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Fast Edge-Aware Processing via First Order
Proximal Approximation

Hicham Badri, Student Member, Hussein Yahia and Driss Aboutajdine, Senior Member

Abstract—We present a new framework for fast edge-aware processing of images and videos. The proposed smoothing method
is based on an optimization formulation with a non-convex sparse regularization for a better smoothing behavior near strong
edges. We develop mathematical tools based on first order approximation of proximal operators to accelerate the proposed
method while maintaining high-quality smoothing. The first order approximation is used to estimate a solution of the proximal form
in a half-quadratic solver, and also to derive a warm-start solution that can be calculated quickly when the image is loaded by the
user. We extend the method to large-scale processing by estimating the smoothing operation with independent 1D convolution
operations. This approach linearly scales to the size of the image and can fully take advantage of parallel processing. The method
supports full color filtering and turns out to be temporally coherent for fast video processing. We demonstrate the performance
of the proposed method on various applications including image smoothing, detail manipulation, HDR tone-mapping, fast edge
simplification and video edge-aware processing.

Index Terms—Fast image smoothing, sparsity, edge-aware processing.

F

1 INTRODUCTION

DURING the past few years, there has been a
significant amount of work on edge-aware filter-

ing. Unlike regular Gaussian smoothing, edge-aware
filters blur the image while preserving sharp edges.
Probably the most popular edge-aware filter is the
bilateral filter [1] that performs a weighted averaging
of the pixel values in a window based on both space
and range distances. The bilateral filter can be seen as
a high-dimensional filter working in a 5D space when
performed on 2D RGB images [2]. A naive implemen-
tation of this filter is computationally demanding as it
operates in a high-dimension space. Many researchers
tried to boost this filter or at least simulate bilateral-
like results by either using linear interpolation [3],
optimized data structures such as the bilateral grid [4],
reformulation and downsampling [5], [6], constant
time spatial filters decomposition [7], Gaussian KD-
trees [8], Supports Vector Machines regression [9],
recursive implementation [10], dimensionality reduc-
tion [11], adaptive manifolds [12], among others. The
bilateral filter is the building block of a wide range
of applications such as HDR tone-mapping [3], non-
photorealistic rendering [13], upsampling [14] and
non-blind image deconvolution [15]. Unfortunately,
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bilateral filtering suffers from several issues. For in-
stance, it tends to produce several halo artifacts in
detail manipulation applications as pointed out by
Farbman et al. [16]. It also tends to blur some edges
and refuses to wash-out some large-scale details as
can be seen in Figure 1. The main problem of the
bilateral filter comes from its smoothing behavior that
is controlled by two parameters σs and σr, called
respectively the scale and range parameters. As σs
increases, the bilateral filter acts like a range filter and
as σr increases the bilateral filter becomes a Gaussian
filter. Increasing σs tends to preserve sharp edges
but fails at smoothing small-scale details. On the
other hand, increasing σr tends to smooth small scale
details but over-smooths sharp edges. As a result, the
bilateral filter may not be suitable for some edge-
aware manipulation applications due to its smooth-
ing behavior. New local filtering methods perform
filtering in a pyramid to prevent halo artifacts. The
local laplacian filter method [17], [18] uses a Laplacian
pyramid while the mixed-domain method [19] uses
a Gaussian pyramid. While these methods produce
high-quality smoothing results compared to previous
local filtering methods, they require a relatively large
processing time.

Gradient-domain methods have emerged as
another set of methods for edge-aware manipulation.
These methods are based on optimization, contrary to
local filtering methods such as the bilateral filter. The
first method introduced in this category is the Total
Variation (TV) method [20]. This approach consists
in minimizing an energy regularized by a convex
gradient function (l1-norm). The method was mainly
used for denoising and its use for computer graphics
applications was limited. The method of Farbman et
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(a) Input (b) Gaussian

(c) BLF [1] (d) Domain Transform [11]

(e) WLS [16] (f) Proposed

Fig. 1: Image smoothing of the noisy input (a) with
various edge-aware filters (image from [16]). Local
filtering methods such as the bilateral filter and the
domain transform are not able to correctly smooth
large-scale details and tend to blur sharp edges. In
contrast, our method smooths both small and large
details while being computationally efficient.

al. [16] is also based on a convex optimization
formulation but instead of the l1-norm, the method
makes use of a weighted least squares formulation
(WLS). The approach has shown to produce improved
smoothing results and was successfully used in detail
manipulation applications. Xu et al. make use of
the l0-minimization framework [21] to progressively
suppress details. The l0 quasi-norm is a non-convex
and non-differentiable function that highly promotes
sparsity. The method produces sharp and piecewise-
like smoothing that is suitable for applications such as
abstraction and non-photorealistic rendering. These
optimization-based methods produce in general a
high-quality smoothing result and do not introduce
halo artifacts in detail manipulation applications.
However, they suffer from two issues. The first one
is the limited smoothing behavior that is directly
related to the choice of the regularizer. For instance,
using the l0 quasi-norm produces only sharp and
piecewise-like smoothing, which may be unsuitable
for some smoothing applications. The second issue
is the computational cost. In order to preserve
sharp edges, the regularization term should promote
sparsity in the gradient domain. Minimization results

in solving large inhomogeneous linear systems in
the case of the WLS method or a large iteration
number of gradient shrinkage/reconstruction such
as the case of the method in [21]. We provide in
Figure 1 some smoothing results on synthetic data to
compare local filtering methods such as the bilateral
filter and optimization methods such as WLS and the
proposed method. The input image (a) contains noise
on multiple-scales. The bilateral filter (c) is not able
to smooth large-scale details and introduces strong
edge blurring. The domain transform method [11],
which is a fast method based on local filtering, is
also not able either to correctly smooth the image.
Similar to the bilateral filter, the result (d) contains
large-scale noise and blurred edges. The optimization
methods WLS and the proposed method produce
a much better smoothing result. However, the
proposed method does not require solving a large
inhomogeneous system and has a flexible smoothing
behavior.

In this paper, we present a fast and flexible frame-
work for image smoothing based on non-convex op-
timization and various approximations to make the
method computationally efficient. In the first part of
the paper, we show how to efficiently estimate a solu-
tion to optimization problems with differentiable non-
convex functions. We use a half-quadratic solver with
a first order approximation to estimate the solution of
the non-convex proximal operator. In the second part
of the paper, we show how to accelerate this solver by
introducing a warm-start solution and forcing a low
number of iterations. We also propose two flexible
regularization functions derived from Cauchy and
Welsch functions that produce suitable photographic
smoothing behavior. In the third part of the paper,
we discuss numerical solutions for fast processing. We
show how to estimate the proposed filter with few in-
dependent convolutions that can fully take advantage
of parallel processing. Not only this parallel filtering
approach enables fast processing, it also permits the
method to be applied to large-scale images. Finally,
we present various edge-aware applications produced
with our method and compare with state-of-the-art
methods.

2 PROBLEM FORMULATION

Given an input image g, we seek a smooth image u
that is close to g under a sparse gradient assumption.
The problem is formulated as follows :

argmin
u

λ

2
||u− g||22 + ψ(∇u), (1)

where ψ(.) is a function and λ is a positive regu-
larization term. Producing a smooth image requires
forcing the output u to have sparse gradients. Thus,
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ψ(.) should be a sparsity-inducing function1. Problem
(1) is not easy to solve as the function ψ(.) can be a
non-smooth or not even convex. One popular method
to tackle optimization problems of this form is by
introducing an additional variable v to obtain a half-
quadratic form [22]:

argmin
u,v

λ

2
||u− g||22 + ψ(v) +

β

2
||∇u− v||22, (2)

where β is a new regularization term. The problem
then can be solved by alternate minimization :

(p1) : v(k+1) ← argmin
v

ψ(v) +
β

2
||∇u(k) − v||22

(p2) : u(k+1) ← argmin
u

λ||u− g||22 + β||∇u− v(k+1)||22,

(3)
where k is the current iteration number. If ψ(.) is
convex, then, following [23], it can be shown that (3)
converges to u as k → ∞. Otherwise, (3) converges
to a local minima (please refer to the Appendix for
more details). Problem (p2) is a least-squares problem
and is relatively easy to solve. However, problem
(p1) is hard to solve due to the presence of the non-
quadratic function ψ(.). In a nutshell, the function
ψ(.) determines the distribution of the gradient of
the smooth output image u. In the MAP estimation
framework, problem (1) is derived from the Bayes rule
P (u|g) ∝ P (g|u)P (u). Searching for the smooth image
comes to solve the following problem :

argmin
u

− {log (P (g|u)) + log (P (u))} . (4)

For instance, in the case of the Laplacian distribution,
we get e−τ |z|, which comes to take ψ(.) as the l1-norm
on the gradient. The smoothing behavior of the filter
is totally determined by the choice of the function
ψ(.). The main issue with this choice is that, in order
to correctly smooth strong edges, the distribution of
the gradients should be highly kurtotic to promote
sparsity in the gradient field, which naturally leads
to non-convex functions. We will see through this
paper how to perform edge-aware smoothing with
non-convex but differentiable functions ψ(.) using a
first order proximal estimation.

2.1 Non-Convex Proximal Operators

We discuss here our approach to solve problem (p1).
Note that this problem takes the form of the proximal
operator [24] :

proxth(x) = argmin
y

{
h(y) +

1

2t
||y − x||22

}
, (5)

where t is a positive regularization term. This operator
is important in splitting algorithms and has many
useful interpretations. For a differentiable function h,

1. Typically a function that models a heavy-tailed distribution.

the solution can be found by direct minimization of
the energy, which leads to the following equation :

y + t∇h(y) = x. (6)

Therefore, the solution of problem (5) is given by the
following inverse function :

proxth(x) = (I + t∇h)
−1

(x). (7)

Inverse functions are sometimes very hard to eval-
uate, especially for non-convex functions. For this
reason, we use a first order Taylor expansion h(y) ≈
h(x)+∇h(x)T (y−x), which results in a more tractable
estimation :

proxth(x) ≈ x− t∇h(x). (8)

By replacing x by ∇u(k), h by ψ and t by 1/β in
problem (p1), we get the following estimate :

v(k+1) ← prox 1
βψ

(∇u(k)) ≈ ∇u(k) − 1

β
∇ψ

(
∇u(k)

)
,

(9)
which simplifies to pixelwise operations :

v(k+1)
p ← ∇u(k)p

(
1− 1

β
wψ

(
∇u(k)p

))
, (10)

where wψ(x) = ψ(x)′

x is the weight function of ψ
and p is the pixel location. For more details about
the derivations and convergence, please refer to the
Appendix.

2.2 Photographic Smoothing Behavior

Now that we know how to estimate a solution to the
proximal operator, we need to choose an appropriate
function ψ(.). As discussed before, one important
parameter in edge-aware processing is defining the
smoothing behavior. This is directly related to the
derivative distribution prior adopted in the method.
Studies have shown that real-world images’ gradi-
ents distribution has a heavier tail than a Laplacian
distribution [25], which suggests using a non-convex
regularization. In order to be able to generate different
smoothing results, we propose two flexible models de-
rived from Cauchy and Welsch functions, two models
widely used in M-estimation. The weight functions
wψi(x) of Cauchy and Welsh functions are given as
follows (please refer to the Appendix) :

Cauchy : wψ1
(x) = 1

1+(x/γ)2

Welsch : wψ2
(x) = e−((x/γ)2) (11)

These functions act as thresholding operators as they
have an inverted sigmoid-like shape. We introduce
a new parameter α that controls the nature of the
thresholding :

w1(x) =
1

1 + (x/γ)α
, w2(x) = e−((x/γ)

α). (12)
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(a) Input (b) γ = 2, α = 1, λ = 0.05 (c) γ = 10, α = 1, λ = 0.05 (d) γ = 10, α = 1, λ = 0.005

(e) γ = 10, α = 5, λ = 0.05 (f) γ = 15, α = 5, λ = 0.05 (g) γ = 10, α = 10, λ = 0.05 (h) γ = 10, α = 10, λ = 0.005

Fig. 2: Results produced with the proposed method for various parameter settings (image from [17]). The
parameter γ controls the main smoothing behavior of the filter, α controls the blur, while λ controls the
balance between the original image and the smoothing.

As α → ∞, the functions act more as hard-
thresholding operators and approach the l0 case. As a
result, decreasing α produces more blurry results and
increasing γ smooths more details. The parameter λ,
on the other hand, controls the balance between the
original image and the smoothing. Visual results for
various parameters using function w2 can be found
in Figure 2.

For color images, we define the following gradient
function for full color filtering :

T (∇u) =

√√√√( ch∑
k=1

|∂uk
∂x
|

)2

+

(
ch∑
k=1

|∂uk
∂y
|

)2

, (13)

where ch is the number of channels. The solution of
problem (p1) becomes :

v(k+1)
p ← ∇u(k)p

(
1− 1

β
wi

(
T (∇u(k))p

))
. (14)

2.3 Efficient Warm-Start
Solving problem (3) corresponds to an iterative pro-
cess. Thus, the initial solution u(0) plays an important
role in terms of speed of the algorithm. To accelerate
the method, we derive a warm-start solution u(0) from
(p2). The warm-start solution corresponds to a rough
estimation that can be calculated quickly. Using Euler-
Lagrange equation, we rewrite the solution of (p2) in
the matrix form :

(βL+ λI)︸ ︷︷ ︸
A

u(0)︸︷︷︸
x

=
(
−βdiv(v(0)) + λg

)
︸ ︷︷ ︸

b

, (15)

where Lu(0) ≡ −div(∇u(0)). We consider the
quadratic form f(x) = 1

2x
TAx − bTx. Solving for

f(x) = 0 is equivalent to solving the system (15). To
estimate a rough solution of f , we use a quadratic

regularization, which takes the form of the proximal
form on the point x(0) :

proxtf (x(0)) = argmin
x

{
f(x) +

1

2t
||x− x(0)||22

}
,

(16)
where x(0) is close to x. Applying the first order
approximation of equation (8), we get the linearized
form :

x ≈ x(0) − t
{
Ax(0) − b

}
, (17)

Now replacing x(0) with the input image g and ap-
plying equation (14) on v(0), we get the first order
estimation :

u(0) ≈ g+ξdiv
(
∇g −∇g ◦ (1− 1

β
wi(T (∇g)))

)
, ξ > 0,

(18)
where ◦ is a pointwise multiplication operator and
ξ = βt. As we want a relatively small number of
iterations, we rather fix β = 1 in the rest of the paper.
This choice has two motivations. First, as the functions
w1 and w2 have values between 0 and 1, the term
(1 − 1

βwi) will also have values between 0 and 1 for
β = 1, and thus one can use only the parameters
γ and α to control smoothing. The second reason is
that, with the same β at each iteration, one does not
need to update the preconditioner if equation (p2) is
solved using the preconditioned conjugate gradient
method, or update the filters in the separable filters
approach that will be introduced in the next section. In
a theoretical point of view, β should slightly increase
at each iteration. As we force a low iteration number
for faster processing, fixing β has little impact on
the truncated solution and offers a more efficient
implementation. For the warm-start parameters, ξ is
set between 0.01 and 0.25, α is fixed to 2 and γ is set
to around 400. Figure 3 shows the importance of the
warm-start solution when filtering at low iterations.
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Only 3 iterations were used to produce the smoothing
result. The input image is the same as in Figure 1.

(a) No warm-start (b) With warm-start

Fig. 3: Smoothing example showing the importance
of the warm-start solution when filtering at low iter-
ations (3 iterations). We took : γ = 4.1, α = 12 and
λ = 5× 10−4.

2.4 Fast Numerical Solution
Here we discuss fast methods to compute problem
(p2). The problem is quadratic and the solution is
given by Euler-Lagrange equation :

λu(k+1) −∇2u(k+1) = λg − div(v(k+1)), (19)

One approach to solve equation (19) consists in using
the Fourier transform. As the divergence and Lapla-
cian operators can be expressed using convolutions,
introducing the Fourier transform permits to split the
differential operators from the variable u(k+1) and the
solution is given as follows (for β = 1) :

u(k+1) ← F−1
(
F
(
λg − div(v(k+1))

)
λ− lap

)
, (20)

where F is the Fourier transform, div is the discrete
divergence operator 2 and lap is the OTF (optical
transfer function) of the discrete Laplacian filter. Cal-
culating the filter lap depends only on the size of
the image and can be calculated only once when for
example the image is loaded by the user, or even pre-
stored for multiple image sizes. Another approach to
solve equation (19) is using sparse linear solvers. Dif-
ferential operations can expressed as linear operations
using discrete differential operators Dx and Dy , the
solution corresponds to the following linear system :

(L+ λI)︸ ︷︷ ︸
A

u(k+1)︸ ︷︷ ︸
x

=
(
−div(v(k+1)) + λg

)
︸ ︷︷ ︸

b

. (21)

The matrix A is symmetric, positive-semidefinite and
very sparse due to the Laplacian matrix L. The good
news about this system is that it corresponds to a
homogeneous system [26]. Contrary to inhomogeneous
systems as the one that corresponds to the WLS
solution [16], they are much easier to solve. Using the

2. The discrete Laplacian operator ∆ corresponds to ∆ :=
−(∇T

x∇x+∇T
y∇y) := L, where L is the discrete Laplacian matrix.

latest Laplacian matrix pre-conditioner by Krishnan
et al. [26], we have noticed that solving equation (20)
takes in general only one iteration, and two iterations
for very small λ values. This is very fast processing
: for two iterations of the proposed method, around
2 × 3 = 6 pre-conditioned conjugate gradient iter-
ations in total are required to perform edge-aware
smoothing of a full-color image. Solving equation (p1)
corresponds to simple pointwise image processing.
Note also that, as β is fixed, the method does not need
to update the preconditioner. Hence, the Laplacian
matrix and the preconditioner for various discrete
λ values and image sizes can be pre-computed and
stored for faster processing.

Note however that the use of these two approaches
can be problematic for large-scale images due to large
memory requirement. We propose a simple method to
extend the proposed fast edge-processing method to
large-scale processing and can fully take advantage of
parallel processing. The idea consists in transforming
the deconvolution operation in equation (20) first to
a convolution operation, then estimating the convo-
lution kernel with separable filters. Equation (20) can
be written as the following convolution :

u(k+1) ←
(
λg − div

(
v(k+1)

))
︸ ︷︷ ︸

gconv

?F−1
(

1

λ− lap

)
︸ ︷︷ ︸

Gλ

.

(22)
Unfortunately, the filter Gλ has a large support and
using a straightforward convolution is costly. How-
ever, note that : 1) the size of the filter depends only on
λ, 2) as λ becomes larger, the filter Gλ tends to Dirac’s
delta function, a 1 × 1 filter. This means that for a
given λ > 0 value, Gλ can be estimated with a smaller
kernel of size h×h, given an error tolerance. Figure 4
shows how the support of the filter becomes smaller
when λ becomes larger. The following table shows the
MSE (Mean Square Error) between the ground truth
filter Gλ estimated in a grid of size 1201×1201 and its
truncated version, for various values of λ and various
sizes without any rescaling :

TABLE 1: MSE of the truncated filter for different
kernel sizes.

Kernel size MSE Kernel size MSE

λ = 1 201x201 5.22 10−20 71x71 5.3 10−20

λ = 1 29x29 2.16 10−12 7x7 8 10−8

λ = 0.1 201x201 1.3 10−18 71x71 3.8 10−10

λ = 0.1 29x29 2.75 10−7 7x7 7 10−6

λ = 0.03 201x201 2.6 10−12 71x71 1.95 10−7

λ = 0.03 29x29 6.7 10−6 7x7 3.43 10−5

The table above simply shows that one can indeed
estimate the filter Gλ with high accuracy using a
much smaller truncated filter. As a result, instead
of using two Fourier transforms, equation (21) can
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(a) λ = 10−9 (b) λ = 10−3 (c) λ = 0.01 (d) λ = 0.06 (e) λ = 0.5

Fig. 4: As λ becomes larger, the Gλ filter tends to Dirac’s delta function as shown in these experiments.

be calculated using a convolution with a medium-
size kernel. In the next paragraph, we show that the
cropped version of the filter can be estimated with a
small set of separable filters which offers significant
speed-up compared to a straightforward convolution.

Efficient Estimation via Separable Filters
A convolution with a large kernel is still costly. It turns
out that the kernel in our case can be written as the
sum of few separable filters making the process much
faster. It is well known that a matrix of rank 1 can be
written as the product of two vectors. More generally,
if a kernel is of rank r, it can be written as the sum of
r two successive convolutions with 1D kernels. This
operation is highly parallelizable and can make our
filter faster for large-scale processing. Mathematically
speaking, the filters are given by SVD decomposition

Gλ = DΣST =

r∑
i=1

σidis
T
i , (23)

where di and si denote respectively the i-th column
of the matrices D and S, and σi denotes the singular
value at position i. It turns out that the filter Gλ
is real symmetric and positive-semidefinite. Hence,
calculating u(k+1) becomes :

u(k+1) ←
r∑
i=1

(gconv ?
√
σidi) ?

√
σid

T
i (24)

In order to perform less filtering operations, we take
the sum to rt < r instead of the full rank of the matrix.
This comes to using a truncated SVD and corresponds
to the best rt-rank approximation in the sense of the
squared Frobenius norm. We found that, for λ & 0.04,
rt = 2 or 3 is generally enough to guarantee high-
quality visual results as shown in Figure 5.

2.5 Analysis
The proposed method consists mainly in two steps.
The first step consists in calculating the gradient, the
weights, the divergence and the summation. These are
pixelwise operations that can be calculated quickly
and take advantage of parallel processing. In fact,
they can be coded more efficiently by combining for
example the gradient and the weights calculations in

(a) Input (b) FFT result (c) Separable filters

Fig. 5: Smoothing example with the proposed method
(image from publicdomainpictures.net). (b) smooth-
ing performed with the Fourier transform, (c) smooth-
ing performed using the separable filters approach
using 2 separable filters of size h = 31. The parameters
were set as follows : λ = 0.07, γ = 9, α = 2 using
function w2.

the same loop. They can also take advantage of SIMD
instructions for even more efficient processing. The
second step consists in the image reconstruction. Here
again, the processing time reported in this paper is
for serial filtering. A more efficient implementation
would perform filtering in parallel using SIMD in-
structions for instance. For the separable filtering (SP)
approach, the reconstruction cost is rt × 2× h opera-
tion per pixel, where rt operations can be performed
in parallel. Concerning the warm-start solution, it
consists in pixelwise operations. For large images,
the weights can be calculated on a downsampled
image for faster processing. We use the following
setup : Intel Xeon CPU E5-2609 2.24 GHz and Nvidia
Tesla C2075 GPU on Matlab 2013a and Linux 64bits,
Intel i7-2670QM 2.20Ghz on Visual Studio 2008 and
Windows 7. Processing time for various methods can
be found in Table 2. NaN means that the method
encountred out of memory error. As can be seen, the
proposed method offers attractive efficiency with a
non-optimized Matlab implementation. We expect to
get faster processing with an optimized and paral-
lelized C/C++ implementation.

3 APPLICATIONS

We present in this section various applications pro-
duced with the proposed method as well as a com-
parison with various state-of-the-art methods.
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CPU/C++ CPU/Matlab CPU/Matlab GPU/Matlab
Resolution BLF [10] BLF [7] MD [19] Fast-LLF [18] L0 [21] warm-start FFT SF warm-start FFT SF
256×256 0.004 0.028 1.55 0.5 0.17 0.011 0.014 0.027 0.0037 0.006 0.009
512×512 0.017 0.11 5.78 0.9 0.77 0.035 0.052 0.075 0.0047 0.011 0.013

1024×768 0.05 0.34 14.82 1.9 2.42 0.04 0.15 0.20 0.011 0.035 0.03
1920×1080 0.13 0.90 35.84 4.3 6.76 0.09 0.38 0.45 0.027 0.097 0.07
2048×1536 0.20 1.37 69.90 6.3 11.26 0.14 0.66 0.68 0.04 0.138 0.11
4096×3072 0.84 NaN NaN 21 45.33 0.55 2.7 2.6 0.17 0.54 0.40
6400×4800 NaN NaN NaN 48 NaN 1.26 NaN 6.2 0.44 NaN NaN

TABLE 2: Processing time in secondes for various methods (left) and our method (right).

3.1 Image Smoothing

Image smoothing is a very popular method to fil-
ter out small noise and produce abstracted versions
of a natural image. It is the building-block for a
wide range of applications such as detail manipula-
tion, HDR tone-mapping, fast edge simplification and
video edge-aware processing.

(a) Input (b) BLF [1] (c) NCF [11]

(d) TV [20] (e) Extrema [27] (f) GF [28]

(g) WLS [16] (h) L0 [21] (i) Proposed

Fig. 6: Smoothing comparison with various state-
of-the-art methods (image from [21]). The proposed
method produces high-quality smoothing while being
flexible and computationally efficient. A close-up is
given in Figure 7.

(a) Input (b) BLF [1] (c) NCF [11]

(d) TV [20] (e) Extrema [27] (f) GF [28]

(g) WLS [16] (h) L0 [21] (i) Proposed

Fig. 7: Close-up on Figure 6. Note how the proposed
method preserved the features on the face and the
hand.

Smoothing Quality Comparison

A natural image smoothing example is given in Fig-
ure 6 as well as a comparison with 7 state-of-the-
art methods. The bilateral filter result (b) (σs = 40,
σr = 0.25) produces a globally blurred result. The
most important salient structures such as the face
and the hand of the lady were completely washed-
out. This result was produced with a brute-force
bilateral filter implementation, which offers the best
BLF quality possible as some fast BLF implementa-
tions do not produce exactly the same quality as the
brute-force implementation. The second result (c) was
produced with the fast Domain Transform method
using the NC filter (σs = 50, σr = 0.47). The global
blurring produced by the BLF is much less present,
but the method is not able to preserve some important
salient structures such as the face and the hand of
the lady. The third example (d) is produced with
our implementation of TV regularization using a half-
quadratic solver. The use of a half-quadratic solver
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Local Laplacian Filters [17]

(a) Input (b) σr = 0.1, α = 4, β = 1 (c) σr = 0.2, α = 4, β = 1 (d) σr = 0.4, α = 4, β = 1

Mixed-Domain Method [19]

(e) Input (f) α = 0.8, β = 1, σ = 0.18 (g) αr = 0.4, β = 1, σ = 0.18 (h) αr = 0.08, β = 1, σ = 0.18

Proposed

(i) Input (j) γ = 2, α = 20, λ = 0.05 (k) γ = 5, α = 20, λ = 0.05 (l) γ = 9.5, α = 20, λ = 0.005

Fig. 8: Comparison with multi-scale local filters. Our method produces comparable smoothing quality while
offering computational efficiency in addition.

here is important so we can compare it with the L0-
minimization method and the proposed method. With
parameters λ = 0.1 and κ = 2, the method took
around 23 iterations, which comes to the cost of using
23×3 FFTs. The result contains a global blurring, and
some salient structures were also not preserved. The
local extrema method that consists in extracting the
extrema envelopes and produce a smooth signal by
calculating the mean of these envelopes has shown to
be effective in textured areas. The method in this case
(e) was not able to correctly smooth the background
and also was not able to correctly smooth important
salient structures. The forth result is produced by the
Guided Filtering method (radius = 5, ε = 0.152). The
GF method is fast but produces severe global blur in
the smoothing result. The fifth example is produced
using the Weighted Least Squares method of Farbman
et. al (λ = 0.25, α = 1.2). The method seems to
produce a better result than TV regularization (d) but
the most important salient structures were blurred.
Note also that the method requires solving a large
inhomogenous linear system that becomes harder to
solve as λ increases. The seventh result (h) is produced
with the L0 gradient minimization method (λ = 0.015,
κ = 2). The approach produces a better result than the

other 6 results. The faces are better preserved and the
method does not suffer from the global blur produced
by most of the other methods. However, the method
required 23×3 FFTs. Finally, the proposed method (i)
(γ = 12, α = 20, λ = 0.04, function w1) produces a
high-quality smoothing result at a low computational
cost. Note how the salient structures such as the faces
and the hand of the lady on the left are preserved.
The method required 2 iterations. This is more than 12
times faster than L0-minimization when using the FFT
approach. Using the sparse linear system approach
with Krishnan et al. preconditioner [26], the method
required a total of 2 × 1 × 3 = 6 preconditioned
conjugate gradient iterations, where the 3 iterations
in each iteration can be performed in parallel. Note
also that the preconditioner does not to be updated
and can be fixed in advance according to the value λ.

We compare with multi-scale local filtering methods
such as Local Laplacian Filters [17] and the mixed-
domain method [19]. These methods produce high-
quality results but they are relatively computationally
demanding. Results are given in Figure 8. As can be
seen, the proposed smoothing method produces com-
parable smoothing quality at lower computational
cost. Note that the results presented here are produced
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(a) Input (b) Fast BLF [7]

(c) RF [11] (d) AdaptM [12]

(e) Proposed (1 iteration) (f) Proposed (2 iterations)

Fig. 9: Smoothing comparison with various fast state-
of-the-art methods (image from publicdomainpic-
tures.net). The proposed method produces a high-
quality smoothing.

with the original Local Laplacian Filter implemen-
tation that is computationally very demanding. The
Fast Local Laplacian Filters method [18] that aims
at making the Local Laplacian Filter faster is only
an approximation and does not produce comparable
smoothing quality.

Fast Smoothing Comparison

Another smoothing example is presented in Figure 9.
We evaluate the quality and speed of 3 fast edge-
aware filters : the fast implementation of the bilateral
filter in [7], the domain transform method (RF filter)
in [11] and the adaptive manifolds method in [12].
We use the following setup : Intel Xeon CPU E5-2609
2.24 GHz, Matlab 2013a on Linux 64bits and an Intel
i7-2670QM 2.20Ghz on Windows 7. The result (b) was
produced with the author’s C++ code (Visual Studio).
It took around 0.09 secs to produce this result with
values (σs = 0.01, σr = 0.1). The adaptive manifolds
method took around 0.4 seconds (Matlab implemen-
tation) to produce the result (d) (σs = 10, σr = 0.2).
The proposed method produces a high-quality result
even using one single iteration (e). The result is fur-
ther improved with a second iteration. The pears are
correctly smoothed and the image does not contain
background artifacts. With a Matlab implementation
and using the FFT method, the proposed method with
1 iteration took around 0.045 seconds, and around
0.09 seconds with 2 iterations with the following
parameters : γ = 12, α = 25, λ = 0.03 using the

function w1. The processing is around 5 times faster
using Matlab’s GPU computing toolbox.

(a) Input (b) Input (close-up)

(c) Proposed (d) Proposed (close-up)

Fig. 10: Large-scale image smoothing of a real-world
smartphone 4MP image.

Large-Scale Image Smoothing
We present here an example of large-scale processing
with the proposed method on a real photo taken
with a smartphone (Nokia Lumia 620) in Figure 10.
Mid-range smartphones can produce high-resolution
images but the result is relatively noisy. Using the FFT
approach in this case can cause memory issues. We
rather use the proposed filter with the separable filters
approach to perform noise reduction. We took rt = 2
(two separable filters) and h = 15 for parameters
γ = 12, α = 8, λ = 0.7, function w2 for only 1 iteration.
The total cost of the smoothing here comes to two
successive convolutions with a 1×15 filter two times,
which is computationally efficient. It took around 0.82
seconds to filter the image on Matlab without parallel
processing.

3.2 Multi-Scale Detail Enhancement
Edge-aware filtering can be used to decompose one
image into several layers according to its degrees of
details. One can thereafter manipulate each layer and
recombine them to boost details on multiple scales
[16]. Let B0,...,Bk be different smoothed versions of
the input image g. As k becomes larger, Bk becomes
coarser, with g = B0. These layers are called base
layers. Detail layers Dl are extracted by subtracting
the base layer Bl+1 from its richer version Bl as
Dl = Bl − Bl+1. Each detail layer is then multiplied
by a parameter and summed to form the output
image. Figure 11 (b) presents an example of multi-
scale detail enhancement applied to the flower (a).
As can be seen, the result generated with the pro-
posed method is visually similar to the one produced
with the WLS filter (c). However, generating the two
layers took only a total of 0.048 seconds with our
approach. The WLS method [16] took 2.7 seconds
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(a) Input (b) LLF [17] (c) Mixed-Domain [19] (d) Proposed

Fig. 12: Detail enhancement examples (images from [17]). The proposed method produces a high-quality detail
manipulation with reduced processing time.

(a) Input (b) Proposed method

(c) WLS [16] (d) Extrema [27]

(e) Domain transform [11] (f) EAW [29]

Fig. 11: Fine Detail Enhancement. (a) Input image. (b)
Proposed method using w1. (c) Weighted-least squares
approach [16]. (d) Local extrema [27]. (e) Domain
transform [11]. (f) Edge-avoiding wavelets from [29].

with the direct solver and around 1.5 seconds with
the PCG method [30] using an incomplete Cholesky

factorization preconditioner (the method took more
processing time with the preconditioner in [26] due
to the preconditioner update processing time. The
incomplete Cholesky factorization preconditioner pro-
duces in this case a high-quality result while being
fast to generate). Figure 12 shows examples of de-
tail enhancement compared with the Local Laplacian
Filters [17] and the mixed-domain [19] methods. As
can be seen, the proposed method offers high-quality
results with reduced processing time.

3.3 HDR Tone Mapping

Edge-aware filtering can be used for tone-mapping
high dynamic range images by performing a multi-
scale decomposition of the log-luminance channel
similar to the one discussed in the previous para-
graph. We present in Figure 14 an example of HDR
tone mapping with our approach using one detail
layer. Our result (d) is artifact-free and visually similar
to (c). The proposed solution took only 0.025 seconds
on Matlab to extract the base layer. Another example
of HDR tone mapping is presented in Figure 13 with
a 3 layers decomposition. The method produces a
suitable photographic look with reduced processing
time.

3.4 Edge Simplification

Edge extraction is an important application in com-
puter vision and graphics. The goal is to extract
the perceptually most important structures from a
natural image. Natural signals are very complex with
unpredictable perturbations everywhere that makes
accurate edge extraction extremely difficult. Instead
of designing a highly sophisticated and adapted edge
detector, which is very hard to realize, edge-aware
filters can be used to reduce unecessary details and
better extract edges using regular edge detectors. We
propose to use the filter presented herein for edge
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(a) BLF [3] (b) RF [11] (c) WLS [16] (d) Proposed method

Fig. 14: HDR tone mapping example. (a) Result with the bilateral filter. (b) Result using the domain transform
approach. (c) Result using WLS [16]. (d) Our result for 1 iteration with λ = 0.006, γ = 40 and α = 2 using the
function w2.

(a) WLS [16] (b) Proposed method

Fig. 13: Multi-layer HDR Tone Mapping. (a) Re-
sult with WLS. (b) Proposed method. (HDR image
c© Industrial Light & Magic. All rights reserved.)

extraction and compare it with various state-of-the art
filters. To evaluate the performance of each method,
we used the same edge detector [31] for all the
filters. Smoothing is applied only on the luminance
channel. Results are presented in Figure 15. Note
how the proposed filter (h) is able to get rid of the
unecessary details and correctly captures important
structures. Methods such as bilateral filter (b) and
extrema method (e) are much less adapted to this task.

3.5 Fast Video Processing
One important point about an edge-aware filter is its
ability to be extended for video processing. Temporal
coherence must be hold in order to prevent flickering
effects. It turns out that the proposed method is
temporally coherent even when performing frame-
per-frame filtering. Theoretically, temporal coherence
can be easily added in our method by simply adding
the temporal gradients and adjusting it to the tem-
poral gradients of the original video. The method in
this case would require a 3D FFT. We found that
simple frame-per-frame filtering works already quite
well and does not introduce any flickering effect.
We can thus take advantage of the separable filters
approach for fast large-scale video smoothing. GPU
processing can be used instead of the CPU for real-

(a) Input (b) BLF [13]

(c) NC [11] (d) WLS [16]

(e) Extrema [27] (f) GF [28]

(g) L0 [21] (h) Proposed method

Fig. 15: Edge simplification example (picture
from [21]). The proposed method permits to extract
relevant edge structures while being computationally
efficient.

time processing. An example is given in Figure 16
for a video frame. The smoothing was performed in
Matlab using a Tesla C2075 GPU device in real-time.
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(a) Input frame (b) Smoothing result (c) Detail enhancement

Fig. 16: Fast video filtering example ( c©2008, Blender Foundation / www.bigbuckbunny.org)

4 CONCLUSION

We present a fast solution for high-quality edge-aware
processing. The proposed approach is based on non-
convex optimization and makes use of various math-
ematical tools to perform efficient processing. First,
we show how to estimate non-convex differentiable
proximal operators using a first order approximation.
Secondly, we use a first order proximal estimation
to derive a warm-start solution that permits to gen-
erate high-quality smoothing at low iterations. The
third contribution of the paper consists in propos-
ing numerical estimations for even faster processing.
We show that the proposed filter can be reduced to
few convolutions with separable filters such that the
size of the filters is independent of the size of the
image. The separable filters approach permits fast
large-scale image processing at low memory cost. We
demonstrate the effectiveness of the proposed method
on various applications such as image smoothing,
detail manipulation, HDR tone-mapping and edge
simplification and compare with various state-of-the-
art methods.
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[13] H. Winnemöller, S. C. Olsen, and B. Gooch, “Real-time video
abstraction,” in ACM SIGGRAPH 2006 Papers, ser. SIGGRAPH
’06. New York, NY, USA: ACM, 2006, pp. 1221–1226. [Online].
Available: http://doi.acm.org/10.1145/1179352.1142018

[14] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyt-
tendaele, “Joint bilateral upsampling,” ACM Trans.
Graph., vol. 26, no. 3, Jul. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1276377.1276497

[15] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Progressive inter-
scale and intra-scale non-blind image deconvolution,” ACM
Trans. Graph., vol. 27, no. 3, pp. 74:1–74:10, Aug. 2008. [Online].
Available: http://doi.acm.org/10.1145/1360612.1360673

[16] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski,
“Edge-preserving decompositions for multi-scale tone
and detail manipulation,” ACM Trans. Graph., vol. 27,
no. 3, pp. 67:1–67:10, Aug. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360666

[17] S. Paris, S. W. Hasinoff, and J. Kautz, “Local laplacian filters:
Edge-aware image processing with a laplacian pyramid,” in
ACM SIGGRAPH 2011 Papers, ser. SIGGRAPH ’11. New York,
NY, USA: ACM, 2011, pp. 68:1–68:12. [Online]. Available:
http://doi.acm.org/10.1145/1964921.1964963

[18] S. H. J. K. M. Aubry, S. Paris and F. Durand, “Fast local
laplacian filters: Theory and applications,” ACM Transactions
on Graphics, 2014.

[19] X.-Y. Li, Y. Gu, S.-M. Hu, and R. R. Martin, “Mixed-domain
edge-aware image manipulation,” IEEE Transactions on Image
Processing, vol. 22, no. 5, pp. 1915–1925, 2013.

[20] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,” Phys. D, vol. 60,
no. 1-4, pp. 259–268, Nov. 1992. [Online]. Available:
http://dx.doi.org/10.1016/0167-2789(92)90242-F



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, X X 13

[21] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing
via l0 gradient minimization,” in Proceedings of the 2011
SIGGRAPH Asia Conference, ser. SA ’11. New York, NY,
USA: ACM, 2011, pp. 174:1–174:12. [Online]. Available:
http://doi.acm.org/10.1145/2024156.2024208

[22] D. Geman and C. Yang, “Nonlinear image recovery with half-
quadratic regularization,” 1993.

[23] J. Idier, “Convex half-quadratic criteria and interacting aux-
iliary variables for image restoration,” IEEE Transactions on
Image Processing, vol. 10, no. 7, pp. 1001–1009, 2001.

[24] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in Optimization, 2013.

[25] D. Krishnan and R. Fergus, “Fast image deconvolution us-
ing hyper-laplacian priors,” in Advances in Neural Information
Processing Systems 22, 2009, pp. 1033–1041.

[26] D. Krishnan, R. Fattal, and R. Szeliski, “Efficient precondition-
ing of laplacian matrices for computer graphics,” ACM Trans.
Graph., vol. 32, no. 4, pp. 142:1–142:15, Jul. 2013. [Online].
Available: http://doi.acm.org/10.1145/2461912.2461992

[27] K. Subr, C. Soler, and F. Durand, “Edge-preserving multiscale
image decomposition based on local extrema,” in ACM
SIGGRAPH Asia 2009 papers, ser. SIGGRAPH Asia ’09.
New York, NY, USA: ACM, 2009, pp. 147:1–147:9. [Online].
Available: http://doi.acm.org/10.1145/1661412.1618493

[28] K. He, J. Sun, and X. Tang, “Guided image filtering,”
in Proceedings of the 11th European Conference on
Computer Vision: Part I, ser. ECCV’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 1–14. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1886063.1886065

[29] R. Fattal, “Edge-avoiding wavelets and their applications,”
ACM Trans. Graph., vol. 28, no. 3, pp. 1–10, 2009.

[30] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2003.

[31] J. Canny, “A computational approach to edge detection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 8,
no. 6, pp. 679–698, Jun. 1986. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.1986.4767851

Hicham Badri received the Master degree
in computer sicence and telecomunications
from Mohammed V University Agdal - Faculty
of Science in 2012, Rabat - Morocco. He is
currently pursuing his Ph.D. in co-supervision
with INRIA Bordeaux Sud-Ouest, France and
Mohammed V-Agdal University - LRIT, As-
sociated Unit to CNRST (URAC 29). His
reserach interests include image processing,
sparse methods and multiscale methods.

Hussein Yahia is the head of INRIA research
team GEOSTAT (Geometry and statistics in
acquisition data). Dr. H. Yahia received the
Doctorat ode 3eme cycle from University
Paris 11 (Orsay) and the HDR (Habilita-
tion Diriger des Recherches) form University
Paris 13. He is specialized in non-linear sig-
nal processing and the analysis of complex
signals and systems using advanced nonlin-
ear physics. Dr. H. Yahia has also made sub-
stantial contributions in Computer Graphics

and Image Processing. Dr. H. Yahia is developing strong collab-
oration with the LEGOS Laboratory in Toulouse (UMR CNRS 55
66) as well ICM-CSIC in Barcelona, and also IIT Roorkee in India
(Associated team OPTIC with Prof. Dharmendra Singh). He is also
involved in many contract with the French spatial agency CNES and
the European Spatial Agency (ESA). Dr. H. Yahia is the author or
co-author of about 80 publications in international peer-reviewed
journal and conferences including top-ranked conferences such as
ACM SIGGRAPH, CVPR and ECCV. He is a member of the editorial
board of journals in signal processing or complex systems and has
been supervising more than 10 PhD students.

Driss Aboutajdine received the Doctorat
de 3me Cycle and the Doctorat d’Etat-es-
Sciences degrees in signal processing from
the Mohammed V-Agdal University, Rabat,
Morocco, in 1980 and 1985, respectively. He
joined Mohammed V-Agdal University, Ra-
bat, Morocco, in 1978, first as an assistant
professor, then as an associate professor in
1985, and full Professor since 1990. Over 35
years, he developed teaching and research
activities covering various topics of signal

and image processing, wireless communication and pattern recog-
nition which allow him to advise more than 50 Ph.D. theses and
publish over 200 journal papers and conference communications. He
succeeded to found and manage since 1993 and 2001 respectively
the LRIT Laboratory and the Centre of Excellence of Information
& Communication Technology (pole de competences STIC) which
gathers more than 30 research laboratories from all Moroccan uni-
versities and including industrial partners as well. Prof. Aboutajdine
has organized and chaired several international conferences and
workshops. He was elected member of the Moroccan Hassan II
Academy of Science and technology on 2006 and fellow of the TWAS
academy of sciences on 2007. As an IEEE Senior Member, he co-
founded the IEEE Morocco Section in 2005 and he is chairing the
Signal Processing chapter he founded in December 2010. He is
currently the director of the CNRST research center in Morocco,
Rabat.

APPENDIX

Study of Convergence

We study here the convergence properties of the
solver when a first-order approximation is introduced
on the sparse prior. Suppose the following general
minimization problem :

minimize f(x) + g(x), (25)

where f represents the data fitting term and g is the
sparse gradient prior. We want to verify the optimality
condition :

0 ∈ ∂f(x) + ∂g(x). (26)

To do so, we first start by introducing the intermediate
variable v for half-quadratic splitting. For fixed x and
v, we have :

v = argmin
v

g(v) + β
2 ||x− v||

2
2

x = argmin
x

f(x) + β
2 ||x− v||

2
2,

(27)

which results in the following intermediate solutions

v = (I +
1

β
∂g)−1x , x = (I +

1

β
∂f)−1v. (28)

By introducing the first order approximation on g (eq
8), we get :

v = (I − 1

β
∂g)x , x = (I +

1

β
∂f)−1v. (29)

Now by adding the two equations together, it is
easy to see that the optimality condition (eq (26)) is
verified. This means that convergence is guaranteed
if the proximal operator associated to the sparse prior
is linearized. Now the difference is that, in the convex
case (l1-norm), the linearization corresponds to the
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exact solution of the proximal operator. That is, we
have :

(I +
1

β
∂g)−1x = (I − 1

β
∂g)x. (30)

As a result, the minimum reached is a global opti-
mum of the main problem (25). However, in the non-
convex case, the linearized proximal operator does not
correspond exactly to that solution. As a result, the
minimum reached by the solver is local.

First Order Derivation

The first order solution of the proximal operator is
derived as follows : instead of minimizing the exact
proximal operator that is defined as :

proxth(x) = argmin
y

{
h(y) +

1

2t
||y − x||22

}
, (31)

we rather minimize the linearized version that is
tractable. It consists in replacing h(y) by its first-order
approximation h(y) ≈ h(x) + ∇h(x)T (y − x) in the
energy formulation :

argmin
y

{
h(x) +∇h(x)T (y − x) +

1

2t
||y − x||22

}
. (32)

This problem is equivalent to :

argmin
y

∇h(x)T y +
1

2t
||y − x||22︸ ︷︷ ︸

E

 . (33)

Now applying Euler-Lagrange equation we get :

∇E = ∇h(x) +
1

2t
(2y − 2x) = 0. (34)

Finally, we get the first order approximation closed-
form of equation (8) :

proxth(x) ≈ x− t∇h(x). (35)

First Order Shrinkage Derivation

We discuss the derivation process from the sparse
prior formulation to the shrinkage formula. For the
sake of simplicity, we consider the Cauchy case with
α = 2, the same demonstration holds for other func-
tions. The sparsity-inducing function is defined as
follows :

ψ(x) =
γ2

2
log
(

1 + (
x

γ
)2
)
. (36)

The influence function is defined as follows :

ψ(x)′ =
∂ψ(x)

∂x
=

x

1 + (x/γ)2
, (37)

and the weight function is defined as follows :

w(x) =
ψ(x)′

x
=

1

1 + (x/γ)2
, (38)

which is the same defined in eq (11). Now, replacing
x by the gradient at pixel p and iteration k defined as
∇u(k)p and ∇h by the influence function ψ(x)′ in the
first order approximation eq (8), we get the pixelwise
shrinkage operation defined in eq (10).


