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ABSTRACT 
 

A second law analysis of an ammonia -water double-effect double-generator absorption chiller is performed. The 
irreversibility in each component in the chiller is quantified and the contribution of each component to the overall 
system efficiency determined. Computer simulation was carried out in order to determine the stream properties and 
heat and work exchanged with the surroundings [1]. Simulation results where then used to analyse the entropy 
generation and irreversibility (or exergy destruction) of each component. The results indicate that in the absorber, 
the solution heat exchangers, and the condenser the greatest irreversibilities occur. In these equipements may lay the 
most improvement potential of the cycle efficiency. 
  

 
1.  INTRODUCTION 

 
The common way to specify the energy efficiency of an absorption chiller is to provide the coefficient of 
performance COP , based on the first law of thermodynamics. This parameter, however, makes no reference to the 
best possible performance and gives no information regarding where the irreversibilities in the chiller occur. Also, it 
cannot be used to determine the contribution of each component of the chiller to the overall efficiency. The second 
law analysis addresses the energy and the entropy balances for the system. It can be used to determine the entropy 
generation and the irreversibility (or exergy destruction) in each component. Since the COP reflects the amount of 
destruction of the available energy in the system, a second law analysis gives information on the potential of 
improvement in each component of the machine [2, 4, 5]. 
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2. CYCLE DESCRIPTION 
 
Figure 1 shows schematically a double effect-double generator configuration. Such a machine is composed 
essentially of two condensers, an evaporator, two steam generators each one provided with a boiler and distillation 
column, an absorber, four expansion valves, two pumps and an adjustable three-way valve. The steam (3) flowing 
from the evaporator to the absorber, is absorbed by the weak solution (9). The absorption heat is rejected towards the 
environment (cooling water or air) which also receives the energy released by the first condenser.  The strong 
solution (4) is distributed, by an adjustable three-way valve, between the two stages of the machine comprising each 
a generator, a condenser and a solution heat exchanger.  A fraction α  of the strong solution (4) is sent to the first 
generator. The separation of the refrigerant is performed at two temperature levels : the energy needed in the first 
boiler is supplied by the second condenser (Cond2). Large temperature differences between heat exchanging streams 
are so avoided. The first condenser (Cond1) receives the throtted condensate from the second condenser and the 
refrigerant vapor from the distillation column over the first boiler.  The strong solution (14) supplying the second 
generator is a cold source for the deparation column over the 2nd boiler and determines thus the purity limit of 
refrigerant (23) leaving the last stage of this column. For a rational use of the energy supplied, three counter-current 
heat exchangers (HEX1, HEX2, HEX3) are used.  
 
 

 

 

 
Figure 1 : double effect double generator absorption 
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3. METHODOLOGY OF SIMULATION 
 
The formulation of the simulation model for the chiller proceeds by the following steps:   
 

Ø Determination of  the chiller variance (number degrees of freedom ),  
Ø Specification of the fundamental operating conditions :  the cooling capacity, the driving heat source 

temperature, the useful cold temperature and that of the environment,  
Ø Formulation of the mass and energy balances governing the various chiller components.  
Ø Characterisation of the heat transfer in the various heat exchangers (pinch method). 

 
To solve the large set of nonlinear equations of the simulation model the program CONLES, available as a 
FORTRAN 77 code [11], is  used. The fluid thermodynamic properties are calculated in a subroutine incorporated in 
the program. 
 

4. THERMODYNAMIC ANALYSIS 
 
4.1 Component Analysis  
Neglecting the power input to the 2 pumps the governing equations used to evaluate the irreversibility in each 
component are: 
 
Overall mass balance : ∑∑ =

i
i

e
e mm &&  (1) 

Energy balance : ∑∑ −=
i

ii
e

eeK hmhmQ &&&  (2) 

Entropy balance : 

K

K

i
ii

e
eeK,gen T

Q
smsmS

&
&&& −−= ∑∑  

(3) 

Irreversibility : 
K,genSTI &&

0=  (4) 

 
Where: 

KQ&  :     Heat added or removed from component, K, at temperature KT , 

KT  :      The entropic average temperature at which heat KQ& is exchanged [4, 6], 

KgenS ,
&  : The entropy generation in each component, K, of the chiller,  

 
4.2. Cycle Analysis 
The coefficient of performance of the chiller is defined as 
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Evap

Q

Q
COP =                                                                             (5) 

 
 
 
 
 
 
 



 
R107, Page 4 

 

 
International Refrigeration and Air Conditioning Conference at Purdue, July 12-15, 2004 

 

 
 
Second law analysis begins by applying the first and second law to the entire system, with only heat crossing the 
chiller boundaries, as shown in Figure1. 
 

012 =+++ AbsCondBEvap QQQQ &&&&  (6) 
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(7) 

 

EvapT , 2BT , 1CondT , and AbsT  the corresponding the entropic average temperatures. The first condenser and the 

absorber exchange heat with the same heat sink (air). Their entropic average temperature are set equal to the 

environment temperature at ( 1CondT = AbsT = 0T ). The second boiler exchanges heat at varying temperature. 

Calculation of the exact entropic average temperature for this desorbing process is complex, and was therefore set to 
the highest temperature of the weak solution. EvapT  was estimated as the numerical average of the entering and 

leaving temperatures. The error introduced by these approximations is minimal as shown by Alefeld [4, 6]. 
When equation 7 is multiplied by 0T  and subtracted from equation 6, the following equation is obtained: 
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 : is the reversible revCOP  of a thermally -driven refrigerator operating between the three 

temperature reservoirs at EvapT , 0T  and 2BT . Equation 8 may thus be rewritten as : 
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(10) 

 
Equation (10) shows how much the entropy generation of each component, K, of the chiller degrades the reversible 

revCOP  to the actual COP . 

Second law efficiency,η , is defined as the ratio of the actual COP  to the maximum (reversible) COP  under the 
same operating conditions : 
 

revCOP
COP=η  

 
(11) 
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5. RESULTS 

 
The operating conditions for the cycle are: 

• Evaporator pressure, maximizing the COP  [1], PE = 3.5 bar, 
• First condenser and absorber temperature: 312 K, 
• Evaporator exit temperature: 275 K, 
• Maximum second generator temperature, T17 = 443 K, 
• Cooling capacity 17.5 kW at 300-285 K, 
• Pinchs in heat exchangers: 5 K, 
• Sub-cooling of absorber and condenser: 3 K. 

 
Computer simulation results presented in [1] are used in this  thermodynamic analysis. Table 1 provides the analysis 
results.  
 
 

Table 1: Results of the first and the second law analysis for the chiller 
 

First law analysis Second law analysis 
 

Component Q 
 (kW)     revCOP  COP  KgenS ,

&  

(W/K) 
I&  

(W) 
K,radationdegCOP  totalII &&  

% 
η  

Evaporator 17.5 0.461 141.982 0.040 3,076 
HEX1 2.544 0.436 134.257 0.038 2,909 
EV1 0.00 0.181 55.707 0.016 1,207 
1stCondenser(Cond1) -18.31 1.915 589.823 0.167 12,78 
Absorber -25.925 3.854 1186.95 0.337 25,72 
EV2 0.00 0.165 50.971 0.014 1,104 
HEX2 30.311 2.591 797.98 0.226 17,288 
Mixer 0.00 0.168 51.863 0.015 1,124 
HEX3 30.374 2.216 682.587 0.194 14,79 
EV3 0.00 0.454 139.929 0.039 3,031 
2nd Boiler (B2) 22.9965 1.361 419.27 0.119 9,084 
Rectifier 3.535 0.975 300.183 0.085 6,504 
Coupling  
(Cond2_1st Boiler) 

3.514 

 
 
 
 
 

2.292 
 
 
 
 

 

0.761 

0.208 64.21 0.018 1,391 

 
0.332 

 

 
Further examining of the irreversibility in each component (figure 2) reveals that the absorber, the solution heat 
exchangers and the first condenser contribute most to the COP  decrease (70%).  
For the ideal process, the reversible COP  is 2,292. Degradations in all the components results in an actual COP  
of  0,761. The absorber contribution to the degradation in the machine is the largest, 0.337.  
 

 
6. CONCLUSION 

 
This study applies the second law analysis to quantify the irreversibility of each component in ammonia -water 
double effect double generator absorption chiller.  Simulation results indicate that in the absorber, the solution heat 
exchangers, and the condenser may lay the greatest potential for chiller efficiency improvement.  
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Figure 2 : Irreversibility in chiller components. 

 
 

NOMENCLATURE 
 
COP  
 h 

I&  
m&   
 P 

Q&  

genS&  

 T 

Greek 
η  

α 

coefficient of performance 
enthalpy 

irreversibility  
molar flow rate  
pressure  

heat transfer  

entropy generation  

temperature  

 
second law efficiency 
distribution coefficient 

(–) 
(J/mol) 

(kW) 
(mol/s) 
(bar) 

(kW) 

(kW/K) 

(°C, K) 
 
 
(–) 
(°C, K) 

Subscripts 
Abs 
B 
Cond 
Evap 
EV 
Rect 
HEX  
f 
p  
r 
 

 
absorber 
boiler 
condenser 
evaporator 
expansion valve 
rectifier 
heat exchanger 
refrigerant 
weak solution, poor 
rich, strong solution 
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Figure 2 : Comparison of irreversibility of the chiller components of two configurations. 

 
 
 

 

 
Figure 7 : Serie flow double effect double generator absorption chiller 
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