the volume was known, then it could be multiplied by a droplet size-distribution function and integrated 
over droplet diameters and surface area to provide an estimate of the condensate retention on a given surface. This 
method was an improvement over the simple, but often used, method of approximating the droplet profile by a 
single circle. For the idealized case where the liquid droplet is resting on a horizontal plane, the droplet takes the 
shape of a spherical cap where the base contour is circular and the contact angle is constant around the base. For this 
special case, the calculation of the droplet volume is straightforward and can be found using

3

33

sin
coscos32

24
DV   

(2)

where D is the diameter and is the contact angle. However, the accuracy of this equation quickly degenerates as 
the droplet elongates due to surface inclination (or, perhaps the underlying surface morphology). For this reason, El
Sherbini and Jacobi developed the two-circle method to help eliminate this error. The model was based on 
experimental observation for droplets where < 1.5 and therefore was intended primarily for droplets with mild 
elongation. However, on the etched surfaces in this work, the elongation of the droplet can exceed = 2.5 so a new 

Sample 
No.

Pillar width,  
w ( m)

Pillar depth,  
( m)

Aspect ratio
/w

1 26.8 5.2 0.194
2 25.2 15.7 0.623
3 23.2 27.0 1.174
4 13.42 13.32* 0.801
5 14.91 7.85 0.526
6 14.00 6.19 0.442
7 10.40 22.00* 1.964
8 16.05 4.97 0.310
9a 19.92 6.887 0.346
9b 24.90 6.887 0.277
9c 38.00 6.887 0.181
9d 4.622 6.887 1.490

g= 90

= 0

g= 90

= 0

w
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method for calculating the droplet volume was considered. In this method, the droplet is treated as a cylindrical
element, and the volume is found by integrating the cross-sectional area down the length of the droplet rather than 
by the sweeping around the periphery of the droplet and integrating droplet profiles taken at all azimuthal angles. 
The advantage of using this method over the two-circle method is that it utilizes the wetting behavior of droplets on 
these micro-structured surfaces and therefore does not require a priori information about the droplet base contour 
shape or azimuthal contact angle variation. (Note: This information is provided as inputs in the two-circle method.)

The idea behind this aforementioned extrusion method is relatively simple. As shown in Figure 3, the droplet is split 
into two regions (red and blue), each of which is then further subdivided into two smaller components. Regions 1 
and 2 are fit by a teardrop profile,

 2
2

1
xcc

xy (3)

where c1 and c2 represent constants to be determined later, and regions 3 and 4 are fit by a circle having the form

 2
h

2
1 xLxRy (4)

where represents the height of the circle’s center above the surface and xh represents the lateral offset of the 
circle’s center (or, the x-component of the distance from the midpoint of the base length to the center).

In this method, the variables h, L, 1, and 2 are supplied by the user and everything else is calculated including xh.
The constants appearing in the teardrop profile, c1 and c2, are found by matching the height of the droplet, h, and the 
apparent contact angle, 2. The first boundary condition is found by taking the derivative of the teardrop function

2
2

1

2
2

2
1 xc

1
c
xxcc

1
dx
dy

(5)

The slope is then related to the contact angle by

1

2
2 c

c
tandx

dy
(6)

which is the first specified boundary condition. The second boundary condition is found by substituting x = (L+xh)
into the original function, Eq. (3), to get

2
h2

1

h xLcc
xLh . (7)

The constants in the circular profile, and R1, are found similarly by matching the droplet height h and contact angle 
1 with the specified inputs. The height is fixed by recognizing that

1Rh (8)
and the contact angle is fixed according to

1

h
R

xLcos where 
21 (9)

as shown in Figure 4.

Figure 3 The droplet profile is approximated using both a circle and a teardrop shape.
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The actual process of extruding a circular cross-sectional area through regions 2 and 3 is accomplished as follows,

4321total VVVVV (10)

where
2

1

x

x c2 dxAV
 

    and
3

2

x

x c3 dxAV
 

    (11, 12)

where x1 = (for << 1), x2 = (L + xh), and x3 = 2L as shown in Figure 3.

For non-wetting droplets, 2sin2
2
(x) - (x) 

2
2 RRAc (13)

For wetting droplets, 2sin2
2
(x) 2RAc (14)

The volume of region 1 (i.e. V1), which is typically less than 0.5% of Vtotal, is approximated using the volume 
formula for a triangular prism yielding, 

Lcc2
1V 2

2
1

1 (15)

The volume of region 4 (i.e. V4), which is typically less than 1% of Vtotal, is found using the volume formula for a 
spherical cap which after substitution yields the following result,

2
c

2
cc4 yr3y6

1V (16)

where yc refers to the height of the cap and rc refers to the radius of the circle that forms the base of the cap.

The local cross-sectional radius R(x) is related to the local droplet height y(x) by the following expressions:

)()( xbxRy (17)

where
cos2

)( wxR and 
2
tan)( wxb (18, 19)

Finally, using the Young-Laplace equation, the location xh where the droplet height in the y-direction is maximum 
can be found using

1

 
a

21
2
33

h
aa2aa

x (20)

where /ga vl1 , (21)

/gLsinsin2
1a 2

vl212 , (22)

L2/sinsina 213 . (23)

1

2 3
4 h

R1

L-xh

R1

L xh

L

1

x

y

Figure 4 The constants in the droplet profile equations are found by matching the contact angles and droplet height.
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4. RESULTS AND DISCUSSION

For water droplets condensed on these micro-structured surfaces, this method only requires geometrical data taken 
from two droplet images (i.e. = 0 and = 90 ) and typically yields an accuracy that is similar to, or better than, 
the two-circle method. A comparison between these two methods is shown below in Figure 5. It should be pointed 
out that the experimental droplet volume data represent water droplets condensed on sample 2 and therefore the 
Wenzel mode of wetting. Because these volume data were determined by absorption and the subsequent direct 
weighing of the droplet on a high-precision balance, these experimental data are not as accurate as those obtained by 
using a micro-syringe. The maximum uncertainty of the experimental data themselves was 0.5 L. Nonetheless, 
Figure 5 highlights the ability of this new method to determine the droplet volume from measured geometrical 
parameters and compares these results to the two-circle method developed by El Sherbini and Jacobi (2004). It 
should be noted that for these data, the two-circle method generated eleven cases where the percent error was greater 
than or equal to 10%. By comparison, this new extrusion-based technique only produced four cases where the 
percent error equaled or exceeded 10%. Because water droplets on these micro-structured surfaces tend to be 
parallel-sided and are often highly elongated, this method appears to hold tremendous promise as a non-intrusive 
means of determining the droplet volume. It requires only a few simple inputs which can be gleaned from images of 
the droplet at = 0 and = 90 — namely, the droplet major axis, minor axis, height, and the apparent contact 
angles at both the advancing and receding fronts of the droplet. It should be noted, however, that this new method of 
finding the droplet volume tacitly relies upon the parallel-sided nature of these droplets and may not work as well 
for droplets on a conventional surface.

To explore the Cassie-Baxter mode of wetting, a micro-syringe was used to inject droplets onto the surface. These 
data were collected by examining 18 different composite water droplets (shown in Fig. 6) injected on sample 5.
Droplet volumes from 10 L to 50 L were investigated. Because these droplets did not fully wet the micro-
channels, the parallel-sided base contour shape of the droplets was not fully realized. As a result, this new method 
for calculating the droplet volume underpredicted the droplet volume on average by 18.9%, whereas the two-circle
method tended to overpredict the droplet volume. The average error associated with using the two-circle method for 
these droplets was 14.4%. Thus, for droplets departing from the parallel-sided base contour shape, the two-circle 
method developed by El Sherbini and Jacobi (2004) provides slightly more accurate results. 

0

5

10

15

20

25

0 5 10 15 20 25

new extrusion method
El Sherbini and Jacobi (2004)

Ca
lc

. V
ol

 (
L)

Exp. Vol ( L)
Figure 5 Comparison of the two-circle and extrusion-based        Figure 6 A 10 L composite droplet image that
droplet volume calculation methods for condensed droplets illustrates the five required inputs in the model

height 

width 

max

length 

1 2

Channels out of page 
(i.e.  = 0 ) 

Channels parallel to  
length (i.e.  = 90 ) +10%

- 10%
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5. CONCLUSIONS
In this study, a new integration-based method was developed and then examined for the calculation of the volume of 
water droplets condensed on aluminum surfaces containing parallel grooves tens of microns in width and depth.
These surfaces have been shown to reduce the critical droplet size needed for sliding and exhibit improved water 
shedding characteristics. This new model which tacitly relies on the parallel-sided nature of condensed droplets on 
these surfaces was shown to predict the droplet volume to within 10% of the true value for 88% of the droplets 
examined. For droplets injected onto the surface by micro-syringe, the parallel-sided base contour shape is less 
pronounced, and the method was found to be less accurate. The inputs to this model which include the droplet major 
axis, minor axis, height, and two contact angles are taken directly from two droplet images. The calculation method 
presented in this work is useful for estimating the volume of retained water droplets on micro-grooved surfaces 
where the surface micro-channels are aligned parallel to gravity and both heat and mass transfer occur.
 

NOMENCLATURE
Ac droplet cross sectional area (m2) Greek Symbols:
g acceleration of gravity (m s-2) azimuthal angle (°)
h droplet height (m-1) droplet aspect ratio (-)
L half of the droplet major axis (m) surface tension (N m-1)
V droplet volume (m3) 1 contact angle at =0° (°)
w half of the droplet minor axis (m) 2 contact angle at =180° (°)
xh location where droplet height is maximum (m) density (kg m-3)
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