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ABSTRACT 

 
The bulb of a thermostatic expansion valve (TXV) is basically a temperature-pressure converter. It senses the 
temperature at the outlet of the evaporator, and the substance in the bulb (charge) generates the corresponding 
saturation pressure inside the bulb. The bulb is mounted on the evaporator outlet with a special mounting strap. The 
heat transfer is quite complex because it takes place both directly through the contact points between bulb and pipe 
and indirectly through the mounting strap  
The TXV has to react to temperature changes at the evaporator outlet. Therefore, the dynamic behavior of the valve 
(and thereby the whole refrigeration system) depends greatly on the heat transfer between the evaporator outlet tube 
and the charge in the bulb. 

 
In this paper a model for the overall heat transfer between the pipe and the charge is presented. Geometrical data and 
material properties have been kept as parameters in order to be able to see the effect of changes in those. Some of 
the parameters (e.g. thermal contact resistances) have been determined by a finite element model and a series of 
experiments. 
The model has been validated using test results obtained under different operating conditions and has been found to 
predict the time constant for the temperature development in the bulb within 1-10 %. Furthermore it has been found 
that app. 20% of the heat transfer takes place trough the mounting strap. 
 
The work is part of the development of a complete model for different types of charges for TXV’s. 
 

1 INTRODUCTION 
 
Thermostatic expansion valves (TXV) have been used as regulation devices in refrigeration systems for many 
years. The main purpose of the TXV is to meter the flow of refrigerant into the evaporator in order to maintain a 
certain superheat at the evaporator outlet. Furthermore the TXV divides the high pressure side from the low 
pressure side of the refrigeration plant. 
The bulb of the TXV is mounted at the outlet of the evaporator where it senses the temperature. In the static 
situation, the temperature of the bulb will stabilize somewhere between the ambient temperature and the 
temperature of the evaporator outlet tube. In the dynamic situation however, it is important to know the 
dynamics of the temperature response. 
In the literature known to the author, there have only been a few investigations on the dynamic temperature 
response of the charge for a TXV. The work closest related was published by James & James (1987). They 
developed a mathematical model for a TXV. Part of that model describes the dynamics of the charge. 
Unfortunately they did not quantify the thermal resistance between the bulb wall and the evaporator tube. Also 
they did not take the strap with which the bulb is mounted into account. 
During the work presented in this paper a mathematical model for the temperature response of the charge was 
developed. The model is a lumped mass model which includes the heat transfer of the mounting strap. The 
mathematical model has been validated through experimental tests under various conditions. 
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2 THE MATHEMATICAL MODEL 
 
The bulb is mounted on the evaporator tube as shown in Figure 1.  

Changing the surface temperature of the evaporator outlet, will 
cause the temperature of the charge to change. Over time the 
temperature of the charge will stabilize at a temperature between 
that of the evaporator outlet and the ambient temperature. In the 
present work, this response is treated as a first order system. 
The response of a first order system to a unit step change is 
described by Equation 1. 
 
 

τ
−

−=
t

e1)t(y  
Equation 1 

(Raven (1996) 

 
The model needed is a model that describes the temperature development in the charge as a reaction of a change 
of the surface temperature of the evaporator outlet tube. In order to describe the heat flow in the construction 
some definitions have to be presented. The construction can be divided into 8 parts as shown in Figure 2.  

 

  
Figure 2: Definition of thermal system Figure 3: Heat fluxes in the system 

 
The heat flows in the system are shown in Figure 3. In a more schematic way, the heat fluxes can be illustrated 
as shown in Figure 4. 
 

 
Figure 4: Heat fluxes in the system 

 

 
Figure 1: Bulb mounted on evaporator tube  

Strap 

Evaporator 
tube 

Bulb 

1 2 3 

Amb 

4 5 6 7 

Where:  
y :Response 
t  :time 
ι :Time constant 

Q2-amb 



 
R009, Page 3 

 

 
International Refrigeration and Air Conditioning Conference at Purdue, July 17-20, 2006 

 

From Figure 4 it can be seen that the temperature of the charge is a result of two different series of heat fluxes in the 
system. They are: 
 
 

1. Refrigerant (1) � Evaporator tube wall (2) � bulb wall (6) � Charge (7) 
 
2. Refrigerant (1) � Evaporator tube wall (2) �Strap et (3) �Free strap (4) �Strap bulb (5) � bulb wall (6) 

� Charge (7) 
 
In order to simplify the modeling, the following assumptions are made: 
 

• Lumped mass model 
• No temperature profile through or along the perimeters of walls. 
• Strap has no mass 
• The strap is modeled as a fin where the temperatures at the endpoints are known. 

 
Heat flux in the above system: 
 

21i_etref21 TAhQ −− ∆⋅⋅=�  Equation 2 
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amb5strap_bairamb5 TAhQ −− ∆⋅⋅=�  Equation 9 
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43amb332 QQQ −−− += ���  Equation 12 
 



 
R009, Page 4 

 

 
International Refrigeration and Air Conditioning Conference at Purdue, July 17-20, 2006 

 

65amb554 QQQ −−− += ���  Equation 13 
 

5443amb4 QQQ −−− −= ���  Equation 14 
 

amb5l TT −=θ  Equation 15 
 

amb3b TT −=θ  Equation 16 
 

cross_strapstrap

strapair2
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m

⋅λ
⋅

=  Equation 17 

 

( )amb2cross_strapstrapstrapair TTAPhM −⋅⋅λ⋅⋅=  Equation 18 

 
Combining these heat fluxes to describe the three ways the bulb is affected, results in following equation system: 
 

623221
2

2p2 QQQ
dt

dT
cm −−− −−=⋅ ���  Equation 19 
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3 THERMAL RESISTANCES 

 
The model presented above includes three thermal resistances Rc 2-6, Rc 2-3 and Rc 5-6. These have been determined 
by the help of experimental tests and a finite element model. In the following these tests and the finite element 
model will be presented. The resulting thermal resistances will be inserted into the analytical model which then 
again will be compared to test results. 
 
3.1 Experimental evaluation of the temperature distribution in empty bulb 

 
In the simulations, the contact resistances will be the unknown values to determine. 
Therefore the temperature distribution in the bulb wall needs to be known. 
This has been done experimentally by measuring the temperature at four points 
inside an empty bulb. The temperature was measured at four points as shown in 
Figure 5. 
The measured temperature curves have been used to calibrate the FE model. 
 
3.2 Test series 
The test series covers tests of the two contacts individually and a combination. 
Three tests were performed with conditions as shown in Table 1.  
 

 
Figure 5: 

Temperature sensors 
 Pipe contact (Contact 1) Strap contact (Contact 2) 
Test 1 X  
Test 2  X 
Test 3 X X 

Table 1: Tests performed on bulb with temperature sensors 

Bulb 

Evap. 
tube 

T3 
T4 

T1 

T2 
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The tests show the temperature distribution in the bulb. 
 
3.3 Results 
 

Test 1 Test 2 Test 3 

 
Figure 6: Wooden brick as insulation 

between strap and bulb 

 
Figure 7: Wooden brick as insulation 

between pipe and bulb 

 
Figure 8: Full contact 

Sensor Time constant Sensor Time constant Sensor Time constant 

1 144 1 48 1 70 

2 120 2 57 2 43 

3 10 3 149 3 9 

4 122 4 57 4 63 

 
3.4 The Finite element model 
The finite element (FEM) software used for this investigation is SORPAS®. 
For simplicity the problem is modeled as a 2- dimensional problem. Figure 9 and Figure 10 show the real system 
and the modeled section respectively. 
 
The FE model looks slightly different 
from the real model. The differences are 
partly caused by modeling limitations and 
partly due to numerical issues. 
 
3.5 Boundary conditions 
For a SORPAS® model it is required to 
model tools where the mechanical 
boundary conditions can be applied. The 
mechanical boundary condition for this 
model is an initial movement of the bulb 
towards the pipe. In the Danfoss 
refrigeration laboratory it has become common practice to tighten the strap until the bulb has moved 1 mm into the 
pipe, which results in a deformation of the copper tube. This is also done in the simulations. 
The thermal boundary condition is that the copper tube keeps its temperature constant during the simulation. It has 
been chosen to set the temperature of the copper tube to 0ºC while all other parts have an initial temperature of 5ºC. 
Ambient temperature is set to 5ºC but the model is considered as being insulated from the ambient. 
 
3.6 Calculations 
The contact between two parts will never be as perfect in reality as it can be modeled theoretically. In order to 
compensate for this difference, interface layers are used.  The interface layer is a material with a given conductivity 
and with very low heat capacity which is put in between the real contact faces. The thickness and conductivity of the 
interface layer will determine the heat flow between the two parts. 

 
 

Figure 9: Real system Figure 10: Modelled section 

Section 
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Basically this model needs two different interface layers, one between the bulb and the pipe (contact 1) and one 
between the strap and the bulb (contact 2). The thickness of both has been set to 0.5 mm. Following procedure was 
used to find the conductivity of them  
Initially a number of calculations for different conductivities of the interface layers were performed. The 
conductivity of one interface is varied while the other is set to 0.001 W/m/k. These analyses are comparable with the 
experimental results where one contact is insulated while the other is not. 
 
3.7 Results 
For the contact 1, it was found that a conductivity of 0.75 W/m/K for the interface layer gave the results closest to 
the experimental results. Whereas for the contact 2 it was found that a conductivity of 0.075 W/m/K gave the closest 
results. 
Table 2 shows the results obtained. 
 
 Measured  FEM Deviation Deviation in % 
Contact 1     

Sensor 1 144 167 23 16 
Sensor 2 120 117 -3 -2.5 
Sensor 3 10 10 0 0 

Contact 2     
Sensor 1 48 45 -3 -6 
Sensor 2 57 65 8 14 
Sensor 3 149 110 -39 -26 

Table 2: Comparison of time constants [s] for increasing temperature 
 
3.8 Thermal resistance 
The thermal resistance R is defined as: 
 

t
A

l
R ⋅

⋅λ
=  

Equation 22 
(Incorpera and DeWitt (1996)) 

 
Thus the thermal resistances R can be found: 
 
Contact Area [m2] λλλλ [W/m/K] t [m] R [K/W] 
Bulb/pipe 7.40E-5 0.75 0.0005 9 
Strap/bulb 4.787E-4 0.075 0.0005 13.9 
Strap/evaporator tube 5.721E-4 0.075 0.0005 11.6 

Table 3: Thermal resistances 
  
3.9 Conclusion on the finite element simulations 
The finite element calculations have given an estimate of the thermal resistances of the two contacts. These can now 
be used in the analytical lumped mass model. For further verification the results from the analytical model have been 
compared to experiments with charged bulbs where the pressure of the bulb was measured. 
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4 THE ANALYTICAL MODEL 
 
The contact resistances can be inserted in a previous modeled lumped mass model of the charged system presented 
in section 2. 
 
Inserting the given conditions, the model should be able to predict the time constants as measured on the charged 
bulbs. In order to see the effect of each of the two contacts, three comparisons are made. One for only pipe contact 
(insulated strap), one for only strap contact (insulated pipe), and one in which both contacts are active.  
Furthermore one comparison is made for a larger amount of charge also with both contacts active. 
 
4.1 Test on charged bulbs 
Some tests were performed on bulbs charged with a very small amount of charge (80 mg Propane (R290)). 
The bulbs were mounted in four different ways. Some were mounted on the top of the pipe, where the liquid charge 
will be close to the pipe and some underneath the pipe, where the liquid charge will be close to the strap.  
 
 Mounted on top Mounted underneath Strap insulated Pipe insulated 
Bulb 1 X   X 
Bulb 2 X  X  
Bulb 3  X X  
Bulb 4  X  X 

Table 4: Mounting of the four bulbs 
 
Results: 
 Time constant up Time constant down 
Bulb 1 245 122 
Bulb 2 75 15 
Bulb 3 219 103 
Bulb 4 127 33 

Table 5: Time constants for the four bulbs 
 
The right comparison for the time constant going upwards can be made between bulb 2 for Contact 1 and bulb 3 for 
contact 2. For the time constant going downwards on the other hand, the right comparison can be made between 
bulb 1 for insulated pipe and bulb 4 for insulated strap. 
 
 Strap insulated Pipe insulated Scale 
Time constant up 75 219 1:2.92 
Time constant down 33 122 1:3.7 

Table 6: Comparable time constants for the two contact interfaces 
 
4.2 Results 
 Test Model Deviation in % 
R290 80 mg, strap contact (insulated pipe) 219 232 6 
R290 80 mg, only pipe contact (insulated 
strap) 

75 77.9 4 

R290 80 mg (both contacts) 52 58.5 12.5 
R290 1630 mg (both contacts) 62 62.5 0.8 

Table 7: Comparison of time constants from tests and calculations 
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5 CONCLUSION AND FURTHER WORK 
 
Using the thermal resistances found by Test/ FEM, the model predicts the time constants for the two systems with an 
accuracy of 1-13 %. Furthermore, the measured time constants show that the direct contact between bulb and 
evaporator pipe transfers 75-80% of the heat, while the strap transfers the remaining 20-25%. 
 
This work is part of a project with the aim to develop a model for the static and dynamic behavior of charges for 
TXV. Therefore, this work needs to be extended to include charges with thermal ballast brick and/ or non- 
condensable gas. 
 

NOMENCLATURE 
 
href  : Heat transfer coefficient of refrigerant  [W/m2/K] 
hcharge  : Heat transfer coefficient of charge   [W/m2/K] 
Rc_2-6  : Contact resistance between etube/bulb [m2 K / W] 
Rc_2-3  : Contact resistance between etube/strap [m2 K / W] 
Rc_5-6  : Contact resistance between strap/bulb [m2 K / W] 
Pstrap  : Perimeter of strap   [m] 
hair  : Heat transfer coefficient of air  [W/m2/K] 
λstrap  : Heat conductivity of strap  [W/K/m] 
Aet_strap  : Contact area between strap and evap tube [m2] 
Ab_strap  : Contact area between strap and bulb [m2] 
Ab_free_amb : Part of bulb surface that is free to ambient [m2] 
Aet_i  : Inner area of evaporator tube  [m2] 
Ab_i  : Inner area of bulb   [m2] 
Astrap_cross : Cross sectional area of strap  [m2] 
Lstrap_free  : Length of free strap   [m] 
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