
HAL Id: hal-01118176
https://hal.inria.fr/hal-01118176

Submitted on 18 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocating jobs with periodic demand variations
Olivier Beaumont, Ikbel Belaid, Lionel Eyraud-Dubois, Juan-Angel

Lorenzo-Del-Castillo

To cite this version:
Olivier Beaumont, Ikbel Belaid, Lionel Eyraud-Dubois, Juan-Angel Lorenzo-Del-Castillo. Allocating
jobs with periodic demand variations. Euro-Par 2015, Träff, Jesper Larsson, Hunold, Sascha, Versaci,
Francesco, 2015, Vienna, Austria. �10.1007/978-3-662-48096-0_12�. �hal-01118176�

https://hal.inria.fr/hal-01118176
https://hal.archives-ouvertes.fr


Allocating jobs with periodic demand variations

Olivier Beaumont, Ikbel Belaid, Lionel Eyraud-Dubois, and
Juan-Angel Lorenzo-del-Castillo

1 Inria Bordeaux – Sud-Ouest
2 University of Bordeaux

Abstract. In the context of service hosting in large-scale datacenters,
we consider the problem faced by a provider for allocating services to
machines. Based on an analysis of a public Google trace correspond-
ing to the use of a production cluster over a long period, we propose a
model where long-running services experience demand variations with a
periodic (daily) pattern and we prove that services following this model
acknowledge for most of the overall CPU demand. This leads to an allo-
cation problem where the classical Bin-Packing issue is augmented with
the possibility to co-locate jobs whose peaks occur at different times of
the day, which is bound to be more efficient than the usual approach that
consist in over-provisioning for the maximum demand. In this paper, we
provide a mathematical framework to analyze the packing of services
exhibiting daily patterns and whose peaks occur at different times. We
propose a sophisticated SOCP (Second Order Cone Program) formula-
tion for this problem and we analyze how this modified packing constraint
changes the behavior of standard packing heuristics (such as Best-Fit or
First-Fit Decreasing). We show that taking periodicity of demand into
account allows for a substantial improvement on machine utilization in
the context of large-scale, state-of-the-art production datacenters.

1 Introduction

The Cloud paradigm provides an illusion of infinite elasticity and seamless provi-
sioning of IT resources. However, as providers keep scaling their infrastructures
year after year, the efficient allocation of services in Platform-as-a-Service (PaaS)
becomes crucial.

We concentrate on the case of a Cloud platform in which several independent
services, typically virtualized as Virtual Machines (VMs) or lightweight contain-
ers, are serving user queries and need to be allocated onto physical machines
(PMs) [17,1]. We consider the static case where a set of dominant services de-
fine the overall resource usage of the physical platform, which has proved to be
commonplace in large datacenters[3]. In this context, mapping services with het-
erogeneous computing demands onto PMs is amenable to a multi-dimensional
Bin-Packing problem (each dimension corresponding to a different kind of re-
source, memory, CPU, disk, bandwidth,. . . ). Indeed, on the infrastructure side,
each physical machine presents a given computing capacity (i.e. the number of
Flops it can process during one time-unit), a memory capacity and a failure rate



(i.e. the probability that the machine will fail during the next time period). On
the client side, each service has a set of requirements along the same dimen-
sions (memory and CPU footprints) and a reliability requirement that has been
negotiated typically through an SLA [8].

In this work, we consider a specific feature of CPU demand that arises in the
context of service allocation. Based on the analysis of a large cluster trace pro-
vided by Google, we demonstrate in Section 3 that many services representing
most of the overall CPU demand exhibit daily patterns and their demand can be
modeled as a set of sinusoids, each comprising a constant component, an ampli-
tude and a phase. Under this premise, the contribution of this paper is threefold.
First, we propose and advocate a novel model for jobs with time-varying resource
demands and we define the associated packing problem. This model can be used
to aggregate onto the same physical machines more resources than it would be
possible based on their maximal demands only, taking advantage of the fact that
different phases for different services imply that peak demands do not occur si-
multaneously. Second, we show the benefits of antagonistic job aggregation, and
how this can be used to improve the system performance. Third, we propose sev-
eral algorithm for packing jobs with periodic demands on the hosting platform.
The first one is based on a Second Order Cone Program (SOCP) formulation [11]
whereas the others are adaptations of classical greedy packing heuristics.

The remaining of this paper is organized as follows. We discuss some related
works in Section 2. In Section 3, we characterize the periodic behavior of some of
the jobs in a cluster usage trace provided by Google. In Section 4, we formulate
the optimization problem using Complex Analysis and we prove that it can be
expressed as a SOCP (Second Order Cone Program). In Section 5, we propose
several packing heuristics, whose performance is analyzed and validated on a
realistic trace in Section 6. Finally, conclusions are drawn in Section 7.

2 Related works

In order to deal with resource allocation problems arising in the context of
Clouds, several sophisticated techniques have been developed in order to opti-
mally allocate user services onto PMs, either to achieve good load-balancing [7,4]
or to minimize energy consumption [5]. Most of the approaches in this domain
are based on offline [9] and online [10] variants of Bin-Packing strategies.

In this paper, we concentrate on the allocation of jobs that last for a long time
and whose CPU demands exhibit periodic patterns. Some other work deal with
allocating jobs whose demands varies over time, either with predictable (static)
or unknown (dynamic) behavior. In the static case which is the focus of this
present work, historical average resource utilization is typically used as input to
an algorithm that maps services to physical machines. Therefore, the mapping
is done off-line. In contrast, dynamic allocation schemes are implemented on
shorter timescales. Dynamic allocation leverages the ability to perform runtime
migrations of jobs and to recompute resource allocation amongst services. A dy-
namic migration algorithm Measure Forecast Remap is introduced in [6], where
highly variable workloads are forecast over intervals shorter than the time scale



of demand variability to ensure dynamic minimization of the number of required
machines. Based on stochastic vector packing model, the static scheme proposed
in [14] makes use of customers’ periodic access patterns in web server farms to
assign each customer to a server so as to minimize the total number of required
servers. In this latter work, the variable demand is analyzed at a different time
scale to extract probability distributions that are independent of time. Then,
stream-packing heuristics are employed to select the most complementary jobs
to be packed in the same server. Urgaonkar et al. [15] rely on on-line application
profiling to demonstrate the feasibility and benefits of overbooking resources in
shared platforms to guide the application placement onto dedicated resources
while providing performance guarantees at runtime. A new mechanism for dy-
namic resource management in cluster-based network servers [2], called cluster
reserve, allows performance isolation between service classes and provides a min-
imal amount of resources, irrespective of the load imposed by other requests. In
contrast to these other directions, our work focuses on a part of the workload
which exhibits deterministic periodic variability. In this context, dynamic re-
source management is unnecessary: the migration cost can be avoided by using
periodicity-aware static approaches for service allocation. Still, above mentioned
approaches can be used in order to allocate at runtime all the tasks that do not
exhibit daily sinusoidal patterns in their demand. Nevertheless, we will prove
that the overall weight of such services in terms of CPU demand makes it useful
to design specific allocation algorithms for them.

3 Periodicity analysis

When considering efficient allocations, it is important to categorize how services
are correlated in order to schedule them efficiently. Indeed, if many services
reach their (say, CPU) peak demand at the same time (i.e. high positive cor-
relation), the stress on the platform and on the resource allocation algorithm
will be much higher. In this case, it seems reasonable to place those services on
different physical machines to avoid machine starvation. On the other hand, if
peaks are spread on a large enough time-frame, this will allow for some slack
in the allocation algorithm to provide efficient placements by co-allocating jobs
whose peaks happen at different times, hence resulting in a more efficient average
resource utilization.

Our periodicity analysis is based on the study of a usage trace released by
Google from one of its production clusters [16]. The workload consists in a mas-
sive number of jobs, which can be further divided into tasks, being each task
assigned to a single physical machine. The data are collected from 12583 ma-
chines, span a time of 29 days and provide exhaustive profiling information on
5-minute monitoring intervals. Each job belongs to a priority group, namely (in
order of decreasing importance) Infrastructure, Monitoring, Normal Production,
Other and Gratis (free)[13,12]. The scheduler generally gives preference to re-
source demands from higher priority tasks over tasks belonging to lower priority
groups, to the point of evicting the latter ones if needed.

Given the thorough information contained in the trace, one of the main
difficulties is related to the time needed to validate any assumption based on



these data. To simplify this process without loss of accuracy, we proposed in
[3] an extraction of the information from a subset of jobs that we defined as
dominant, i.e. jobs which account for most of platform usage at any time.

In this work, we have restricted our study to dominant jobs in the Normal
Production class, given that they represent standard production utilization in the
datacenter and last for long enough to allow periodicity correlation. In addition,
considering only one priority class avoids issues due to the fact that hosts have
finite capacity. Indeed, this finite capacity implies that when the resource demand
of one job increases, another job with lower priority may end up using fewer
resources (or even getting evicted by the scheduler) even if its actual demand
remained invariable.

The spectral analysis of the Normal Production, dominant jobs that run
during the whole trace allowed us to quantify the main components of their
CPU demand, namely the amplitude, phase, frequency and background noise.
Table 1 provides the averaged ratios between the jobs’ components’ amplitudes
and their constant part. The residual noise is about 6% of the average CPU
demand for a large part of the jobs, which can be used as a threshold: any
pattern with an amplitude significantly larger can be identified as a relevant
component. We conclude that very few jobs exhibit hourly patterns, more than
half of the jobs exhibit very strong daily patterns, and only two thirds have
significant daily patterns. Weekly patterns are not as strong, but they are still
significant for about half of the jobs.

Regarding pattern synchronization, we observed that all jobs with a weekly
pattern show the same behavior: 5 days of high usage followed by 2 days of lower
usage. For the daily patterns, we analyzed jobs with an amplitude of, at least,
10% of the mean. In half of the jobs, the phase difference observed is below 60
degrees (i.e. their peaks are within 4 hours from each other). Furthermore, 90%
of the jobs exhibit a phase difference below 120 degrees (i.e. peaks are at most
8 hours apart). This shows that the jobs’ behavior is clearly correlated by this
daily pattern.

Stats
Ratio of Amplitude to mean

Hourly Daily Weekly Long term Noise

mean 0.057 0.267 0.148 0.154 0.100
std 0.246 0.232 0.127 0.161 0.154
min 0.001 0.006 0.011 0.001 0.012
25% 0.004 0.052 0.076 0.051 0.036
50% 0.007 0.268 0.106 0.102 0.058
75% 0.009 0.376 0.196 0.196 0.072
max 1.612 1.075 0.669 1.149 0.836

Table 1: Ratios Amplitude/DC for long-running, dominant jobs[3].



4 Packing of jobs with periodic demands

4.1 Notations and problem formulation

Let us assume that the cloud platform we consider consists of M homogeneous
nodes M1, . . . ,Mk, . . . ,MM and let us denote the processing capacity of a node
by C. For the sake of simplicity and in order to focus on issues related to the
aggregation of periodic demands, we will concentrate on CPU demands only.
The tasks of a job (corresponding to a service in the trace) can run on any node,
and job Jj is split into Nj tasks denoted by Tj,1, . . . , Tj,l, . . . , Tj,Nj , who share
the same characteristics in terms of CPU demand.
In turn, platform nodes are allowed to run several tasks, provided that at any
time step, their capacity is not exceeded. We assume that the set of tasks running
on a node does not change over time, what is a realistic assumption for dominant
Normal Production jobs, as shown in Section 3, and we model the instantaneous
demand at time t of task Tj,l, which does not depend on l, as

Wj(t) = Cj + ρj sin

(
2π

t

Pj
+ φj

)
,

where Cj denotes the average of CPU demand of Task Tj,l, ρj denotes its max-
imal amplitude with respect to Cj , Pj denotes the period of its pattern and φj
denotes its phase. As noticed in Section 3, one can concentrate in this context
on jobs that exhibit daily patterns and we will therefore assume in what follows
that ∀j, Pj = P , where P denotes a daytime.

In this context, our aim is to provide a static packing for the set of tasks Tj,l
such that at any step and on any resource, capacity constraints are not exceeded
and such that the number of required nodes is minimized. More specifically, our
goal is to take advantage of daily variations in order to obtain an efficient packing
of tasks. Indeed, most packing strategies are based on the maximal demand of
each task, what corresponds to Cj + ρj for a task of job j. Taking advantage of
the fact that all tasks do not achieve their peak demand at the same time in the
day, it is possible to pack more tasks, and therefore to use fewer nodes whilst
packing statically all the tasks.

Let us consider several tasks Tj,l clustered together on node Mk. Knowing
that all the jobs have the same period P , the constraint stating that the capacity
of Mk is not exceeded at any time

∀t, k,
∑

j,l, Tj,l∈Mk

Wj(t) ≤ C, becomes

⇐⇒ ∀t, k,
∑

j,l, Tj,l∈Mk

Cj +
∑

j,l, Tj,l∈Mk

ρj sin(2πt/P + φj) ≤ C

⇐⇒ ∀t, k,
∑

j,l, Tj,l∈Mk

Cj + Im

 ∑
j,l, Tj,l∈Mk

ρj exp(2iπt/P ) exp(iφj)

 ≤ C



⇐⇒ ∀t, k,
∑

j,l, Tj,l∈Mk

Cj + Im

(exp(2iπt/P ))

 ∑
j,l, Tj,l∈Mk

ρj exp(iφj)

 ≤ C
⇐⇒ ∀k,

∑
j,l, Tj,l∈Mk

Cj + ‖
∑

j,l, Tj,l∈Mk

ρj exp(iφj)‖ ≤ C,

where Im(z) denotes the imaginary part of complex number z, i is the imaginary
unit satisfying i2 = −1 and ‖z‖ denotes the modulus of z.

Note that in the last expression, the constraint does not involve t anymore,
and that all above complex analysis derivations are equivalences, such that this
last expression exactly states that the capacity constraint is never exceeded at
any time step. In order to design exact solutions and heuristics, we will use the
following formulation,

∀k,
∑

j,l, Tj,l∈Mk

Cj +

√
(

∑
j,l, Tj,l∈Mk

ρj cos(φj))2 + (
∑

j,l, Tj,l∈Mk

ρj sin(φj))2 ≤ C

(1)

4.2 Quadratic formulation

From this modified packing constraint (1), we propose a quadratically con-
strained programming (QCP) formulation of our problem. This formulation uses
two types of variables:
Integer variables Xj,k representing the number of tasks of job j allocated on the
node Mk,
Boolean variables Yk representing whether node Nk is used.

With these variables, the formulation is the following:

Minimize
∑
k

Yk

∀j ∈ J,
∑
k∈M

Xj,k = Nj (2)

∀k ∈M,(
∑
j∈J

Xj,k ρj cos(φj))
2 + (

∑
j∈J

Xj,k ρj sin(φj))
2 ≤ (C Yk −

∑
j∈J

Xj,k Cj)
2

(3)

∀k ∈M,C Yk −
∑
j∈J

Xj,k Cj ≥ 0 (4)

In this formulation, constraint (2) ensures that all instances of all jobs are
allocated. Tasks belonging to the same job could co-exist in the same node.
Constraints (3) and (4) are a quadratic reformulation of Equation (1), ensuring
that an unused node does not contribute any resource to the platform. Due to the
nature of this constraint, this formulation can be expressed as a Second Order
Cone Program, and can thus benefit from efficient general purpose solvers [11] for
convex optimization. However, on real-size instances with thousands of machines,



this formulation can not be solved in reasonable time with integer and boolean
values. Relaxing the problem by allowing rational variables makes it possible to
obtain a lower bound on the necessary number of resources in reasonable time.

5 Packing Heuristics

5.1 Complexity and Lower Bound

The optimization problem that consists in packing tasks with periodic demands
into nodes is clearly NP-Complete, since it is amenable to classical Bin-Packing
problems [9,10] in its most simplified setting where ∀j, ρj = 0, i.e. the case
when demands do not change over time. The SOCP formulation proposed in
Section 4.2 can be used to solve the optimization problem, but its use is in
practice restricted to small cases. On the other hand, the relaxation of this
SOCP where variables can take rational values (including the Xj,l’s) can be
solved in reasonable time. This solution is not feasible in general but it provides
a lower bound on the number of necessary nodes that will be used in order to
evaluate the quality of the heuristics we propose.

5.2 Notations

In order to describe the algorithms, we will consider that tasks are sorted by
decreasing values of Cj , as usual when designing packing heuristics. Other pos-
sible choices would include sorting tasks by decreasing values of Cj +ρj and will
be discussed in Section 6.2. Let us assume that tasks Tj,l have been assigned to
node Mk. Then, the load of node Mk will be represented, following the analysis
performed in Section 4, by the triplet Sk = (Ck, xk, yk), where

Ck =
∑

j,l, Tj,l∈Mk

Cj , xk =
∑

j,l, Tj,l∈Mk

ρj cos(φj), yk =
∑

j,l, Tj,l∈Mk

ρj sin(φj).

The maximal load of node Mk at any time step t is therefore given by

L(Mk) = Ck +
√
x2k + y2k

and becomes L(Mk, Tj,l) = Ck + Cj +
√

(xk + ρj cos(φj))2 + (yk + ρj sin(φj))2

when one task Tj,l of job Jj is added to Mk.

5.3 Heuristics

We propose the following set of heuristics, adapted from classical efficient greedy
Bin-Packing algorithms to the case of tasks exhibiting daily patterns.

– First-Fit Decreasing FFD is a greedy algorithm in which tasks are con-
sidered by decreasing values of Cj . At any step, task Tj,l (from job Jj) is
allocated to the node with the smallest index and such that L(Mk, Tj,l) ≤ C.
If no such node exists, then a new node is added to the system to hold the
task.



– Best-Fit Decreasing BFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated
to the node Mk such that L(Mk, Tj,l) is maximized (while remaining below
C). Note that contrarily to what happens in classical BFD, the size that is
considered is the size after the allocation. If no such node exists, then a new
node is added to the system to hold the task.

– In Min-Max MM(M), the target number of nodes is fixed to M a priori.
Then, MM is a greedy algorithm where tasks are considered by decreasing
values of Cj . At any step, task Tj,l (from job Jj) is allocated to the node
Mk such that L(Mk, Tj,l) is minimized, in order to balance the load between
the different nodes. The allocation may fail if M is to small. In MM, the
optimal number of nodes is found using dichotomic search to find the optimal
value of M .

– Min-Max-Module MMM is similar to MM, except that tasks are repre-
sented using their maximal demand over time Cj only. This is typically what
happens when one neglects the possibility to take advantage of the fact that
peak demands do not occur at the same time for all jobs.

6 Experimental evaluation

6.1 Simulated Data

We perform a set of experiments with synthetic data in order to assess the
influence of the parameters on the performance of the different heuristics. In
all the experiments, we display the ratio between the number of nodes using
the heuristics described in Section 5 against the lower bound on the number of
necessary nodes described in Section 5.1.

In the following, we set the capacity of the nodes to 20 and we consider the
following parameters:

– CPU footprint of the tasks: we consider the case of Big Tasks (where Cj is
chosen uniformly at random in [0, 10]) and Small Tasks (where Cj is chosen
uniformly at random in [0, 1]).

– Daytime amplitude: we consider the case of Large Daytime Amplitude (where
ρj is chosen uniformly at random in [0, Cj ]) and Small Daytime Amplitude
(where ρj is chosen uniformly at random in [0, Cj/2]).

– Size of the Jobs: we consider the case of Large Jobs (where the number of
identical tasks of the job is set to 10) and Small Jobs, which consist in a
single task.

In all cases, the phase of each job is chosen uniformly at random in [0, 2π[. In
all the experiments, in order to perform a fair comparison, the expected value
of the lower bound is set to 250, so that there are 10 times more tasks in the
case of Small Tasks with respect to the case of Big Tasks. We performed other
experiments with different number of jobs and tasks, but the results showed very
little sensitivity to these parameters and were excluded from the paper in order
to save space.



Results for the eight possible combinations (Small or Big tasks / Small or
Big amplitude / Small or Big jobs) are displayed in Figure 1.

Big Tasks Small Tasks

●

●
●

●
●

●

●●
●●

●

●

●

●

●

●● ●
●
●
●

●●

●●

1.0

1.2

1.4

1.6

1.0

1.2

1.4

1.6

B
ig A

m
plitude

S
m

all A
m

plitude

Big Jobs Small Jobs Big Jobs Small Jobs

R
at

io
 to

 lo
w

er
 b

ou
nd

Algorithm BestFit FirstFit MinMax MinMaxModule

Fig. 1: Performance of the Heuristics on Synthetic Data

The first conclusion that can be drawn is that failing to take periodic demand
variations leads to a large waste of resources. Indeed, the performance of Min-
Max-Module MMM is consistently far from the lower bound, by 50% in the
case of Big Amplitudes and by 25% in the case of Small Amplitudes.

The second conclusion is that when the tasks are Small, so that each node
holds a few tens of tasks, Min-MaxMM performs extremely well and is always
at most within 1% of the lower bound. The results of Min-Max MM slightly
degrades when tasks get Big. Indeed, in this case, the number of tasks per node
is relatively small (a few units) and greedy heuristics fail to achieve close to
optimal performance. Nevertheless, the number of nodes required by MM al-
ways stays within 20% of the lower bound, and this lower bound is certainly
under-estimated, especially in the case of Big Tasks.

In the case of Big Tasks, it happens that First-Fit Decreasing FFD outper-
forms Min-Max MM. Indeed, FFD is an efficient heuristic for classical Bin-
Packing problems. On the other hand, it tends to pack together on the same
node tasks whose characteristics are close in terms of Cj . In the case of Big Jobs



consisting in several identical tasks, then FFD packs together tasks that achieve
their peak demand at the same time and therefore fails to take full benefit of
their periodic behavior.

6.2 Task Ordering

Note that in all the heuristics described in Section 5, tasks are sorted by decreas-
ing values of Cj , whereas their maximal demand is Cj +ρj . We also tried to sort
tasks according to Cj +ρj but it degrades the performance of the heuristics. The
reason is the following. As observed in Section 5.2, each task can be represented

by a triplet (Cj , xj , yj) , where ρj =
√
x2j + y2j and the state of each node can

be represented by a triplet (Ck, xk, yk) and the maximal load at any time step
is given by Ck +

√
x2k + y2k. In practice, the x’s and y’s can be either positive or

negative whereas the C’s are always positive. Therefore, the packing heuristics
that take periodicity into account tend to annihilate x’s and y’s and therefore,
the amplitude of ρ should not be given as much importance as the amplitude of
C when initially sorting the tasks.

In the (most difficult) case of 1000 Big tasks with Big amplitudes, for in-
stance, the number of nodes required by Min-Max MM heuristic is on average
30% larger than the lower bound when tasks are ordered by decreasing values of
Cj + ρj , whereas the number of nodes required byMM is on average only 15%
larger than the lower bound when tasks are ordered by decreasing values of Cj .

6.3 Jobs and Tasks of Google Trace

As advocated in Section 3, in the trace released by Google [16] and corresponding
to one production center, the jobs of the Normal Production class that last for the
duration of the trace and that exhibit strong daily patterns count for about 50%
of the overall load. In this paper, we concentrate on this set of jobs, and we prove
that their characteristics make them suitable for the design of efficient resource
allocation algorithms, which take into account both their periodic nature and
the fact that they do not all reach their peak values at the same time step.

Of course, since this set of jobs accounts for half of the overall demand,
it is also crucial to design more dynamic strategies for the rest of the jobs.
These jobs typically correspond to the Gratis (free) class [13,12] and can be
allocated at runtime and then migrated to other nodes when the load of a nodes
becomes too high so that the QoS (Quality of Service) of the Normal Production
class cannot be enforced. Nevertheless, this important problem, addressed in the
papers mentioned in Section 2, is out of the scope of this paper.

Following the classification of Section 3, we have extracted 89 jobs corre-
sponding to a total of 22600 tasks. The largest job (in terms of tasks) consists
in 1608 tasks. The largest job (in terms of CPU demand) corresponds to the
capacity of 184 nodes at its peak demand. A capacity equivalent to 2198 nodes
would be required if all jobs reached their peak demand at the same instant. On



the other hand, the overall peak demand for the whole set of jobs is equivalent
to the capacity of 2090 nodes.

Therefore, there exists a potential improvement on the number of required
nodes of 5%, what should be considered as large in the context of an actual
production center. The results achieved by the different heuristics are displayed
in Table 2.

First-Fit Best-Fit Min-Max Min-Max-Module
FFD BFD MM MMM

Number of Nodes 2181 2182 2114 2226

Table 2: Number of nodes required per heuristic.

It can be observed that the results ofMM are extremely good on this actual
dataset. Indeed, the number of required machines is only 1.1% higher than the
lower bound, whereas MMM, the equivalent heuristic that does not benefit
from daily patterns, requires 6.5% more machines than the lower bound. This
result proves that there is clear interest to take benefit of daily patterns on an
actual dataset.

7 Conclusions

This paper assesses the impact of designing efficient resource allocation algo-
rithms for jobs that exhibit daily periodic sinusoidal patterns. First, we demon-
strate that in a trace of a production cluster released by Google, those jobs
actually represent a significant part of the workload. Then, we present a novel
model of periodic jobs with variable resource demand in shared hosting plat-
forms. We prove that the job aggregation problem, where the objective is to
minimize the number of nodes, can be formulated as a SOCP, what enables us
to solve it exactly in reasonable time, at least for small instances. We argue that
provisioning resources solely based on the maximal demand of tasks, as showed
by Min-Max-Module heuristic, results in larger number of nodes. On the other
hand, resource provisioning based on an antagonistic job aggregation, as illus-
trated by the Min-Max heuristic, can yield gains that significantly decrease the
number of required nodes. As future work, we plan to extend job aggregation
strategies to provide performance guarantees for other resources like memory,
disk, network bandwidth, etc. Our future research plans include refining the
suggested second order cone program to more efficient mathematical program-
ming relying on column generation algorithm. This algorithm is proved to be
efficient for solving larger programs as it generates only variables which have the
potential to improve the objective function. At last, in order to deal with larger
classes of problems, it is crucial to understand how to mix the (close to opti-
mal) strategies used to schedule long-running high priority job classes and the
dynamic resource allocation strategies that are used for short and low priority
classes.



References

1. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds: A berkeley view of
cloud computing. University of California, Berkeley, 2009.

2. Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: A mechanism
for resource management in cluster-based network servers. In In Proceedings of the
ACM SIGMETRICS Conference, pages 90–101, 2000.

3. O. Beaumont, L. Eyraud-Dubois, and J.-A. Lorenzo-del Castillo. Analyzing real
cluster data for formulating allocation algorithms in cloud platforms. In Computer
Architecture and High Performance Computing (SBAC-PAD), 2014 IEEE 26th
International Symposium on, pages 302–309, Oct 2014.

4. Olivier Beaumont, Lionel Eyraud-Dubois, Hejer Rejeb, and Christopher Thraves.
Heterogeneous Resource Allocation under Degree Constraints. IEEE Transactions
on Parallel and Distributed Systems, 2012.

5. A. Beloglazov and R. Buyya. Energy efficient allocation of virtual machines in
cloud data centers. In IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, pages 577–578. IEEE, 2010.

6. N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for
managing sla violations. In Integrated Network Management, 2007. IM ’07. 10th
IFIP/IEEE International Symposium on, pages 119–128, May 2007.

7. R.N. Calheiros, R. Buyya, and C.A.F. De Rose. A heuristic for mapping virtual
machines and links in emulation testbeds. In Proceedings of International Confer-
ence on Parallel Processing (ICPP), pages 518–525. IEEE, 2009.

8. Walfredo Cirne and Eitan Frachtenberg. Web-scale job scheduling. In Job Schedul-
ing Strategies for Parallel Processing, pages 1–15. Springer, 2013.

9. M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

10. D. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing
Company, 1997.

11. Hans D Mittelmann. An independent benchmarking of sdp and socp solvers. Math-
ematical Programming, 95(2):407–430, 2003.

12. Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and
Michael A. Kozuch. Towards understanding heterogeneous clouds at scale: Google
trace analysis. Technical report, Carnegie Mellon University, April 2012.

13. Charles Reiss, John Wilkes, and Joseph L. Hellerstein. Google cluster-usage traces:
format + schema. Technical report, Google Inc., Mountain View, CA, USA,
November 2011. Revised 2012.03.20. Posted at URL http://code.google.com/p/

googleclusterdata/wiki/TraceVersion2.
14. Johara Shahabuddin, Abhay Chrungoo, Vishu Gupta, Sandeep Juneja, Sanjiv

Kapoor, and Arun Kumar. Stream-packing: Resource allocation in web server
farms with a qos guarantee. In High Performance Computing, HiPC 2001, pages
182–191. 2001.

15. Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource overbooking
and application profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev.,
36(SI):239–254, December 2002.

16. John Wilkes. More Google cluster data. Google research blog,
November 2011. Posted at http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.
17. Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	Allocating jobs with periodic demand variations

