
HAL Id: hal-01120274
https://hal.inria.fr/hal-01120274

Submitted on 9 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Chemistry-inspired Programming Model for Adaptive
Decentralised Workflows

Javier Rojas Balderrama, Matthieu Simonin, Cédric Tedeschi

To cite this version:
Javier Rojas Balderrama, Matthieu Simonin, Cédric Tedeschi. A Chemistry-inspired Programming
Model for Adaptive Decentralised Workflows. [Research Report] RR-8691, Université Rennes 1. 2015.
�hal-01120274�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49551057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01120274
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
86

91
--

FR
+E

N
G

RESEARCH
REPORT
N° 8691
February 2015

Project-Teams Myriads

A Chemistry-inspired
Programming Model for
Adaptive Decentralised
Workflows
Javier Rojas Balderrama, Matthieu Simonin, Cédric Tedeschi

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

A Chemistry-inspired Programming Model for
Adaptive Decentralised Workflows

Javier Rojas Balderrama, Matthieu Simonin, Cédric Tedeschi

Project-Teams Myriads

Research Report n° 8691 — February 2015 — 16 pages

Abstract:
In this paper, we devise a chemistry-inspired programming model for the decentralised execution
of scientific workflows, with the possibility of dynamically adapting its shape when its initial
specification fails to reach the user’s requirements or simply to run due to external conditions. We
describe a decentralised architecture to support the model and cover its implementation in the
GinFlow software prototype.

Key-words: Scientific workflows, adaptiveness, Chemical Programming Model

Un modèle de programmation inspiré de la chimie pour des
workflows décentralisés et adaptatifs

Résumé :
Dans cet article, nous présentons un modèle de programmation inspiré par les processus

chimiques pour exécuter des workflows de maniére décentralisée avec la possibilité de modifier
la forme du workflow lorsque le workflow initialement spécifié se montre insatisfaisant pour une
raison quelconque. Nous décrivons une architecture décentralisée pour mettre en œuvre ce modéle
et présentons son implémentation dans le prototype logiciel GinFlow.

Mots-clés : Workflows scientifiques, adapation, modèle de programmation chimique

Chemistry-inspired Adaptive Workflows 3

Contents

1 Introduction 3

2 Programming model 4
2.1 HOCLflow . 5
2.2 Tasks, bindings and dependencies . 6
2.3 Data composition strategies . 7
2.4 Adaptiveness . 10

3 Architecture and implementation 12
3.1 The GinFlow prototype . 13
3.2 Concrete workflow generation and enactment . 14

4 Related work 14

5 Conclusions 15

1 Introduction

In contrast to business workflows, whose outcome is quite predictable, the output of scientific
workflows (and their potential intermediate data) is rather hard to characterise prior to execution.
This uncertainty comes together with the scientist’s requirement to be able to explore different
scenarios during computation time, due to some (possibly unsatisfactory) intermediary result.
Therefore, scientific workflows are meant to support fields where variability is still largely present
during experimentation.

Consequently, a workflow specification language should be able to deal with alternative work-
flow scenarios which will effectively get enabled only if some specific event is detected, such as
a failure or the non-satisfaction of some specific property of some partial data results. This
would provide a new chance to obtain meaningful results without having to start over the whole
workflow enactment. At run time, this alternative workflow should be automatically triggered
by the workflow engine, and in a transparent way for the user.

Another common need is scalability support. Scientists cannot afford being limited by work-
flow engines that may not be able to cope with workflows requiring a high overhead due to
coordination at run time. Most workflow manager systems are centralised, and thus suffer from
all the limitations inherent to it. However, building a decentralised engine raises several chal-
lenges related to the possibility to coordinate tasks together in a transparent way for the user.

In this paper, we tackle the general problems of finding 1) adequate programming abstrac-
tions and 2) system architectures for the development of a decentralised workflow management
system with adaptiveness capabilities. Concretely, we devise the design, programming model
and implementation of a decentralised workflow engine, which makes it possible to update the
workflow while it is running, provided the alternative definitions to replace unsatisfactory/failed
part of the workflow.
Contributions. We formulate a set of programming abstractions using a declarative chemistry-
inspired model. It provides an elegant and concise way of specifying self-adaptive programs
through the higher order (rules injecting new rules at run time) to define a scientific workflow,
the data composition strategies, and the workflow variants declared in case of exceptions. We
define two families of definitions, one for abstract workflows, to use at the user-level; another for

RR n° 8691

4 Rojas Balderrama, Simonin, Tedeschi

concrete workflows, to instantiate the abstract workflow specification and enable the adaptation
rules. Finally, we review the implementation and the software technologies it relies on.
Outline. The rest of the paper is organised as follows. The programming abstractions for an
adaptive decentralised workflow are detailed and exemplified in Section 2. The architecture and
implementation is discussed in Section 3. The closing sections deal with related works, and
conclusions.

2 Programming model

Artificial chemistries [5] provide a programming style based on the chemical metaphor. They have
been shown relevant for the specification of autonomous systems. In such programming models,
data are envisioned asmolecules floating in a chemical solution, and reacting according to reaction
rules (i.e., the program) to produce new molecules (the resulting data). Reactions are conditional,
and take place between a (multi)set of molecules satisfying a reaction condition. This process
continues until no reactions can be performed anymore so the solution is inert. Reactions take
place in an implicitly parallel and autonomous way, and in a non-deterministic order. Formally,
the solution is a multiset of molecules, and the possible reactions between molecules are a set
of rewriting rules on this multiset. The multiset is the unique data structure, and acts similarly
to an address space through which processors can cooperate. In this section, we define a set
of programming abstractions for adaptive decentralised workflows. We present HOCLflow, an
extension of the HOCL language. HOCLflow enhances the original specification with 1) the
support for some data structuring, and 2) macros to improve the clarity and conciseness of the
rules.

Higher-Order Chemical Language (HOCL).

HOCL is a higher-order, rule-based declarative language inspired by a chemical metaphor and
proceeding by state rewriting [1]. In HOCL, a program is a solution (i.e., a multiset) of atoms
A1, . . . , An. An atom can be a constant (integers, booleans, etc); a tuple of atoms e1 : e2 : · · · : en;
a subsolution 〈B1, . . . , Bm〉 of atoms, or a reaction rule. A multiset of atoms is called a molecule.
Note that the solution of a program is the greatest molecule of this program. A possible reaction
rule between elements of the solution is written replace-one P by M if C, where P denotes
the pattern to be satisfied by the molecules and C the condition they must satisfy. If that is
the case, the reaction consumes the rule and the matched molecule, produces M , and inject it
into the solution. A replace-one rule is one-shot: it disappears when it reacts. Its variant
replace P by M if C is n-shot: it is not consumed when it reacts. For instance, consider
a solution which calculates the maximum value out of a given set of numbers. The example
below illustrates the expressiveness and higher order of HOCL, where reactions consume and/or
produce other reaction rules. Let us start with the following simple program:

let max = replace x, y by x if x ≥ y in 〈2, 3, 5, 8, 9,max〉

The max rule consumes two integers x and y when x ≥ y and replaces them by x. Initially,
several such reactions are possible in the provided multiset, max can use any couple of integers
satisfying the condition: 2 and 3, 2 and 5, 8 and 9, etc. We may introduce a higher-order rule to
only obtain the result in the final solution. Note that it is responsible to delete the max rule once
the solution only contains the highest integer value. This introduces the need for sequentiality of
events because we need to wait that all possible application of max to take place before deleting
it. Within the chemical model, the sequentiality is achieved through subsolutions. A rule has to

Inria

Chemistry-inspired Adaptive Workflows 5

wait for its inertia to access a subsolution. In our example, this leads to the encapsulation of the
solution and the following program:

〈〈2, 3, 5, 8, 9,max〉, replace-one 〈max = m,ω〉 by ω〉

The m variable matches a rule named max, and ω matches all the remaining elements. One
possible execution scenario within the subsolution is the following (2 and 8 on one hand, and 3
and 5 on the other hand react first, producing the intermediate state):

〈2, 3, 5, 8, 9,max〉 →∗ 〈3, 5, 9,max〉 →∗ 〈9,max〉

Once the inertia is reached within the subsolution, the one-shot rule is triggered, extracting
the result:

〈〈9,max〉, replace-one 〈max = m,ω〉 by ω〉 → 〈9〉
This fine-grain example shows that HOCL provides the ability to express autonomic coordi-

nation of rules (without necessitating a centralised control). The current state of a computation
is represented by the solution, which constitutes an information system by itself. The multiset
becomes a shared space providing the information required for dynamic coordination, a suited
requirement in a decentralised workflow engine.

2.1 HOCLflow

We here define HOCLflow, an extension of HOCL. The original specification supports natively
very limited data structuring, through subsolutions —hierarchical structuring of unstructured
subsets of elements— and tuples—ordered molecules. Tuples however can only be manipulated
through pattern matching which sometimes leads to complex patterns in the left part of rules
definition. We introduce lists and basic manipulation functions to improve data manipulation
needed between the tasks of a workflow (see Section 2.3). Given a list ` and an element e, we
define the following:

• () is a empty list

• list(e) creates a list containing the element e

• cons(e, `) appends e to the list `

• first(`) returns the first element of `

• rest(`) returns a list whose value is ` without its first element

• nth(`) returns the n-th element of `

We also define the macro construct inject. HOCLflow is designed to make rules easier to read
or write. In other words, it provides syntactic sugar on top of HOCL. This macro adds content
into a solution without having to repeat molecules that appear in both left and right parts of
the rule:

inject M ≡ replace-one ω? by M,ω

When a catalyst T is needed (i.e., an extra molecule participating in the rule activation
without being consumed or modified), the with clause can be added to the inject macro along
with an optional condition C:

inject M with T if C ≡ replace-one T, ω? by M,T, ω if C

where C requires the contents of T to activate the rule (e.g., the if clause on some element in
T). Nonetheless, the with-clause can be used without any conditional when parts of contents of
T are simply present in M .

RR n° 8691

6 Rojas Balderrama, Simonin, Tedeschi

3.01 〈
3.02 T1 : 〈src : 〈〉, srv : s1, in : 〈input〉,dst : 〈T2, T3〉〉,
3.03 T2 : 〈src : 〈T1〉, srv : s2, in : 〈〉,dst : 〈T4〉〉,
3.04 T3 : 〈src : 〈T1〉, srv : s3, in : 〈〉,dst : 〈T4〉〉,
3.05 T4 : 〈src : 〈T2, T3〉, srv : s4, in : 〈〉,dst : 〈〉〉
3.06 〉

Figure 1: Workflow DAG (left), HOCLflow definition (right)

2.2 Tasks, bindings and dependencies

There are two fundamental information without which a workflow would not exist and which are,
consequently, required by any workflow runtime system. Firstly, the binding to actual services
performing the tasks; and secondly, the links connecting these tasks together (e.g., the successors
and predecessors for the task). Let us take a simple workflow example and review its HOCLflow
representation, as illustrated by Figure 1.

A workflow is composed of as many subsolutions as tasks in a DAG definition. Each subso-
lution contains binding information and dependencies for one task. The atom srv declares the
binding to the actual service si. The molecule in : 〈〉 contains the parameters required to invoke
it, and molecules src : 〈〉 and dst : 〈〉 the source and destination dependencies, respectively. For
instance, T2 requires the results of T1 as input, and its results will be sent to T4.

A workflow definition needs to get set into action, since the above HOCL code is a mere
description of what to do (not how to do it). Any workflow engine needs to 1) call services,
and 2) transfer data between them. Rules are re-writers, as previously explained, so they can
change the workflow state expressed by the HOCLflow multiset. The application of such rules
allow us to reflect the completion of a task or the availability of partial results. Hence, rules
should be generic to process any HOCLflow workflow definition. In order to achieve those two
requirements, three generic workflow rules (gw_∗) are defined below:

let gw_setup = replace-one src : 〈〉, in : 〈ωin?〉 (1)
by src : 〈〉, par : `par = list(ωin),res : ()

let gw_call = replace-one src : 〈〉, srv : si, par : `par,res : `res (2)
by src : 〈〉, srv : si, par : rest(`par),

res : cons(invoke(si, first(`par)), `res) if `par 6= ()

let gw_pass = replace Ti : 〈par : `par,res : `res,dst : 〈Tj , ωdst?〉, ωi?〉, (3)
Tj : 〈src : 〈Ti, ωsrc?〉, in : 〈ωin?〉, ωj?〉

by Ti : 〈par : `par,res : `res,dst : 〈ωdst〉, ωi〉,
Tj : 〈src : 〈ωsrc〉, in : 〈`res, ωin〉, ωj〉 if `par = ()

Rule gw_setup detects the readiness of the task (i.e., all dependencies have been satisfied)
through the emptiness of the src : 〈〉 molecule. Upon application, the rule moves the content
from the molecule in : 〈〉 to the atom par as a list of parameters. It also creates the atom res
as an empty list which, later, will contain the results of the service invocation. These molecules
altogether trigger the gw_call which invokes the service implementing the task. After service

Inria

Chemistry-inspired Adaptive Workflows 7

4.01 〈 gw_pass,
4.02 T1 : 〈src : 〈〉, srv : s1, in : 〈input〉,dst : 〈T2, T3〉, gw_setup, gw_call〉,
4.03 T2 : 〈src : 〈T1〉, srv : s2, in : 〈〉,dst : 〈T4〉, gw_setup, gw_call〉,
4.04 T3 : 〈src : 〈T1〉, srv : s3, in : 〈〉,dst : 〈T4〉, gw_setup, gw_call〉,
4.05 T4 : 〈src : 〈T2, T3〉, srv : s4, in : 〈〉,dst : 〈〉, gw_setup, gw_call〉〉

Figure 2: Concrete workflow (abstract workflow + generic workflow rules)

completion, the result is inserted in res. This rule is applied as long as elements are available
in par. At first sight, in : 〈〉 and par seem to be redundant, however, in : 〈〉 is a container for
results received from sources, whereas par is a list buffer of parameters for the invocation of
services. Section 2.3 describes their different purpose and usage in greater detail. In practice,
rules gw_setup and gw_call are used together. They are internal in the sense that they have to
be present in each subsolution (see Figure 2).

Rule gw_pass is responsible for transferring results from a source to forthcoming destinations.
It is global to the workflow because its scope is not limited to one subsolution. Its scope spans
at least two services (one source and one destination). gw_pass is triggered after the result has
been obtained and placed in res. It moves the resulting value from the source as inputs to each
declared destination. Then it updates the sources and destinations to reflect that the dependency
is satisfied. This rule may be triggered as many times as necessary according to all dependencies
defined in molecules src : 〈〉 and dst : 〈〉.

These generic rules constitute a high-level programmatic way to enact a workflow expressed
with HOCLflow. In means that an abstract workflow is changed into a concrete one by adding
these rules. Once the concrete workflow is obtained, it can be run by the HOCL interpreter. The
concrete workflow corresponding to the workflow in Figure 1 is provided in Figure 2.

2.3 Data composition strategies

It is common that a task does not receive a simple result from its sources but a data set. How to
combine the elements of these sets into distinct inputs to the service realising the tasks relies on
composition strategies. In this section, we introduce the HOCLflow mechanisms to process some
of the most common strategies described in literature [10], namely the dot and cross products,
and the input filtering. In the following, let us assume tasks have results provided as lists, for
example, resi = (a0, a1, . . . , am−1), and resj = (b0, b1, . . . , bn−1).

Dot product.

The dot product is the set of ordered pairs (ak, bk) for all k such that 0 ≤ k < min(m,n) from the
resulting combination of the elements of resi and resj represented as lists `i and `j respectively.
Each pair serves as an independent input for the invocation of the service supporting the task.
In HOCLflow, the dot product (dp_∗) can be defined through rules 4 and 5.

let dp_cons = replace src : 〈dot〉, in : 〈`i, `j〉, par : `par (4)
by src : 〈dot〉, in : 〈rest(`i), rest(`j)〉,

par : cons((first(`i) : first(`j)), `par) if `i 6= ()∧ `j 6= ()

RR n° 8691

8 Rojas Balderrama, Simonin, Tedeschi

let dp_setup = replace-one src : 〈dot〉, in : 〈`i, `j〉 (5)
by src : 〈〉,res : () if `i = ()∨ `j = ()

At run time, the rule dp_cons is applied as soon as the required molecules are available.
It creates the pairs for the service invocation in the par atom. This allows the interpreter to
apply the rule gw_call, as many times as necessary—once for each pair. Consequently, the rule
dp_setup can be applied when processed molecules are empty, paving the way for the application
of the gw_call rule with the created pairs, again once for each pair.

Cross Product.

The cross product is the set of all ordered pairs (ak, bl) with 0 ≤ k < m and 0 ≤ l < n. Each
pair serves as an independent input for an invocation of the service supporting the task. In
HOCLflow, the cross product (cp_∗) can be defined through rules 6, 7, 8, and 9.

let cp_init = inject in′ : 〈`backup = `j〉 with in : 〈`i, `j〉 (6)

let cp_cons = replace src : 〈cross〉, in : 〈`i, `j〉, par : `par (7)
by src : 〈cross〉, in : 〈`i, rest(`j)〉,

par : cons((first(`i) : first(`j)), `par) if `j 6= ()

let cp_next = replace src : 〈cross〉, in : 〈`i, `j〉, in′ : 〈`backup〉 (8)
by src : 〈cross〉, in : 〈rest(`i), `backup〉, in′ : 〈`backup〉
if `i 6= ()∧ `j = ()

let cp_setup = replace-one src : 〈cross〉, in : 〈`i, `j〉, in′ : 〈`backup〉 (9)
by src : 〈〉,res : () if `i = ()

The cross product is handled in a way similar to the dot product. Firstly, the cp_init rule
creates a backup copy of the `j list, by injecting a in′ : 〈〉 molecule. This copy is used after each
element in the list `i has been combined with all of the elements in `j , to refill in : 〈〉 so it can be
combined with the next element in `i. Then, cp_cons iterates through `j while the element of `i
is fixed, removing the element from `j at each iteration. Once `j is empty, the rule cp_next can
be applied to refill `j and remove the element of `i that was just processed. The rule cp_setup
has the same role as the homologous rule dp_setup.

Filtering.

A composite result may be composed of several parts having different purposes. In workflows,
this is commonly dealt with through data filtering: when the result reaches one of its destination,
it goes through a filter so only the relevant part in the source is selected. The filtering (df_∗)
can be defined through rules 10 and 11.

let df_init = replace-one src : 〈filter : (Ti : j), ωsrc?〉, in : 〈`i, ωin?〉 (10)
by src : 〈filter : (Ti : j), ωsrc〉, in : 〈ωin〉, in′ : 〈`i〉

let df_step = replace src : 〈filter : (Ti : j), ωsrc?〉, in : 〈ωin?〉, in′ : 〈`i〉 (11)
by src : 〈ωsrc〉, in : 〈nth(j, `i), ωin〉, in′ : 〈`i〉

Inria

Chemistry-inspired Adaptive Workflows 9

6.01 〈 gw_pass,
6.02 T1 : 〈src : 〈〉, srv : s1, in : 〈input〉,dst : 〈T2, T3〉, gw_setup, gw_call〉,
6.03 T2 : 〈src : 〈filter : (T1 : 3), T1〉, srv : s2, in : 〈〉,dst : 〈T4〉,
6.04 df_init, df_step, gw_setup, gw_call〉,
6.05 T3 : 〈src : 〈T1〉, srv : s3, in : 〈〉,dst : 〈T4〉, gw_setup, gw_call〉,
6.06 T4 : 〈src : 〈dot, T2, T3〉, srv : s4, in : 〈〉,dst : 〈〉, dp_setup, dp_cons, gw_call〉〉

Figure 3: Concrete workflow with data pre-processing

At the abstract workflow level, expressing a filter requires adding a molecule filter : (Ti, j)
on src : 〈〉. The subsolution Ti denotes the origin of the composite result, and j gives the
rank of the element needed in `i. Each result can be filtered at several positions, with as many
filter : (Ti, ∗) molecules as necessary to filter `i. The df_init rule isolates the `i list provided a
molecule filter : (Ti, ∗) is found. Note that even if several molecules filter : (Ti, ∗) are present,
performing this isolation once is enough. Then, the rule df_step can be triggered as many times
as necessary to actually keep only the requested parts.

Example.

Let us consider the simple workflow described in Figure 3 to illustrate the building blocks of
our programming model presented above. This workflow has the same structure as the workflow
depicted previously in Figure 1. Its difference stands in the sense that it locally pre-processes
data prior to some of services’ invocation. Specifically, it applies a filter on the result of T1

before submitting it to Service s2. A dot product is also applied on the results of T2 and T3

before invoking T4. Note that only the relevant generic rules were inserted. The details of the
generation of the concrete workflow are described in Section 3. We detail next the execution
of the workflow focusing on the rewriting of the multiset. For the sake of clarity, the generic
rules are omitted in the multiset, so only the abstract workflow is represented. Initially, only the
gw_setup rule is enabled, in subsolution T1. It is triggered to prepare the service invocation. An
atom par is created, rewriting the subsolution T1:

T1 : 〈src : 〈〉, srv : s1, par : (input),dst : 〈T2, T3〉〉

Again, only the gw_call rule can be applied. Triggering it will actually call the service and
inject the result in Subsolution T1:

T1 : 〈src : 〈〉, srv : s1, par : (), res : (res1),dst : 〈T2, T3〉〉

Heretofore, subsolutions other than T1 have been inert: no combinations of molecules in them
could match one rule’s left part. The outside rule gw_pass is now enabled; the results of T1 are
available and they can be sent to its destinations, namely T2 and T3. Note that the gw_pass rule
is triggered twice, once for each destination of T1, adding to in : 〈〉 the respective res1. At this
point, subsolution T1 is inert definitively. All these subsolutions are then updated, reflecting the
transfer and leading to the following multiset:

T1 : 〈src : 〈〉, srv : s1, par : (),res : (res1),dst : 〈〉〉
T2 : 〈src : 〈filter : (T1 : 3)〉, srv : s2, in : 〈res1〉,dst : 〈T4〉〉
T3 : 〈src : 〈〉, srv : s3, in : 〈res1〉,dst : 〈T4〉〉
T4 : 〈src : 〈dot, T2, T3〉, srv : s4, in : 〈〉,dst : 〈〉〉

RR n° 8691

10 Rojas Balderrama, Simonin, Tedeschi

It is now possible to process T2 and T3 in parallel. In T3, rules gw_setup and gw_call can
be triggered, one after another. However, due to the presence of filter : (T1 : 3) inside src : 〈〉,
Rule gw_setup is not enabled in T2 because it requires an empty molecule src : 〈〉. That same
atom will first trigger the df_init and df_step rules, extracting the filtered part of the result. At
the same time, src : 〈〉 is flushed, and a par atom is created. Therefore, the subsolution T2 is
now ready for the application of the rules gw_setup and gw_call:

T2 : 〈src : 〈〉, srv : s2, in : 〈res13〉,dst : 〈T4〉〉

Once gw_setup and gw_call have been applied within subsolutions T2 and T3, gw_pass can
transfer results into in : 〈〉 in T4, as previously from T1 to T2 and T3. Subsolutions T2 and T3

are now definitively inert:

T1 : 〈src : 〈〉, srv : s1, par : (),res : (res1),dst : 〈〉〉
T2 : 〈src : 〈〉, srv : s2, par : (),res : (res2),dst : 〈〉〉
T3 : 〈src : 〈〉, srv : s3, par : (),res : (res3),dst : 〈〉〉
T4 : 〈src : 〈dot〉, srv : s4, in : 〈(res21 : res22), (res31 : res32),dst : 〈〉〉

Now dp_cons can be applied and the pairs are created by its repeated application. Let us
assume, for instance, that the results of subsolutions T2 and T3 are made of two elements each,
denoted res21, res22 and res31, res32 respectively. These results in the subsolution T4 are defined
as following:

T4 : 〈src : 〈dot〉, srv : s4, in : 〈〉, par : ((res21 : res31), (res22 : res32)),dst : 〈〉〉

Once dp_setup has been applied, cleaning src : 〈〉, gw_call is triggered for each pair of par,
invoking s4 twice, and obtaining the two final results. This leads to the final state of all workflow
and an inert multiset.

2.4 Adaptiveness
Exception-handling support during workflow execution is typically managed at infrastructure
level. Autonomic systems adapt to exceptional situations while hiding their intrinsic complex-
ity to users. In scientific workflows, those exceptions (e.g., unavailability, software error or
middleware failures) can be detected by monitoring the execution status of the services and pro-
viding corrective actions using pre-defined policies. An alternative approach in programmatic
environments may be to declare the adaptiveness in an explicit manner. Such a programmatic
adaptiveness provides mechanisms to adapt the workflow itself when facing changing conditions
while letting users the possibility to express the way the workflow enactment evolves. Similarly to
the basic workflow treatment, the user-defined abstract adaptive workflow needs to be extended
becoming a concrete workflow as executable HOCL code.

We identify four steps to implement workflow adaptiveness as an extension of the set of
rules defining the workflow engine. These are: 1) the declaration of alternatives to replace
failing services 2) the identification of the exception, 3) the propagation of the exception to the
concerned dependent services, and 4) replacement of concerned services with their equivalent,
replacement services. The user is responsible for the inclusion of an alternative scenario in
the workflow definition. An alternative workflow excerpt must be either a simple service or a
composite service, but with only one exit route. This condition is set to avoid incoherent states
during the enactment. A workflow example illustrating the adaptiveness is given in Figure 4.

The adaptation strategy is declared in an abstract workflow by defining the subsolution(s) as-
sociated with the alternative service(s). The main idea is to rely on an inline rule that, combined

Inria

Chemistry-inspired Adaptive Workflows 11

T1

T2

T3

T1

T4

T3

7.01 〈 T1 : 〈src : 〈〉, srv : s1, in : 〈input〉,dst : 〈T2〉〉,
7.02 T2 : 〈src : 〈T1〉, srv : s2, in : 〈〉,dst : 〈T3〉〉,
7.03 T3 : 〈src : 〈T2〉, srv : s3, in : 〈〉,dst : 〈〉〉,

7.04 T4 : 〈src : 〈T1〉, srv : s4, in : 〈〉,dst : 〈T3〉〉,
7.05 inject trigger : T4,bond : 〈(T1 : T3)〉
7.06 with T2 : 〈res : (ωres), ω2〉 if ωres = failed 〉

Figure 4: Adaptiveness: Schema (left) and abstract workflow (right)

with the replacing service(s), starts the adaptive process. This rule includes the atoms trig-
ger and bond defining the replacement, the new bindings between services, and the exception
condition. It is applied as soon as the propagation of an exception is detected. Atoms trigger
and bond can be seen as special meta-clauses that will be replaced, during the generation of the
concrete workflow out of the abstract one, with parametric rules to be enacted if the alternate
workflow needs to get started. The trigger atom refers to the alternative services that may be
used in case of another service raises an exception. The bond atom should specify where the
adaptiveness needs to get propagated, so as to link the new dependencies (i.e., recreating the
chemistry bonds between subsolutions). The inline rule has to declare as many atoms of type
bond as dependencies are declared in the sources and destinations of the related subsolutions.
This is all the information users need to define.

Let us review the workflow adaptiveness generic or generated rules (wa_∗) that will be added
to the user-defined workflow so as to enable the exception handling with high-level definition
prior to execution. They are defined below:

let wa_init = inject dst′ : 〈〉 (12)

let wa_pass = replace Ti : 〈par : `par,res : `res,dst : 〈Tj , ωdst?〉,dst′ : 〈ωdst′?〉, ωi?〉,
Tj : 〈src : 〈Ti, ωsrc?〉, in : 〈ωin?〉, ωj?〉

by Ti : 〈par : `par,res : `res,dst : 〈ωdst〉,dst′ : 〈Tj , ωdst′〉, ωi〉,
Tj : 〈src : 〈ωsrc〉, in : 〈`res, ωin〉, ωj〉

if `par = ()∧ failed /∈ `res (13)

let wa_update-srcij = replace-one src : 〈Ti, ωsrc?〉 by src : 〈Tj , ωsrc〉 (14)

let wa_update-dstij = replace-one dst : 〈ωdst?〉,dst′ : 〈Ti, ωdst′?〉 (15)

by dst : 〈Tj , ωdst〉,dst′ : 〈ωdst′〉

let wa_trigger-dstkij = replace-one Tk : 〈ωk?〉 (16)

by Tk : 〈wa_update-srcij , ωk〉

let wa_trigger-srckij = replace-one Tk : 〈ωk?〉 (17)

by Tk : 〈wa_update-dstij , ωk〉

RR n° 8691

12 Rojas Balderrama, Simonin, Tedeschi

The wa_init rule injects, into each subsolution, the dst′ : 〈〉 molecule. This molecule acts as
a supplementary holder of sources identified as having an alternative service in case of exception.
Then the wa_pass rule, an extended version of its gw_pass analogous, not only transfers results
from sources to destinations when the service invocation is achieved properly, but also updates
all dependencies associated to the service. It replaces the service with the alternative declared
in the excerpt associated to the workflow adaptiveness.

Rules wa_update-∗ and wa_trigger-∗ represent the core instrumentation of the workflow adap-
tiveness. Unlike all previous rules, this set of rules is parametric; they incorporate, in their defini-
tion, variables indexed i, j, k to refer to the involved subsolutions. They are generated specifically
for each workflow based on the definition of the abstract workflow. Rules wa_update-∗ update
the dependency bindings of the subsolutions changing the contents of sources and destinations.
The wa_update-srcij rule updates the source Ti with the alternative Tj in all subsolutions con-
taining this dependency. In the same way, wa_update-dstij replaces the old references of the
destination Ti with the value Tj .

Finally, rules wa_trigger-∗, which take advantage of the high-order properties, adapt the
workflow definition, enabling the new subsolution as a proper part of the workflow. The
wa_trigger-dstkij rule amends the contents of subsolution Ti containing Tk as part of their
destinations with the new reference Tj . This process resets the inert status of already invoked
services, by forcing to transfer its results to their newly added destinations, as defined in Rule
wa_pass. In a similar way, the wa_trigger-srckij rule removes the references to the services
which raised an exception, replacing them by the alternative subsolution. Following the example
of Figure 4, the resulting concrete workflow will include the following excerpt:

T4 : 〈src : 〈T1〉, srv : s4, in : 〈〉,dst : 〈T3〉,wa_init, gw_setup, gw_call 〉
inject wa_trigger-dst324,wa_trigger-src124

with T2 : 〈res : (ωres), ω2〉 if ωres = failed

At time of concretisation, the subsolution and the inline adaptive rule will be used to generate
the following set of rules:

let wa_trigger-dst324 = replace-one T3 : 〈ω3?〉 by T3 : 〈wa_update-src24, ω3〉
let wa_trigger-src124 = replace-one T1 : 〈ω1?〉 by T1 : 〈wa_update-dst24, ω1〉
let wa_update-src24 = replace-one src : 〈T2, ωsrc?〉 by src : 〈T4, ωsrc〉
let wa_update-dst24 = replace-one dst : 〈ωdst?〉,dst′ : 〈T2, ωdst′?〉

by dst : 〈T4, ωdst〉,dst′ : 〈ωdst′〉

In general, a failing service may be replaced with another equivalent service (or set of ser-
vices). This replacement does not require any extra runtime procedures at the system level. The
parametric rules define all the actions to be taken (provided an HOCLflow interpreter). The final
definition of the adaptive workflow does not modify the original workflow definition. All the
complexity of the enactment instrumentation is also hidden from the user.

3 Architecture and implementation
In this section, we describe the design principles of GinFlow, the software prototype developed
to implement the proposed programming model in a decentralised fashion. As we explained
previously, decentralisation is one of our main motivations. The architecture proposed takes its
roots in [6], and relies on a shared-space based coordination model, as depicted in Figure 5. We
assume each service is deployed and encapsulated into a Service Agent (SA). SAs communicate

Inria

Chemistry-inspired Adaptive Workflows 13

Figure 5: A decentralised workflow execution environment

Figure 6: Ginflow decentralised architecture

through the shared space, which contains a description of (the state of) the workflow. This
description is assumed to reflect the progress of the workflow, in particular completed tasks, and
available input data. Each SA can rely on the space to act. The service agents execute one task,
and take part in the coordination by reading and writing the shared space. Doing so, they notify
when agents of subsequent executions can start (provided other incoming dependencies have also
been satisfied).

3.1 The GinFlow prototype

Figure 6 shows a logical view of the GinFlow architecture. As mentioned before, the initial
workflow is described as an HOCL program. The shared space is implemented through the
multiset containing it. To implement the SAs, GinFlow depends on a set of HOCL interpretors
acting as co-engines and a set of workers responsible for the actual execution of services. GinFlow
may deploy as many co-engines as tasks in the workflow. Each co-engine concurrently read the
multiset to collect (and copy locally) the status of the workflow. Each embedded HOCL engine
can therefore detect if some process is needed.

For instance, when a dot product is computed on a co-engine, it iterates over the inputs
as shown in Section 2.3 and produces a list of parameters. Then, it triggers the execution of

RR n° 8691

14 Rojas Balderrama, Simonin, Tedeschi

the service, wrapped in one or several workers in parallel, depending on the size of the input
parameters list. In other words, each time the gw_call rule is triggered, a new worker receives
work. Finally, the co-engine collects the results and pushes them back, along with the adapted
HOCL description of the new workflow status, into the shared multiset. The co-engines lay at
the interface between the HOCL domain and the services. They act as local coordinators for the
execution of the HOCL service described in the multiset through the workers. These workers
are generic in the sense of execution because they can call different implementations (SOAP,
REST, binaries, etc). They are handled through a common abstraction layer. Moreover they
are lightweight, stateless and fully decoupled from the other components of the architecture. In
the current implementation, the HOCL core language, and the messaging protocol inherent to
the distributed nature of the implementation are independent modules. GinFlow relies on the
ActiveMQ middleware to implement the communications between the multiset and the HOCL
engines (i.e., the gw_pass rule is implemented through ActiveMQ queues).

3.2 Concrete workflow generation and enactment
Section 2.1 describes how abstract workflows are translated into concrete workflows prior to
execution. The user only has to specify the source and destination for each service. The pre-
processing phase will generate what is needed for the workflow to run correctly (passing molecules
from one service to another, iterating over the inputs, and so on). Thus the compilation of an
HOCLflow workflow follows a pipeline of operations that consists in 1) parsing the abstract
description and adding the generic rules allowing service invocation, data pre-processing and
transfer, 2) generating the concrete rules from meta-molecules (e.g bond and trigger), and 3)
issuing the resulting workflow to the HOCLflow compiler.

The pre-processing steps (1) and (2) parse the input abstract workflow and add the relevant
rules to the workflow. Following the same principle, specific rules supporting the adaptiveness are
hidden from the user (see Figure 4). In order to implement this process, we rely on a mechanism
similar to the one which enables the molecule transfer between services (using the gw_pass rule).
Such communications between HOCL entities make use of the publish/subscribe capabilities of
the ActiveMQ broker. Figure 7 illustrates the enactement of the adaptiveness process. When a
service/co-engine detects a failure, it injects the updates rules in the subsolution of the common
output Tout and in the sources Tin at runtime. As discussed in Section 2.4, the workflow will
resume automatically.

4 Related work
In contrast to classical workflow manager systems, approaches using the chemical metaphor [2,
4, 9] envisage the workflow execution as an autonomous process evolving in time according to
the requirements and dependencies without bounding to any preset constraint. For instance,
the work presented in [8] represents the enactment as an abstract coordination modelling which
identify different levels of the workflow definition process: an abstract workflow that expresses
the logic, and a concrete workflow where logical entities are assigned to resources for execution.
They propose a uniform declarative formalism to describe workflows and coordination strategies.
However, they do not exploit higher-order constructs nor envisage full dynamicity at runtime to
support complex mechanisms such as fault-tolerance.

Another chemical model [2] defines a general workflow notation, including common workflow
constructs, separating data and control flow. This formalisation pays special attention to the
resource instrumentation through its identifiers to ensure dynamic coordination. However, they
do not address a decentralised execution. In the same direction, a service-based application

Inria

Chemistry-inspired Adaptive Workflows 15

Figure 7: Adaptiveness implementation

is introduced in [4], modelling the process of associating service functionalities with required
conditions as an evolving and always running middleware mechanism. They underline the support
of environmental changes by taking into account QoS requirements. Both approaches show the
interest of tackling, at the workflow definition level, the adaptation of the service instantiation,
but they do not associate that adaptation to the semantics of the workflow definition.

Our architectural approach takes its roots in the work presented in [6]. Nevertheless, that
previous work does not address data iteration strategies, and neither does adaptiveness. The
GinFlow prototype also leverages workers for task parallelism, thus boosting its scalability in
contrast to the implementation presented in [6].

Most of workflows manager systems initiatives achieve the required enactment flexibility by
means of the infrastructure (e.g., re-submissions strategies [7], pilot jobs [3]). On the other hand,
Tolosana-Calasanz et al. [12] propose an adaptive exception handling for scientific workflows at
definition level. Their work proposes two patterns to manage the exception handling based on
the Reference Nets-within-Nets formalism: propagation and replacement. In spite of mechanisms
for dynamically adapting the workflow structure at runtime without having to be aware of the
underlying infrastructure, the resulting representation with their reference model suggests a quite
complex workflow definition, where the original scenario and the alternative path are mixed.

5 Conclusions

In this paper, we have presented a set of programming abstractions based on a chemical metaphor
to express data-driven workflows. We introduced an extension of the HOCL language aiming at
easing the development of such programs. We have shown how to, out of the mere description
of the workflow, it can get enabled in a decentralised environment. Also, we devised a set of
abstractions (and their implementation) to automate exception-handling, guided by the user at
design time. The GinFlow prototype is currently under development and testing. In parallel to
this work, the GinFlow prototype is currently integrated to the TIGRES workflow tools [11].

RR n° 8691

16 Rojas Balderrama, Simonin, Tedeschi

References
[1] J.-P. Banâtre, P. Fradet, and Y. Radenac. Generalised multisets for chemical programming.

Mathematical Structures in Computer Science, 16(4):557–580, 2006.

[2] M. Caeiro, Z. Németh, and T. Priol. A chemical model for dynamic workflow coordination.
In 19th Euromicro International Conference on Parallel, Distributed and network-based Pro-
cessing, PDP 2011, Ayia Napa, Cyprus, February 2011.

[3] A. Casajus, R. Graciani, S. Paterson, and A. Tsaregorodtsev. DIRAC pilot framework and
the DIRAC workload management system. Journal of Physics: Conference Series, 219(6),
2010.

[4] C. Di Napoli, M. Giordano, Z. Németh, and N. Tonellotto. Adaptive instantiation of service
workflows using a chemical approach. In 16th International Euro-Par Conference on Parallel
Processing, Euro-Par 2010, Ischia, Italy, August 2010.

[5] P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial chemistries—A review. Artificial Life,
7(3):225–275, 2001.

[6] H. Fernández, C. Tedeschi, and T. Priol. Rule-driven service coordination middleware for
scientific applications. Future Generation Computer Systems, 35:1–13, 2014.

[7] D. Lingrand, J. Montagnat, and T. Glatard. Modeling user submission strategies on pro-
duction grids. In 18th ACM International Symposium on High Performance Distributed
Computing, HPDC’09, Munich, Germany, June 2009.

[8] Z. Németh, C. Pérez, and T. Priol. Workflow enactment based on a chemical methaphor. In
3rd IEEE International Conference on Software Engineering and Formal Methods, SEFM’05,
Koblenz, Germany, September 2005.

[9] Z. Németh, C. Pérez, and T. Priol. Distributed workflow coordination: molecules and
reactions. In IEEE IPDPS, Rhodes Island, Greece, April 2006.

[10] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow environment for the life
sciences. Concurrency and Computation: Practice and Experience, 18(10):1067–1100, 2006.

[11] J. Rojas Balderrama, M. Simonin, C. Morin, H. Valerie, L. Ramakrishnan, A. Deborah,
and C. Tedeschi. Combining Workflow Templates with a Shared Space-based Execution
Model. In 9th Workshop on Workflows in Support of Large-Scale Science, pages 50–58, New
Orleans, USA, November 2014.

[12] R. Tolosana-Calasanz, J. A. Bañares, O. F. Rana, P. Álvarez, J. Ezpeleta, and A. Hoheisel.
Adaptive exception handling for scientific workflows. Concurrency and Computation: Prac-
tice and Experience, 22(5):617–642, 2010.

Inria

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

