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ABSTRACT 
 

Field tests of several refrigeration systems operating with thermal expansion valves have recently been documented 
and compared in systems using a High Vapor Faction and Turbulent (HVFT) flow in an Altered Bi-phase Flow 
regime (ABF).  The results demonstrated improved heat transfer coefficients with redistribution of frost on the 
evaporator coils permitting longer periods between defrost, and reduction in system-wide energy usage. It was 
theorized that a HVFT (High Vapor Fraction and Turbulent) entering the evaporator coil could have the effect of 
more evaporator work through improvement in the flow regime than if entering with a greater liquid percentage, 
despite the associated enthalpic capacity. Since this theory was from different perspective than the last fifty years of 
industry work, and due to the counter intuitive nature of the theoretical principles, visualization of Altered Bi-phase 
Flow (ABF) regime was studied through the use of a glass tube evaporator model.   
 

1. INTRODUCTION 
 

Research over the past few years in bi-phase fluid flow visualization entering refrigerant-to-air evaporator coils 
fostered interest in testing the affects of radically different liquid/vapor fractions in combination fundamentally 
changing refrigerant flow regimes.  Experiments, some of which were the focus of previous ASHRAE and IIR work, 
studying and documenting this alteration of a vapor fraction and flow regime of entering refrigerant to the 
evaporators have been completed and reported over the past two and a half years, caused the authors to take the 
experiment toward visualization.  
 
 A laboratory project was designed to demonstrate a flow visualization using a glass tube evaporator to better 
understand the bi-phase refrigerant flow characteristics of conventional properly adjusted TXVs and the HVFT and 
ABF flow regime in a system using Dry expansion technology, or “direct expansion” by which it is commonly 
referred.  Refrigerant feed through thermal expansion devices is widely recognized as providing limited control over 
coil performance.   A thermal expansion valve modulates flow based upon the refrigerant temperature at the 
evaporative outlet line by translating this temperature into pressure (through the bulb and capillary tube) and then to 
a mechanical force that operates valve in a relationship with evaporative pressure.  The difference in these pressures 
or forces is used to determine superheat at the outlet of an evaporative coil.  This method modulates refrigerant flow 
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in a “hunting manner” overfeeding refrigerant, underfeeding refrigerant and then overfeeding the evaporative coil 
again, which is more pronounced in transient modes of operation.  Such operation provides limited control typically 
with a great deal of fluctuation in the refrigerant flow properties at the outlet of the evaporative coil.  What seems to 
have been overlooked is the substantial impact this erratic flow pattern has on the heat transfer coefficient over the 
entire evaporator and more specifically that the quality of the refrigerant in the inlet portion of the coil can affect the 
heat transfer throughout the entire coil. 
 

2. ABF/HVFT FLOW REGIME 
 

Each test essentially consisted of the same setup.  Comparative testing was performed between two systems designs.  
The first system setup uses a conventional thermal expansion valve (Baseline System) installed following all 
manufacturer specified recommendations.  The second system combines thermal expansion valve in conjunction 
with the ABF/HVFT Flow, that varies the vapor fraction of the refrigerant and creates turbulent flow through a 
mechanically induced fluid process (ABF/HVFT System).  Each test and verification project is monitored to 
measure the effect that this improved flow regime can have on cooling rates, compressor work, temperature 
differences, evaporator efficiency, control of superheat, and in other significant observations. (Figure 1) 
 
 

Figure 1:  Baseline System and ABF/HVFT System Test Schematics 
 
 

          
 

    Baseline         ABF/HVFT System  
 
 
The hypothesis being tested is that entering an evaporator coil with a high vapor faction enables the novel and highly 
efficient flow regime to be achieved throughout the evaporative coil.  Furthermore, annular flow at the outlet of the 
evaporator coil in the ABF/HVFT System communicates very efficiently with the superheat sensing bulb, whereas 
the conventional vapor barrier of superheat in Baseline has extremely poor heat transfer and cannot communicate 
well.  
  
The ABF/HVFT System has been operated throughout the study in multiple and single pass circuiting, air/ventilated 
and gravity feed coils, and high, medium and low temperature applications.  Reduction in superheat exiting from the 
evaporator coil is accomplished with minimal liquid and is  very tightly controlled with little fluctuation as verified 
on the glass tube evaporator test stand.  Lower superheat can mean greater surface exposure to the refrigerant and 
result in higher evaporator pressures.  Lower superheat allows for a denser refrigerant, boosting compressor capacity 
and lowering compressor outlet superheat.  Energy is reduced in each case. 
 
Evaporator temperature uniformity allows for frost to build more uniformly across the coil and can therefore reduce 
defrost frequency or duration by not causing a restriction in air-side velocity. 
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3. LABORATORY TEST & VERIFICATION OF EVAPORATOR FLOW REGIME 
 

A glass tube evaporator test stand was constructed using heat-treated and pressure tested glass tubing and consisted 
of 32 passes of 19 mm (¾ in) O.D, 3.12 mm (0.123 in) wall thickness, 12.7 mm (½ in) I.D. by 1,219 mm (48 in) in 
length.  The passes were connected using compression fittings and copper “U” bends.   The purpose of this 
laboratory test stand was to try to explain the increased evaporator performance found in field tests  through a better 
understanding of the bi-phase flow characteristics throughout the evaporators when switching from Baseline TXV 
operation to ABF/HVFT System operation. 
 
The glass tube evaporator test stand was operated with constant conditions using R12 and measured conventional 
evaporator capacity ~ 1,120 watts 3,840 BTUH at steady state.  In the conventional mode of operation a traditionally 
sized TXV operated at a targeted 4.4°C (8°F) superheat, and operated at a room temperature 22.2°C (72°F) and 45% 
RH.  The evaporator coil was monitoredi visually for identifiable flow regimes, liquid flow patterns of advancement 
and recession, suction pressure and for evaporator coil surface temperature.  Coil surface temperature was monitored 
at inlet, the midway point and at the outlet.  The evaporator coil surface temperature was measured by electronic 
thermocouple and with infrared thermometer for comparative purposes.  All coil temperature measurements were 
made at each of the two o’clock and four o’clock positions.  Readings were recorded after operation had stabilized 
for a period of one hour, and the readings shown (Table 1) are representative of the series of readings taken. The 
large diameter of the evaporator clearly demonstrated the impact of the flow differences.  The glass composition of 
the tube wall substantially impacted temperature readings but presented greater differentials than anticipated.  This 
pronounced differences between the flow regimes to the benefit of the researchers.  Work is presently underway to 
provide greater instrumentation with higher detail to sampling, with emphasis given to heat transfer comparisons 
between the glass and a common copper tube wall construction. 
 
The glass tube was used to confirm theoretical views of the flow regimes in each of the pre-retrofit and post-retrofit 
operations.  Stratified–Wavy Flow was most commonly witnessed at the inlet of the evaporative coil in the pre-
retrofit mode (Baseline System).  Slug-Flow was occasionally seen. The Stratified-Wavy flow ran consistently 
through the initial eight to ten passes of the evaporator coil evaporator, with the refrigerant becoming higher in 
vapor percentage as it progressed through the coil.  Intermittent and Annular Flow could occasionally be seen during 
brief periods toward the tenth to twelfth passes, and the partial dry-out was witnessed occasionally over about two 
passes of the evaporator and was directly effected by the advancing and receding point of furthest liquid feed, which 
had a movement of about 1.2 m (4 ft).  The balance of the evaporative coil had no visible liquid present and was 
measured to be superheated vapor.  Occasionally, during transient operation, liquid in varying levels would ride the 
bottom to bottom third of the tubing in fluctuation periods and extend well into the superheated area. 
 
When operated in the post-retrofit mode (ABF/HVFT System), the inlet 2 to 4 passes were in Intermittent-Flow, and 
gave indication frequently of Wavy Flow.  The third through twenty-ninth passes of the evaporator were primarily in 
Annular Flow with the last two passes of the evaporator coil in either Annular or Annular with Partial Dry-out. 
(Figure 2). Superheat was increased so as to vis ualize the advancement and recession of the point of furthest liquid 
feed.  Following this adjustment, the last pass of the evaporator became superheated.  The point of furthest liquid 
feed fluctuated between 38.1 to 50.8 mm (1.5 to 2 inches) as compared to 1.2 m (4 ft) using a conventional TXV in 
the pre-retrofit operation. 
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Figure 2 ABF/HVFT System Glass Evaporator 

 
 

Other significant differences were measured in the surface readings of the glass tubing.  The evaporator pressure, 
discharge temperature, inlet evaporator tubing surface reading at 2 and 4 o’clock, midpoint evaporator tubing 
surface reading at 2 and 4 o’clock, and outlet evaporator tubing surface reading at 2 and 4 o’clock were recorded.   
Note the fluctuation in temperatures (Table 1) in the Baseline with relation to the coil outlet, as the TXV hunted. 
The difference between the 2 o’clock and 4 o’clock readings indicates the absence of liquid at the upper portion of 
the tubing.  The second reading indicates the reaction of the expansion valve, in that inlet coil temperatures begin to 
change to reduce the superheat at the outlet, during which time instantaneous infrared temperature measurements on 
the copper line feeding the evaporator indicated fluctuating degrees of sub-cooled liquid (.28C/.5F to 2.78C/ 5F).  A 
third reading indicates a throttling back of the refrigerant feed to react to the now colder outlet. 
 

Table 1:  Baseline TXV Fed Glass Evaporator   
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kPa (psi) °C (°F) °C (°F) °C (°F) °C (°F) °C (°F) °C (°F) °C (°F) 

110.3 (16) 58.89 
(138) 

2.83 (37.1) 0.61 (33.1) 0.56 (33) -2.89 
(26.8) 

8.50 
(47.3) 

8.39 (47.1) 

113.8 
(16.5) 

60.3 
(141) 

-6.39 
(20.5) 

-6.67 
(20.0) 

.011 (32.02) -4.13 
(24.57) 

0.04 
(32.0) 

-3.26 
(26.13) 

111.5 
(16.25) 

59.44 
(139) 

2.944 
(37.3) 

0.28 (32.5) 1.06 (33.9) -2.56 
(27.4) 

0.94 
(33.7) 

-0.22 
(31.6) 

 
 
The ABF/HVFT System fed glass evaporator with a distributed enthalpy and with low degree superheat is as 
indicated in Table 2.  Note the uniformity between the 2 o’clock and 4 o’clock readings indicating the presence of a 
liquid film at the upper portion of the tubing.  The disparity between the 2 o’clock and 4 o’clock readings at the 
outlet of the coil is indicative of partial dry-out.  The ABF/HVFT Flow glass evaporator is then shown with the 
slightly increased superheat as indicated for the visualization of liquid line advancement. Note the uniformity 
between the 2 o’clock and 4 o’clock readings indicating the absence of a liquid film at the upper portion of the 
tubing at the coil outlet.  Temperatures throughout the balance of the coil remained uniform as annular flow was 
visualized.  The higher suction pressure is consistent with our expectations, being higher due to better utilized 
surface area, and as the glass tubing impacted heat transfer.  
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Table 2 VIB Flow Regime Device Fed Glass Evaporator 
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kPa (psi) °C (°F) °C (°F) °C (°F) °C (°F) °C (°F) °C (°F) °C (°F) 
182.7 
(26.5) 

47.78 
(118) 

2.33 (36.2) 1.72 (35.1) 4.06 (39.2) 2.22 (36) 3.61 
(38.5) 

1.22 (34.2) 

186.5 (27) 49.44 
(121) 

6.72 (44.1) 5.89 (42.6) 46.1 (40.3) 3.61 
(38.5) 

2.67 
(36.8) 

2.33 (36.3) 

 
 

In ongoing work, a few observations will receive additional study.  Discharge temperatures and pressures appear to 
be benefited by the ABF/HVFT Flow.  As noted earlier, one of the observations during the visualization was of the 
impact of vapor refrigerant upon the sensing bulb, and that the communication of the vapor refrigerant to the bulb 
was very poor and slowed, causing delayed response during the transient operation of the baseline.  The distributed 
enthalpy affect and the extension of the partial dry-out regime toward the bulb in the form of a liquid film during 
the ABF/HVFT Flow provided better communication to the bulb and minimized feed fluctuation greatly.   
Another significant observation was that during the baseline operation, refrigeration oil was gradually logged near 
the inlet of the evaporator.  The ABF/HVFT Flow regime prevented this oil from building.  
 
Additionally, an observation that will be examined in ongoing work will be the formation of frost, as it formed quite 
differently when the two systems were compared.  The ABF/HVFT Flow provided significantly uniform formation 
when conditions were allowed to cause frost formation.   This observation was not the focus of this paper.  

 
4. ANALYTICAL MODEL 

 
In effort to quantify the benefit seen in increasing the vapor fraction within the evaporator, especially since the 
reduction in enthalpic capacity in light of increased performance can be counter intuitive, the project was undertaken 
to create a theoretical model in which several variables are assumed to be constants for sake of calculation.  An 
evaporator will be calculated for the length necessary to change vapor faction.  R-134a in a straight length of tube 
will be used will be used due to the extensive foundation of data provided in recent technical works.   
 
Flow characteristics and heat transfer coefficients will be adapted over the length of the evaporator.  The evaporator 
will have constant temperature, as well as constant return air temperature.  Also assumed for sake of making the 
point firmly, that entry to this theoretical evaporator is 2.78°C (5°F) sub-cooled.  Superheat will be calculated for the 
baseline model at 5.56°C (10°F). 
 
In the work, Flow Boiling in Horizontal Tubes, 1998, the best heat transfer coefficients for R-134a were calculated 
between thirty percent (30%) and ninety percent (90%) vapor fraction, with the heat transfer coefficient dropping off 
dramatically at ninety-eight percent (98%) vapor.  To pursue this thought fully, VIB flow regime device fed 
evaporator would therefore best calculated to have at entry thirty percent (30%) vapor at a mass velocity indicative 
of annular flow and would sustain the flow regime throughout the evaporator, exiting without superheat, but rather a 
ninety-eight percent (98%) vapor faction in annular flow with partial dry-out.  The evaporative coil is thereby 
transferring heat at its maximum and performing its work over the maximum length of tubing. 
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Theoretical Evaporator Model Assumptions 
§ Evaporating Temperature t1 = 4.44°C (40°F) 
§ Return Air Temperature 18.33°C (65°F)  
§ Refrigerant 134a 
§ Sub-cooling 2.78°C (5°F) 
§ Superheat 5.56°C (10°F) 
§ Mass Flow  1.13 kg/min (2.5 lb/min) 
§ Psat = 341.09 kPa (49.471 psia) 

 

Calculations for Evaporator Tube Length 
 
Since is sub-cooling of 5°F was experienced in the glass evaporator test, assume the liquid R-134a is sub-cooled 
5°F: 
Temp = 40°F - 5°F = 35°F 
Enthalpy h l

35°F  = 23.274 Btu/lb. @ 35°F          
Enthalpy h l

40°F = 24.890 Btu/lb. @ 40 °F 
 
 Q sub-cool = 2.5 (24.890 – 23.274) = 4.04 Btu/min heat required to remove sub-cooling (1) 
 
To find the length of evaporator tubing needed to supply the sub-cooling heat, use the equation 
 
 Q = H1 A1 (?t)                                                                         (2) 
H1 is the inside liquid heat transfer coefficient.  A is the inside area of the evaporator tube in square feet per foot of 
tubing length, and ?t is the log mean temperature difference between the air stream and the refrigerant. 
 
The inside heat transfer coefficient is found from the Dittus and Boelter equation and is equal to 72 Btu per hour per 
sq. Ft. Per degree F. (408.9 W/m2K).  The inside area of an 11mm ID tube is 0.11338ft2/ft of length (0.03456m2/m).  
The following diagram (Table 3) illustrates the sub-cooling path: 
  

 Table 3 - Sub-cooling Log Mean Diagram 

  air Ü  65°F  
 refrigerant 

 35° 
Ú  40°F Ú 

  Ü 50°F  
 
 ? tlm = [(65-40) – (50-35)]/logm(25/15) – 19.6 (3) 

   

 q = 72(0.211338) (19.6) = 160 Btu/hr per foot of tubing (153.8 W per meter of tubing) (4) 

   

Then the length of tubing required to supply the energy to heat the refrigerant from 35°F to 40°F is found as follows: 

   

 Length – 4.04 (60)/160 = 1.52 feet (0.463 m)                                          (5) 

   

Additional Examples of Calculations: 
   

FROM 0.85 TO 0.9 
 Evaporative heat = (2.25-2.125) (84) = 10.5 Btu/min                            (6) 

   

 (744.35) (0.11338) (16.4) = 1384.1 Btu/hr per foot of tubing = 23.07 Btu/min./ft. (7) 
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 10.5 
L = 

23.07 
= 0.46 feet Ù From 0.85 to 0.9 

      

(8) 

   

For 1°F Superheat, t = 40+1 = 41°F 

 Superheat =  cp m(?t) = 0.2182 (2.5) (41-40) = .55 BTU/min.          (9) 
 
 

Table 4 - Superheat Log mean Diagram 

  air Ü  65°F  

refrigerant 

40°F 
Ú 

 
41°F Ú 

  Ü 50°F  
 

 (65-41) - (50 – 40) 
? tlm = 

 
ln ( 24 

10 )   
= 

14 

0.8755 
= 16°F 

 

 

(10) 

 q transferred = hg A(?t)lm = (74.23)(0.11338)(16) = 134.6 Btu/hr.ft. = 2.24 Btu/min per ft. (11) 

   
 .55 

L =  
2.24 

= .25 feet Ù 1°F Superheat 
 

 

(12) 

 
 

Table 5 Theoretical Evaporator Model – Calculated Tube Segments 
 

Refrigerant  
Quality Range 

Length 
of 

Segment 

Total 
Evaporator 

length  

 

Flow*  

(vapor percentage) (feet) (feet) 
Average 

BTU/min/ft 
BTU/min 

/length 
BTU/min 
/length 

Sub-cooled 1.52 1.52 – 4.04  Liquid 
0.0 to 0.1 5.41 6.93 3.88 20.99 Strat-Wavy 
0.1 to 0.3 5.05 11.98 8.31 41.97 Intermittent 
0.3 to 0.8 5.77 17.75 18.19 104.96 Annular 
0.8 to 0.85 0.44 18.19 23.61 10.39 Annular 
0.85 to 0.9 0.46 18.65 23.07 10.61 Annular 
0.9 to 0.98 1.24 19.89 13.51 16.75 Ann/Strat-Wavy w/ dry-out 
10°F Superheat 2.58 22.47 2.13 5.52 Vapor 
Evaporator BTU/min  22.47  211.19  

Table 5 shows the length of each segment required to change the quality of  
refrigerant for the indicated range under the theoretical conditions. 

 
In the conventional way of thinking, it is desirable to have the refrigerant enter the evaporating coil as a sub-cooled 
liquid or as a saturated liquid with 0% vapor. In this extreme way of thinking, it is preferred to have the refrigerant 
enter the coil as a vapor-liquid mixture with around 30 weight percent vapor, and at a mass flow such that annular 
flow prevails. 
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Table 6 Theoretical ABF/HVFT Evaporator Model – Calculated Tube Segments 
 

Refrigerant  
Quality Range 

Length 
of 

Segment 
Total 

Evaporator length Flow*  

 

 
(vapor percentage( (feet) (feet) BTU/min/ft   
0.3 to 0.8 5.77 5.77 18.19 104.96 Annular 
0.8 to 0.85 0.44 6.21 23.61 10.39 Annular 
0.85 to 0.9 0.46 6.67 23.07 10.61 Annular 
0.9 to 0.98 1.24 7.91 13.51 16.75 Ann/Strat-Wavy w/ dry-out 
1°F Superheat .275 8.19 2.24 .616 Vapor 
Evaporator BTU/min  8.19  143.326  

Table 6 shows the length of each segment required to change the quality of  
refrigerant for the indicated range under the theoretical conditions. 

 
Calculations show that for a conventional liquid entering with five degree Fahrenheit (5°F) sub-cooling, it requires a 
total length of 22.47 feet of ½ inch OD tubing to produce a vapor with five degree Fahrenheit (5°F) superheat. An 
ABF/HVFT vapor-liquid mixture of 30% vapor entering the coil requires 8.19 feet of ½ inch OD tubing to produce a 
vapor with one degree Fahrenheit (1°F) superheat. The same total mass flow of 2.5 lb/min of R-134a was used in 
each case. 
 
In the Baseline theoretical case, the total heat required to remove the sub-cooling, for evaporation, and for 
superheating is 12,671 Btu/hr. In the ABF/HVFT case the total heat for evaporation and for superheating is 8,600 
Btu/hr. We can make the following calculations: 
 
 8,895 / 13,007 = 0.67871, or 67.87 %, and (13) 

 8.19 / 22.47   = 0.3644851, or 36.45 % (14) 

 
 
Under the conditions given above, an ABF/HVFT evaporator can transfer 67.87 % of the conventional DX heat load 
with only 36.45 % of the tubing length.   Since the best performance of the coil is found in the segments of the 
evaporator between .3 and .98 (as indicated in Figure 3) with the mass-velocity indicative of annular flow, it is 
desired that the evaporator utilize only this range for optimization.  As visualized in the ongoing glass evaporator 
test, the ABF/HVFT evaporator coil has achieved this.   
 

Figure 3:  Inside Boiling Heat Transfer Coefficient Vs. Vapor Quality 
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5. CONCLUSION 

 
The refrigeration industry has focused upon high side savings for reduction in energy consumption, and has 
addressed air-side concerns in its approach to improve evaporator performance.  The bi-phase region of a 
refrigeration system is not well understood, and advancement in our industry hinges on improvements in this area.  
It is commonly held that the differing heat transfer coefficients of the various possible flow regimes are so similar 
that the small change cannot improve evaporator efficiency.    
 
The ABF/HVFT (Altered Bi-phase) and HVFT (High Vapor Faction and Turbulent) flow at the evaporator inlet and 
extending this flow throughout the evaporator to safely minimize superheat as demonstrated in the ABF/HVFT glass 
evaporator.  Field applications have repeatedly out performed the Baseline DX evaporator as reported in previous 
ASHRAE and IIR work, which has demonstrated that the existing evaporator surface area can repeatedly be utilized 
more efficiently.  While 4% to 6% steady state efficiency improvements have been experienced, transient operation 
demonstrates energy reduction or capacity increase. ABF/HVFT evaporator is a viable means of improving heat 
transfer and overall evaporator efficiency. 
 
 
 
TEST GUIDELINES MET 
All Thermocouples and Sensors are certified as matched, and have been certified together using standards having 
traceability to the NIST and were manufactured in accordance with the guidelines set forth by ISO 9001.  All 
infrared readings were used as confirmation of thermocouple readings and are not reported  
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