
HAL Id: hal-01120558
https://hal.inria.fr/hal-01120558

Submitted on 26 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the Use of Slicing-based Visualizing
Techniques on the Understanding of Large Metamodels
Arnaud Blouin, Naouel Moha, Benoit Baudry, Houari Sahraoui, Jean-Marc

Jézéquel

To cite this version:
Arnaud Blouin, Naouel Moha, Benoit Baudry, Houari Sahraoui, Jean-Marc Jézéquel. Assessing the
Use of Slicing-based Visualizing Techniques on the Understanding of Large Metamodels. Informa-
tion and Software Technology, Elsevier, 2015, 62, pp.124 - 142. �10.1016/j.infsof.2015.02.007�. �hal-
01120558�

https://hal.inria.fr/hal-01120558
https://hal.archives-ouvertes.fr

Assessing the Use of Slicing-based Visualizing Techniques
on the Understanding of Large Metamodels

Arnaud Blouina, Naouel Mohab, Benoit Baudryc, Houari Sahraouid, Jean-Marc Jézéquele

aINSA Rennes, IRISA / Inria, Diverse Team, Rennes, France
bUniversity of Québec at Montréal, Montréal, Canada

cInria, IRISA / Inria, Diverse Team, Rennes, France
dUniversity of Montréal, GEODES Group, Montréal, Canada

eUniversity of Rennes 1, IRISA / Inria, Diverse Team, Rennes, France

Abstract

Context. Metamodels are cornerstones of various metamodeling activities. Such activities consist of, for instance, transforming
models into code or comparing metamodels. These activities thus require a good understanding of a metamodel and/or its parts.
Current metamodel editing tools are based on standard interactive visualization features, such as physical zooms.
Objective. However, as soon as metamodels become large, navigating through large metamodels becomes a tedious task that hinders
their understanding. So, a real need to support metamodel comprehension appears.
Method. In this work we promote the use of model slicing techniques to build interactive visualization tools for metamodels. Model
slicing is a model comprehension technique inspired by program slicing. We show how the use of Kompren, a domain-specific
language for defining model slicers, can ease the development of such interactive visualization features.
Results. We specifically make four main contributions. First, the proposed interactive visualization techniques permit users to focus
on metamodel elements of interest, which aims at improving the understandability. Second, these proposed techniques are developed
based on model slicing, a model comprehension technique that involves extracting a subset of model elements of interest. Third, we
develop a metamodel visualizer, called Explen, embedding the proposed interactive visualization techniques. Fourth, we conducted
experiments. showing that Explen significantly outperforms EcoreTools, in terms of time, correctness, and navigation effort, on
metamodeling tasks.
Conclusion. The results of the experiments, in favor of Explen, show that improving metamodel understanding can be done using
slicing-based interactive navigation features.

Keywords: Model-Driven Engineering, Metamodel, Class Diagram, Visualization, Human-Computer Interaction, Model Slicing

1. Introduction

The fundamental idea of Model-Driven Engineering (MDE)
is to consider models as first-class entities. A model conforms
to a metamodel that describes the concepts and relationships of
a given domain. Metamodels, usually represented graphically as
class diagrams, are thus cornerstones of various metamodeling
activities. Such activities consist of, for instance, transforming
models into code, creating editing tools for a metamodel, or
comparing metamodels. These activities thus require a good un-
derstanding of a metamodel and/or its parts. Understanding meta-
models mainly consists of understanding the relations between
classes of interest by navigating between them through their
inheritance or reference relations. The current mainstream meta-
model editors, such as EcoreTools provided by the Eclipse
Modeling Framework (EMF)1, however, only offer basic inter-
active features to navigate through metamodels (physical zoom,

Email addresses: ablouin@irisa.fr (Arnaud Blouin),
moha.naouel@uqam.ca (Naouel Moha), bbaudry@inria.fr (Benoit
Baudry), sahraoui@iro.umontreal.ca (Houari Sahraoui),
jezequel@irisa.fr (Jean-Marc Jézéquel)

1http://www.eclipse.org/modeling/emf/

scroll bars, etc.). Physical zooms are used to change the size of
metamodels’ elements, scroll bars are used to navigate from one
class to another one, and several filters permit hiding classes or
relations. Although MDE promotes the separation of concerns
that should limit the size of metamodels by decomposing them
into small ones, empirical evidence shows that many of them are
large. An empirical study we conducted on 3462 well-formed
Ecore domain metamodels we gathered from the github platform
highlighted that: 82 % of the studied metamodels are composed
of a single package, the mandatory root package; 15 %, i.e. 508,
of these metamodels are composed of 40 classes or more. As
soon as metamodels become large, understanding and manip-
ulating metamodels becomes a tedious task using these basic
interactive features. For instance, Figure 1 is an overview of
the UML metamodel [1] obtained using the physical zoom of
EcoreTools. Many classes are gathered and reduced so that
identifying one class or its relations with other ones becomes
awkward. As noticed by Zhao et al., "while node-link diagrams
show nesting structure very clearly, they use screen space ineffi-
ciently, and do not scale well to large datasets" [2].

Preprint submitted to Information and Software Technology February 20, 2015

http://www.eclipse.org/modeling/emf/

Figure 1: Bird view of the UML metamodel using EcoreTools (246 classes and 769 relationships)

When modelers are interested only in a specific part of a meta-
model, they may want to focus on it by, for instance, hiding the
rest of the metamodel. For instance, for the visualization of a
metamodel, a modeler may be interested in semantic relation-
ships between classes such as: the inheritance tree of a given
class; the classes linked by a composition reference to a given
class. As motivated by Fondement et al., "by indicating formally
the subset of the metamodel that is actually covered, a tool could
be made more precise regarding handled model" [3]. With the
current editors, modelers are forced to manually and astutely
combine sequences of filtering and navigation primitive opera-
tions to rebuild these parts of interest. This manual exploration
task may be time-consuming and error-prone. So, a real need to
support metamodel comprehension appears.

Visualization techniques are broadly used in software engi-
neering and have proven their usefulness for software compre-
hension and in particular, interactive visualization that provides
meaningful navigation capabilities [4]. Gračanin et al. summa-
rized the benefits in terms of comprehension brought by software
visualization to different domains such as software evolution,
software security, and data mining [5]. Previous works on UML
class diagrams highlight the research interest on improving the
understanding of class diagrams [6, 7, 8]. These works mainly
focus on proposing new algorithms and methods for minimizing
relations crossing [9, 10, 11] or guidelines for drawing class
diagrams [12, 13]. Other research works proposed to repre-
sent class models differently than using class diagrams [14]
or in 3D [15, 16, 17]. In this work we focus on metamodeling
tasks that modelers perform while handling metamodels. More
precisely, we consider how to produce interactive visualization
features dedicated to metamodels rather than the rendering of
metamodels. We also keep the focus on the class diagram repre-
sentation promoted and widely-used within the MDE commu-
nity. We specifically propose four main contributions. First, we
propose interactive visualization techniques that permit users
to focus on metamodel elements of interest. These techniques
aim at improving the understandability of metamodels. Second,
these proposed techniques are developed based on model slic-
ing [18, 19]. Model slicing is a model comprehension technique
inspired by program slicing [20]. The process of model slicing

involves extracting a subset of model elements of interest. We
show how the use of Kompren, a domain-specific language for
defining model slicers [18, 19], can ease the development of such
interactive visualization features. Third, we develop a metamodel
visualizer, called Explen, embedding the proposed interactive
visualization techniques. Fourth, we conducted an empirical
study to measure the possible benefits, in terms of time, cor-
rectness, and navigation effort, when performing metamodeling
tasks using Explen compared to the mainstream metamodel-
ing tool EcoreTools. This study exhibits significant positive
results for Explen regarding both time (30 % better in favor of
Explen), correctness (22 % better in favor of Explen), and
navigation effort (50 % better in favor of Explen). This work
is the first step towards generalizing the proposal to any kind of
models represented with a graphical syntax. It aims at validating
the benefits of the proposal on metamodels to then, in future
work, consider models in general.

This paper extends our work published at VISSOFT 2014
(New Ideas or Emerging Results Track) [21] with an empirical
study, an exhaustive study of the related work, and more details
explaining the proposed interactive visualization features.

The paper is organized as follows. Section 2 motivates this
work by presenting a scenario that highlights the need for inte-
grating interactive visualization features within graphical model-
ing tools. Section 3 describes how model slicing can be leveraged
to develop interactive visualization techniques for the visualiza-
tion of large metamodels. Section 4 details the experimental
design. Section 5 analyses and comments the results of the con-
ducted experiments. The paper ends with the related work in
Section 6 and the conclusion in Section 7.

2. Motivating Scenario

We motivate the need for integrating interactive visualization
features within graphical modeling tools based on the following
common scenario.

Scenario. A modeler has to write a model transformation that
generates Java code from UML 2.0 models. The modeler has
already a rough idea of the main classes required for the trans-
formation: Association, Class, Package, Parameter, Property,

2

Figure 2: Physical zoom on the UML class Class

and Operation. However, before writing the transformation, the
modeler needs to have a clear and precise understanding of how
these classes are organized within the UML metamodel and iden-
tify the properties and operations required for the transformation.
To acquire this understanding, the modeler visualizes the UML
metamodel using, for example,EcoreTools1 of EMF (Eclipse
Modeling Framework, a broadly used modeling tool). The visu-
alization of the whole UML metamodel is not a great help to her:
as illustrated in Figure 1, the UML metamodel is overcrowded
because of its 246 classes and 769 relationships (association,
composition, inheritance) contained into a single root package.
Yet, the modeler navigates and explores the UML metamodel
to precisely identify classes and elements (properties and opera-
tions) required for her transformation. The following tasks are
examples of such a process of navigation and exploration:

Task 1. The modeler uses the physical zoom of the editor to
focus on classes related to Class as depicted in Figure 2. Since
classes directly linked to Class do not appear in the zoomed
view, and a high number of relationships are tangled, the interest
of this view is limited for the modeler. A zoom out of this view
will gather too many classes and the view will still be unreadable
such as in Figure 1.

Task 2. The modeler explores the inheritance relationships of
Class to see all elements that may be inherited in Class. However,
this task is quite difficult because of the tangled relationships and
the high number of classes that hinder the visibility. Moreover,
the multiple inheritance of several UML classes complicates
the navigation within the inheritance tree of Class. Using the

tree view of the editor’s outline, the modeler can find the super-
classes of Class. For example, the inheritance tree of Class is
composed of 17 inheritance relations. To get all the inherited
properties of Class, the modeler needs to navigate through each
of these classes. The modeler may also use the documentation
(e.g. the JavaDoc corresponding to the metamodel under study)
to explore the inheritance relationships. This, however, forces
the modeler to jump between different representations.

Task 3. The modeler starts to slice the UML metamodel (i.e.
hide UML elements) to obtain a reduced view of the UML meta-
model that contains only relevant classes for her transformation.
The modeler performs this slicing using the filtering and navi-
gation capabilities of EcoreTools. The navigation capability
allows the modeler to restore related elements while the filtering
capability allows the modeler to hide elements. For instance, the
filter Hide Selection enables the modeler to hide all the selected
elements; the filters Hide Inheritance Relations and Hide Ref-
erence Relations allow the modeler to hide, respectively, all the
inheritance and reference links in the current entire metamodel
(but not for a selected element). After having sliced manually
one by one the 216 classes of the metamodel not concerned by
the transformation, the modeler finally obtains a subset of the
UML metamodel that contains the 30 relevant classes for her
transformation.

3

3. Leveraging Model Slicing for Developing Metamodel Vi-
sualization Techniques

3.1. On the benefits of model slicing to build filtering features
Ideally, the modeler would have preferred to obtain the re-

duced views in a more straightforward way instead of astutely
combining the editor’s filtering and navigation capabilities. If
the editor had provided a filtering capability to show only classes
directly linked to a selected class, Task 1 might have been easier.
A similar filtering capability for the inheritance relationships
might have eased Task 2. Regarding Task 3, a more complex fil-
tering capability that combines the two previous ones might also
have been useful for the modeler. Such interactive visualization
features would: permit users to focus on the metamodel elements
of interest by hiding the other ones; minimize edge crossings
identified as an impacting factor on the cognitive load [22]. So,
modelers may want dynamic queries [23] to quickly focus on
their interests by eliminating unwanted elements.

Model slicing is a model comprehension technique inspired by
program slicing. The process of model slicing involves extracting
a subset of model elements that represent a model slice. The
model slice may vary depending on the intended purpose. For
example, when seeking to understand a large metamodel, it may
help to extract the sub-part of the metamodel that includes only
the dependencies of a particular class. In the following section,
we present the notion of model slicing. Then, we introduce the
slicing-based interactive visualization features we designed for
exploring metamodels. We detail how these features can be
developed using model slicing techniques. We also illustrate
how the scenario of the previous section can be done using
Explen.

3.2. Background on Model Slicing

Model Slicer
Model
MSM

Input
Metamodel

Model Slicer
MetaModel

MSMMEcore

Model Slicer
Function

MSF

Input
Model

Slice of
Model

Kermeta
Legend

conforms to

inputs for slicer
generation

automatically
generated

slicer's input / output

uses

Domain
Expert

Domain
User

slicer compiler

Figure 3: Overview for Modeling Model Slicers with Kompren, from [18]

In our previous work we proposed Kompren, a domain-
specific modeling language to define model slicers for a par-
ticular domain [18, 19]. For instance, if a developer wants to
slice specific elements of UML models, she may use Kompren
as described as follows. The developer first uses the Kompren
language to select the elements of interest from the UML meta-
model (captured in the UML.ecore model). That will lead to

the creation of a Kompren model slicer. This model is then
compiled into an executable Java program that can slice UML
models as specified in the Kompren model slicer. More gen-
erally, Figure 3 provides an overview of the Kompren pro-
cess to define model slicers. All the concepts and relations of
Kompren are captured in the model slicer metamodel (MSMM
at the top of Figure 3). A model slicer model (MSM) expressed
with Kompren refers to a set of classes and relations from the
input metamodel (in our case, an Ecore model1). Instances of
the referenced classes and relations will be selected for slicing
the input model. The MSMM also points to Kermeta 32 [24],
an action language used, in our case, to specify the behavior
of a slicer. Kompren’s compiler processes an MSM defined
for an input metamodel and automatically generates a model
slicer function (MSF). The generated MSF consists of a Java ex-
ecutable program (Kermeta programs are compiled into Java).
It takes as input an input model (instance of the input metamodel)
and slicing criteria. Slicing criteria are model elements from the
input model that provide entry points for extracting a model slice.
The execution of a MSF consists of exploring the input model
from model elements given as input (the slicing criteria). Each
of these elements is visited. Visiting model elements (classes,
properties, etc.) consists of executing the associated behavior, i.e.
the corresponding Kermeta expression defined by the domain
expert in the MSM. Each selected property of the current visited
class instance is then explored to recursively explore their target
class instance. At then end of the slicing process, a subset of
model elements is then obtained.

3.3. Explen: a Kompren-Based Metamodel Visualization Tool
As detailed in the previous section, model slicing permits to

extract subsets from models. From a visualization perspective,
model slicing can be thus used to develop filtering-based visual-
ization techniques, usually called dynamic queries [23]. We used
Kompren to develop such techniques to visualize metamod-
els. We develop a metamodel visualization tool, called Explen,
embedding dedicated visualization techniques we developed us-
ing Kompren. In this section, we first detail the development
process for developing interactive visualization features based
on Kompren. We then introduce Explen and its visualization
techniques dedicated to metamodels.

3.3.1. Development Process
The slicing-based interactive visualization techniques embed-

ded in Explen have been developed using Kompren. The use
of Kompren within Explen is depicted in Figure 4 and can be
applied to any Java metamodel visualizer. Developers defined
a Kompren model slicer dedicated to slice Ecore metamod-
els (a language for defining metamodels, depicted in Figure 5).
Listing 1 details the code of the developed model slicer, called
MetamodelSlicer (line 1). Lines 2 and 3 specifies the input meta-
model to consider. Line 4 defines that this slicer will take as input
instances of the Ecore class EClass. The rest of the code and the
Ecore metamodel are explained throughout the next section that

2http://www.kermeta.org/

4

http://www.kermeta.org/

Kompren
Model
Slicer

Ecore

Explen
Java

Model
Slicer

Compiled into

Visualizes metamodels
defined using

Based on

Uses

Figure 4: The use of Kompren within Explen

introduces the interactive visualization features. The Kompren
model slicer is then compiled into a Java library to be integrated
into Explen. This integration consists of binding the user inter-
face of Explen to the model slicer. For instance with Explen,
Figure 6 depicts the menu that appears when right-clicking on a
class. The widgets of this menu permit to parameterize and call
the Kompren model slicer. Once a slicing process is launched,
the user interface can be notified about the metamodel elements
to hide or show. Explen3 provides a 2D view of the metamodel
under study (see Figure 11). Explen has been developed in
Java using the Malai architectural design pattern dedicated to
the development of highly interactive systems [25, 26].

EAttribute

EClass
abstract : EBoolean
interface : EBoolean

EClassifier

EModelElement

ENamedElement
name : EString

EOperation

EPackage

EParameter

EReference

containment : EBoolean

EStructuralFeature

ETypedElement
lowerBound : EInt
upperBound : EInt

eSuperTypes 0..*
eStructuralFeatures
0..*

ePackage

0..1

eParameters 0..*

eClassifiers
0..*

eSubpackages 0..*

eOperation 0..1

eOpposite
0..1

eContainingClass

0..1

eType
0..1

Figure 5: An excerpt of the Ecore metamodel used as the input metamodel for
building the model slicer used within Explen

3Explen is freely available at the following address: https://github.
com/arnobl/kompren/wiki.

1 slicer MetamodelSlicer {
2 domain: "platform:/plugin/org.eclipse.emf.ecore/
3 model/Ecore.genmodel"
4 input: ecore.EClass
5 radius: ecore.EClass
6 slicedClass: ecore.ENamedElement
7 slicedClass: ecore.EStructuralFeature feat
8 constraint: card1 [[feat.lowerBound>0]]
9 slicedClass: ecore.EReference ref

10 constraint: composition [[ref.containment]]
11 slicedProperty: ecore.EClass.eSuperTypes option
12 slicedProperty: ecore.EClass.eSuperTypes option
13 opposite(lowerTypes)
14 slicedProperty: ecore.EClass.eReferences option
15 slicedProperty: ecore.EClass.eAttributes option
16 slicedProperty: ecore.EClass.eOperations option
17 slicedProperty: ecore.ETypedElement.eType
18 slicedProperty: ecore.ENamedElement.name
19 slicedProperty: ecore.EReference.containment
20 slicedProperty: ecore.EClass.abstract
21 slicedProperty: ecore.EClass.interface
22 slicedProperty: ecore.ETypedElement.lowerBound option
23 slicedProperty: ecore.ETypedElement.upperBound option
24 }

Listing 1: The Kompren model slicer used in Explen

Slicing Filter

Super-inheritance
Filter

Lower-inheritance
Filter

Slicing parameter:
radius value

Slicing parameter:
Consider lower bounds

greater than 0 only

Slicing parameter:
Consider composition only

Inheritance
Flattening

Undo/Redo

View
Reinitialization

Figure 6: The Explen’s context menu used to parameterize and launch the
sliced-based visualization features

3.3.2. Interactive Visualization Features for Metamodels
The super and lower inheritance filters. These two filters

show the super or lower inheritance tree of the targeted class.
These two filters can be parameterized with one option, the
radius effect (specified on line 5 in Listing 1). When activated
with a given value greater than 0, this option shows the classes
in relation with the targeted class by a distance equals or lower
than the radius value. For instance, when the radius equals 1,
only the direct lower or super classes of the targeted class are
displayed. When set to 2, only these direct lower or super classes
and their direct lower or super classes are shown. This option
permits to reduce the number of classes shown in the view.

The keyword option (e.g. line 11) identifies the correspond-
ing sliced element as optional. When compiled as a Java library,
options become boolean parameters of the slicer. Developers
can then programmatically call the slicer and state whether their
corresponding class or property must be considered during the
slicing. This feature permits to define multiple filtering features
in a single model slicer. For instance, the super and lower in-
heritance filters do not consider the references defined between

5

https://github.com/arnobl/kompren/wiki
https://github.com/arnobl/kompren/wiki

Element

PackageableElement

NamedElement

name: String
visibility: VisibilityKind
qualifiedName: String

NamespaceType

Classifier
isAbstract: Boolean

RedefinableElement
isLeaf: BooleanTemplateableElement

ParameterableElement

Class
isActive: Boolean

BehavioredClassifierEncapsulatedClassifier

StructuredClassifier

qualifiedName: String

Figure 7: The super inheritance tree of the UML class Class

Element
destroy() : Void
hasKeyword() : Boolean
getKeywords() : String
addKeyword() : Boolean
removeKeyword() : Boolean
getNearestPackage() : Package
getModel() : Model
isStereotypeApplicable() : Boolean
isStereotypeRequired() : Boolean
isStereotypeApplied() : Boolean
getApplicableStereotypes() : Stereotype
getApplicableStereotype() : Stereotype
getRequiredStereotypes() : Stereotype
getRequiredStereotype() : Stereotype
getAppliedStereotypes() : Stereotype
getAppliedStereotype() : Stereotype
getAppliedSubstereotypes() : Stereotype
getAppliedSubstereotype() : Stereotype
hasValue() : Boolean
getRelationships() : Relationship
getSourceDirectedRelationships() : DirectedRelationship
getTargetDirectedRelationships() : DirectedRelationship
allOwnedElements() : Element
mustBeOwned() : Boolean

Classifier
isAbstract: Boolean
getAllAttributes() : Property
getOperations() : Operation
getAllOperations() : Operation
getOperation() : Operation
getOperation() : Operation
getUsedInterfaces() : Interface
getAllUsedInterfaces() : Interface
getGenerals() : Classifier
getInheritedMembers() : NamedElement
allFeatures() : Feature
parents() : Classifier
inheritableMembers() : NamedElement
hasVisibilityOf() : Boolean
conformsTo() : Boolean
inherit() : NamedElement
maySpecializeType() : Boolean
allParents() : Classifier

ParameterableElement
isCompatibleWith() : Boolean
isTemplateParameter() : Boolean

Realization

Parameter
direction: ParameterDirectionKind
default: String
isException: Boolean
isStream: Boolean
effect: ParameterEffectKind
getDefault() : String
isSetDefault() : Boolean
setDefault() : Void
unsetDefault() : Void
setBooleanDefaultValue() : Void
setIntegerDefaultValue() : Void
setStringDefaultValue() : Void
setUnlimitedNaturalDefaultValue() : Void
setNullDefaultValue() : Void

Property
isDerived: Boolean
isDerivedUnion: Boolean
default: String
aggregation: AggregationKind
isComposite: Boolean
getDefault() : String
isSetDefault() : Boolean
setDefault() : Void
setIsComposite() : Void
setOpposite() : Void
unsetDefault() : Void
setIsNavigable() : Void
getOtherEnd() : Property
setBooleanDefaultValue() : Void
setIntegerDefaultValue() : Void
setStringDefaultValue() : Void
setUnlimitedNaturalDefaultValue() : Void
setNullDefaultValue() : Void
isAttribute() : Boolean
getOpposite() : Property
isComposite() : Boolean
subsettingContext() : Type
isNavigable() : Boolean

Operation
isQuery: Boolean
isOrdered: Boolean
isUnique: Boolean
lower: Integer
upper: Integer
getLower() : Integer
getUpper() : Integer
setIsOrdered() : Void
setIsUnique() : Void
setLower() : Void
setType() : Void
setUpper() : Void
getReturnResult() : Parameter
isOrdered() : Boolean
isUnique() : Boolean
lowerBound() : Integer
upperBound() : Integer
getType() : Type
returnResult() : Parameter

BehavioralFeature
isAbstract: Boolean
concurrency: CallConcurrencyKind
createReturnResult() : Parameter

Behavior
isReentrant: Boolean
getContext() : BehavioredClassifier

Class
isActive: Boolean
getExtensions() : Extension
createOwnedOperation() : Operation
isMetaclass() : Boolean

BehavioredClassifier
getImplementedInterfaces() : Interface
getAllImplementedInterfaces() : Interface InterfaceRealization

Reception

Trigger

EncapsulatedClassifier

StructuredClassifier
qualifiedName: String
createOwnedAttribute() : Property

Connector
kind: ConnectorKind

ParameterSet

nestedClassifier
0..*

ownedOperation

0..*

class

0..1

ownedReception
0..*

qualifier

0..*

associationEnd

0..1

ownedAttribute

0..*

ownedConnector
0..*

ownedParameter

0..*

ownedParameterSet
0..*

implementingClassifier

1

interfaceRealization

0..*

ownedParameter

0..*

ownedParameterSet

0..*

ownedBehavior

0..*

ownedTrigger

0..*

Figure 8: Slicing the UML metamodel using the class Class as input and parameterized with a radius of 3 and by slicing composition references only

6

Package

createOwnedClass() : Class
createOwnedEnumeration() : Enumeration
createOwnedPrimitiveType() : PrimitiveType
createOwnedInterface() : Interface
isProfileApplied() : Boolean
getAppliedProfiles() : Profile
getAllAppliedProfiles() : Profile
getAppliedProfile() : Profile
getAppliedProfile() : Profile
getAllProfileApplications() : ProfileApplication
getProfileApplication() : ProfileApplication
getProfileApplication() : ProfileApplication
isModelLibrary() : Boolean
visibleMembers() : PackageableElement
makesVisible() : Boolean

ElementImport

visibility: VisibilityKind
alias: String
getName() : String

PackageImport

visibility: VisibilityKind

TemplateBinding

Generalization
isSubstitutable: Boolean

Substitution

Operation

isQuery: Boolean
isOrdered: Boolean
isUnique: Boolean
lower: Integer
upper: Integer
getLower() : Integer
getUpper() : Integer
setIsOrdered() : Void
setIsUnique() : Void
setLower() : Void
setType() : Void
setUpper() : Void
getReturnResult() : Parameter
isOrdered() : Boolean
isUnique() : Boolean
lowerBound() : Integer
upperBound() : Integer
getType() : Type
returnResult() : Parameter

Class

isActive: Boolean
isAbstract: Boolean
name: String
visibility: VisibilityKind
qualifiedName: String
isLeaf: Boolean

getExtensions() : Extension
createOwnedOperation() : Operation
isMetaclass() : Boolean
getAllAttributes() : Property
getOperations() : Operation
getAllOperations() : Operation
getOperation() : Operation
getUsedInterfaces() : Interface
getAllUsedInterfaces() : Interface
getGenerals() : Classifier
getInheritedMembers() : NamedElement
allFeatures() : Feature
parents() : Classifier
inheritableMembers() : NamedElement
hasVisibilityOf() : Boolean
conformsTo() : Boolean
inherit() : NamedElement
maySpecializeType() : Boolean
allParents() : Classifier
createDependency() : Dependency
getLabel() : String
createUsage() : Usage
getQualifiedName() : String
allNamespaces() : Namespace
isDistinguishableFrom() : Boolean
separator() : String
allOwningPackages() : Package
parameterableElements() : ParameterableElement
isTemplate() : Boolean
getImplementedInterfaces() : Interface
getAllImplementedInterfaces() : Interface
createElementImport() : ElementImport
createPackageImport() : PackageImport
getImportedElements() : PackageableElement
getImportedPackages() : Package
getImportedMembers() : PackageableElement
getNamesOfMember() : String
membersAreDistinguishable() : Boolean
importMembers() : PackageableElement
excludeCollisions() : PackageableElement
isCompatibleWith() : Boolean
isTemplateParameter() : Boolean
createOwnedAttribute() : Property
destroy() : Void
hasKeyword() : Boolean
getKeywords() : String
addKeyword() : Boolean
removeKeyword() : Boolean
getNearestPackage() : Package
getModel() : Model
isStereotypeApplicable() : Boolean
isStereotypeRequired() : Boolean
isStereotypeApplied() : Boolean
getApplicableStereotypes() : Stereotype
getApplicableStereotype() : Stereotype
getRequiredStereotypes() : Stereotype
getRequiredStereotype() : Stereotype
getAppliedStereotypes() : Stereotype
getAppliedStereotype() : Stereotype
getAppliedSubstereotypes() : Stereotype
getAppliedSubstereotype() : Stereotype
hasValue() : Boolean

getRelationships() : Relationship
getSourceDirectedRelationships() : DirectedRelationship
getTargetDirectedRelationships() : DirectedRelationship
allOwnedElements() : Element
mustBeOwned() : Boolean
isConsistentWith() : Boolean
isRedefinitionContextValid() : Boolean
createAssociation() : Association
getAssociations() : Association
conformsTo() : Boolean

InterfaceRealization

Reception

Trigger

Connector
kind: ConnectorKind

Extension
isRequired: Boolean
getStereotypeEnd() : Property
getStereotype() : Stereotype
metaclassEnd() : Property
getMetaclass() : Class
isRequired() : Boolean

CollaborationUse

UseCase

allIncludedUseCases() : UseCase

StringExpression

nestedClassifier

0..*

ownedOperation

0..* class

0..1

superClass

0..*

ownedReception

0..*

extension

0..*metaclass

1

namespace

0..1

ownedMember0..*

nameExpression

0..1

ownedConnector

0..*

redefinedOperation

0..*

type

0..1

general

1

specific

1generalization

0..*

redefinedConnector
0..*

implementingClassifier

1 interfaceRealization

0..*

package

0..1

ownedType

0..*

elementImport

0..*importingNamespace

1

packageImport

0..* importingNamespace

1

member

0..*

packagedElement

0..*

nestedPackage
0..*

nestingPackage
0..1

templateBinding

0..* boundElement

1

subject

0..*
useCase

0..*

importedPackage 1

subExpression0..*
owningExpression

0..1

substitution

0..* substitutingClassifier

1

representation

0..1

collaborationUse

0..*

ownedUseCase

0..*

importedElement

1

contract

1

ownedTrigger

0..*

Comment

Package

createOwnedClass() : Class
createOwnedEnumeration() : Enumeration
createOwnedPrimitiveType() : PrimitiveType
createOwnedInterface() : Interface
isProfileApplied() : Boolean
getAppliedProfiles() : Profile
getAllAppliedProfiles() : Profile
getAppliedProfile() : Profile
getAppliedProfile() : Profile
getAllProfileApplications() : ProfileApplication
getProfileApplication() : ProfileApplication
getProfileApplication() : ProfileApplication
isModelLibrary() : Boolean
visibleMembers() : PackageableElement

Dependency

TemplateParameter

Property
isDerived: Boolean
isDerivedUnion: Boolean
default: String
aggregation: AggregationKind

isComposite: Boolean
getDefault() : String
isSetDefault() : Boolean
setDefault() : Void
setIsComposite() : Void
setOpposite() : Void
unsetDefault() : Void
setIsNavigable() : Void
getOtherEnd() : Property
setBooleanDefaultValue() : Void
setIntegerDefaultValue() : Void
setStringDefaultValue() : Void
setUnlimitedNaturalDefaultValue() : Void
setNullDefaultValue() : Void
isAttribute() : Boolean
getOpposite() : Property
isComposite() : Boolean
subsettingContext() : Type
isNavigable() : Boolean

Class
isActive: Boolean
isAbstract: Boolean
name: String
visibility: VisibilityKind
qualifiedName: String
qualifiedName: String
isLeaf: Boolean
getExtensions() : Extension
createOwnedOperation() : Operation
isMetaclass() : Boolean
getAllAttributes() : Property
getOperations() : Operation
getAllOperations() : Operation
getOperation() : Operation
getOperation() : Operation
getUsedInterfaces() : Interface
getAllUsedInterfaces() : Interface
getGenerals() : Classifier
getInheritedMembers() : NamedElement
allFeatures() : Feature
parents() : Classifier
inheritableMembers() : NamedElement
hasVisibilityOf() : Boolean
conformsTo() : Boolean
inherit() : NamedElement
maySpecializeType() : Boolean
allParents() : Classifier
createDependency() : Dependency
getLabel() : String
getLabel() : String
createUsage() : Usage
getQualifiedName() : String
allNamespaces() : Namespace
isDistinguishableFrom() : Boolean
separator() : String
allOwningPackages() : Package
parameterableElements() : ParameterableElement
isTemplate() : Boolean
getImplementedInterfaces() : Interface
getAllImplementedInterfaces() : Interface
createElementImport() : ElementImport
createPackageImport() : PackageImport
getImportedElements() : PackageableElement
getImportedPackages() : Package
getImportedMembers() : PackageableElement
getNamesOfMember() : String
membersAreDistinguishable() : Boolean
importMembers() : PackageableElement
excludeCollisions() : PackageableElement
isCompatibleWith() : Boolean
isTemplateParameter() : Boolean
createOwnedAttribute() : Property
destroy() : Void
hasKeyword() : Boolean
getKeywords() : String
addKeyword() : Boolean
removeKeyword() : Boolean
getNearestPackage() : Package
getModel() : Model
isStereotypeApplicable() : Boolean
isStereotypeRequired() : Boolean
isStereotypeApplied() : Boolean
getApplicableStereotypes() : Stereotype
getApplicableStereotype() : Stereotype
getRequiredStereotypes() : Stereotype
getRequiredStereotype() : Stereotype
getAppliedStereotypes() : Stereotype
getAppliedStereotype() : Stereotype
getAppliedSubstereotypes() : Stereotype

getRelationships() : Relationship
getSourceDirectedRelationships() : DirectedRelationship
getTargetDirectedRelationships() : DirectedRelationship
allOwnedElements() : Element
mustBeOwned() : Boolean
isConsistentWith() : Boolean
isRedefinitionContextValid() : Boolean
createAssociation() : Association
getAssociations() : Association
conformsTo() : Boolean

CollaborationUse

clientDependency

0..*

client

1..*

class

0..1

redefinedProperty

0..*

opposite0..1

subsettedProperty

0..*

qualifier

0..*

associationEnd

0..1

ownedAttribute

0..*

part

0..*

parameteredElement

1 templateParameter
0..1

ownedParameteredElement

0..1
owningTemplateParameter

0..1

default

0..1

ownedDefault

0..1

redefinitionContext

0..*

importedMember

0..*

ownedComment

0..*

inheritedMember

0..*

attribute

0..*

supplier

1..*

annotatedElement

0..* roleBinding 0..*

redefinedElement

0..*

ownedElement

0..*

owner

0..1

redefinedClassifier

general

0..*

0..*

Figure 9: Flattening of the UML class Class followed by a slicing parameterized with a radius of 1

7

classes. So, when users click on the buttons dedicated to these
filters (see Figure 6), several optional elements and their re-
lated elements of the slicer are not considered. The keyword
slicedProperty selects the references or attributes to slice.
The reference eSuperTypes, from the class EClass, is used
to extract both the super and lower inheritance tree of a given
class (lines 11 to 13). The keyword opposite (line 13) per-
mits to navigate through a given reference in its opposite way
when no opposite is defined (lower inheritance in our case). The
keyword slicedClass selects the classes of the metamodel
to slice. Here, the root class ENamedElement (line 6), and
automatically all its lower classes, are sliced.

Modelers can use these filters to understand the inheritance
hierarchy of a given class and identify the attributes and opera-
tions this class can access (Task 2, section 2). fig. 7 depicts such
a result when focusing on the super inheritance tree of the class
Class. Due to constraints on space, the classes’ operations have
been hidden, and the classes have been re-layouted manually to
reduce the spacing.

The slicing filter. This filter hides classes not in relation (in-
heritance or references) with the targeted class. This filter has
three options that can be combined. The first option slices com-
position references only. To do so, a constraint has been defined
on the class to slice EReference (lines 9 and 10). Constraints
are optional predicates that must be respected to trigger the slic-
ing of the element targeted by the constraint. The constraint
line 10 states that the boolean attribute containment of the
class EReference must equals true to slice the class. The sec-
ond option permits to slice references and attributes having their
minimal cardinality greater than 0 only. A second constraint,
line 8, permits to slice such references. The third option is the
radius parameter (line 5).

Task 3 consists in showing the classes that are in relation
with the UML class Class only. This task can be performed
using the Explen’s slicer. To show only classes closely related
to the class Class, the radius is set to 3. We also configure
the slicer to consider composition references only. Then, the
slicer is applied on the class Class, and the classes not sliced
are hidden. Figure 8 shows the result of this slicing where only
18 classes among the 246 others are displayed. The resulting
classes have been manually re-layouted.

The flattening filter. The super hierarchy of the targeted class
pushed down into it: all its inherited attributes and relations now
appear in the target class. To perform Task 2, the modeler can
also flatten this hierarchy to put into Class all the properties
and operations of its super-classes. Figure 9 shows the result of
the flattening of Class. All the super-classes of Class have been
removed while their properties and operations have been moved
into Class. For instance, the goal of Task 1 is to show classes
in direct relationship with Class. The modeler can accomplish
this task with our viewer by restricting the radius effect of the
slicer using the user interface: when the radius effect is set to 1,
only classes in direct relationship with the sliced class are shown.
Figure 9 also illustrates such successive combinations where the
flattening filter is followed by a slicing of Class parameterized
with a radius of 1.

Semantic zooming. The physical zoom is supplemented with
a semantic zoom that shows different metamodel elements de-
pending on the zoom level. When zooming out at 50 %, the
attributes, operations, and roles are no more displayed (lines 15
to 16, 22 to 23 of Listing 1). The goal of this feature is to
lighten or complete the amount of information shown to the
user when visualizing a part of a metamodel at a given zoom
level. The metamodel elements (operations, roles, cardinalities,
and attributes) displayed at each zoom level has been defined
empirically during the development phase of Explen.

All these interactive visualization features can be successively
combined, undone, and redone, moving the current viewpoint
on the canvas to its former position. Explen also provides a
text field supplemented by auto-completion to search for a class.
Selecting one class using this text field centers the viewpoint on
the targeted class.

We developed the layout and the graphical library used by
Explen to display metamodels (see for instance Figures 8
and 9) following the standard recommendations (abstract class
name in italic, inheritance relations follow a bottom-up layout,
etc.) also respected by mainstream metamodeling tools. As ex-
plained in the introduction, a study we conducted on 3462 well-
formed Ecore metamodels highlighted that 82 % of these meta-
models are composed of a single package, the mandatory root
package. So, the current version of Explen does not display
packages or provides interactive visualization features based on
packages.

4. Experimental Design

This section presents the contribution related to the visualiza-
tion techniques, provided by our editor Explen, to the under-
standing of metamodels by MDE stakeholders. Providing users
with multiple kinds of views (e.g. 2D or tree views) may improve
the exploration of metamodels. In this work we focus on the
standard 2D representation of metamodels to study the impact of
our proposed techniques. This contribution is compared to one of
the most used metamodel editors, namely EcoreTools from
EMF. The performance level is determined by the percentage
of correct answers and the time and navigation effort spent by
the subjects to perform the proposed tasks. A subject’s effort is
evaluated by capturing his/her interactions with the system, such
as the number of scrolls or mouse moves.
EcoreTools has been selected after we compared the most

widespread tools dedicated to the design of metamodels or do-
main models to identify their interactive navigation features.
Based on these observations, summarized in Table 1, we se-
lected the tool with the most interactive navigation features,
namely EcoreTools. EcoreTools, UML Designer, and
Papyrus are all based on Eclipse and share several similar
features. IBM Rational Rhapsody can create a new di-
agram from one selected class. Such a new diagram displays
all the classes and relations connected with the selected classes
(super/lower inheritance, references). Visual Studio does
not provide interactive visualization features but allows remov-
ing an element from the view without modifying the model.

8

Name Version Metamodel Interactive Address
representation visualization features

EcoreTools 1.1 2D, tree Show/hide elements, auto-layout, http://www.eclipse.org/ecoretools/
remove elements from the view,

hide/show all relations

UML Designer 3.0 2D, tree Show/hide elements manually, auto-layout, http://marketplace.obeonetwork.com/
remove elements from the view module/uml/download

Papyrus 1.0 2D, tree Show/hide elements manually, auto-layout, http://www.eclipse.org/papyrus/
remove elements from the view

IBM Rational 8.1 2D, tree Remove from view, http://www-03.ibm.com/software/
Rhapsody select types of elements to show/hide, products/en/ratirhaparchforsoft

create new diagrams focusing on one class and its relations

Visual Studio 2012 Ultimate 2D, tree Remove elements from the view http://www.visualstudio.com/

MetaEdit+ 5.0 forms N/A http://www.metacase.com/

MPS 3.1 text N/A http://www.jetbrains.com/mps/

Table 1: Tools dedicated to the design of metamodels or domain models and their interactive visualization features

MetaEdit+ and MPS do not provide modelers with 2D graphi-
cal editors for designing metamodels.

4.1. Objects

The objects of our experiments are two metamodels devel-
oped by third parties. We selected two metamodels to diversify
the observations and thus limit the mono-method threat to va-
lidity. The first metamodel is the UML metamodel composed
of 256 classes and 583 relations and attributes contained in a
single package [1]. UML has been selected for its high number
of elements. It is thus a relevant metamodel benchmark for eval-
uating visualization and navigation features. The second one is
the RAM (Reusable Aspect Models) metamodel composed of
61 classes and 135 relations and attributes contained in a single
package [27]. RAM has been selected for its moderate size, even
though it is large enough not to be entirely visible using a stan-
dard screen. Both RAM and UML concern software engineering
but focus on different concerns.

4.2. Hypotheses

The main questions about the efficiency of our slice-based
visualization features are described as follows:

Q1 Do these visualization features reduce the time needed to
complete typical tasks?

Q2 Do the visualization features, provided by Explen, im-
prove the correctness of those tasks performed on meta-
models?

Q3 Do these visualization features reduce the navigation effort
needed to complete those tasks?

From these three questions can be inferred the following null
hypotheses:

H01 There is no difference between the subjects using
EcoreTools and subjects using Explen in the average
time they needed to complete the provided tasks.

H02 There is no difference between the subjects using
EcoreTools and the subjects using Explen in the
average correctness of their answers given to complete the
provided tasks.

H03 There is no difference between the subjects using
EcoreTools and subjects using Explen in the average
navigation effort spent to complete the provided tasks.

If these null hypotheses are rejected, alternative hypotheses are
defined as follows:

H11 The average time needed to complete tasks on metamod-
els is lower for the subjects using Explen than for the
subjects using EcoreTools. Explen is built on top of
visualization features that make it possible to focus on el-
ements relevant to the ones selected by the users. That
may help users to achieve their goals quicker than using
EcoreTools.

H12 The average correctness of the answers given to com-
plete tasks on metamodels is better for the subjects using
Explen than for the subjects using EcoreTools. This
first alternative hypothesis is motivated by the fact that the
Explen’s visualization features aim at reducing the large
amount of information provided to users by showing ele-
ments relevant to the current situation only. As a result, that
may lead to more accurate answers.

H13 The average navigation effort needed to complete tasks
on metamodels is lower for the subjects using Explen
than for the subjects using EcoreTools. The rationale
behind this last alternative hypothesis is that compared
to EcoreTools, Explen provides users with dedicated
interactive navigation features that aim at easing the navi-
gation through metamodels.

4.3. Dependent Variables

In addition to the time to perform tasks and their correctness,
we also collected objective variables that capture the navigation
effort.

9

http://www.eclipse.org/ecoretools/
http://marketplace.obeonetwork.com/module/uml/download
http://marketplace.obeonetwork.com/module/uml/download
http://www.eclipse.org/papyrus/
http://www-03.ibm.com/software/products/en/ratirhaparchforsoft
http://www-03.ibm.com/software/products/en/ratirhaparchforsoft
http://www.visualstudio.com/
http://www.metacase.com/
http://www.jetbrains.com/mps/

• Average Time (TIME): measures the average time in sec-
onds the subjects spent to give their answers for each task.

• Correct Answer (CORR): measures the correctness of each
task answered by a subject.

• Average Mouse Move (MOVE): measures the average num-
ber of mouse moves a subject did per tasks. This variable
will be used to measure the navigation effort.

• Average Scrolling Actions (SCROLL): measures the aver-
age number of scrolling actions (using the mouse scrolls or
the scroll bars) a subject did per tasks. This variable will be
used to measure the navigation effort.

All the answers are composed of a set of names (class, relation,
or attribute name). The correctness of an answer is computed
using the following formula:

|correct names|
|expected names|+ |incorrect names|

∗100 (1)

where incorrect names provided by subjects reduce the correct-
ness of the answer.

The size and the resolution of the screen, and the input device
used by each subject for the experiments are controlled vari-
ables since we provide subjects with the same computer, system,
and monitor (24-inch, 1920×1200 resolution) with a mouse.
The subjects could choose either an AZERTY or a QUERTY
keyboard before the experiments to limit typing mistakes.

4.4. Data Collection

The evaluation study takes the form of a comparison
between two tools4. The first tool is EcoreTools (ver-
sion 1.1.0.201205150811). EcoreTools runs on top of
Eclipse as a plug-in. It offers a 2D view of the edited metamodel
(see Figure 10). It provides users with standard graphical editing
features such as a physical zoom and the possibility to move
elements using a pointing device. EcoreTools provides two
filtering features accessible from the context menu. These filters
hide the inheritance or the reference relations of the whole
metamodel.

The second tool is Explen (version 1.0) we developed in
the purpose of this research work. Explen is introduced in
Section 3.

For the purpose of the experiments, both EcoreTools and
Explen have been supplemented with the same panel on the
right of their user interface (see Figures 10 and 11). This panel
displays the current question asked to the subject and a text field
to give an answer. When a new question is asked, the metamodel
and the navigation features are not available and visible, and no
information is recorded. Once ready, the subject clicks on the
button "Start" that shows the metamodel, activates the navigation
features, triggers the information recorder, and shows a text field

4All the material of the experiments is freely available on the fol-
lowing web page: https://github.com/arnobl/kompren/wiki/
Data-of-the-Experiment-on-Explen

to answer the current question. The subject can then navigate
into the metamodel to answer the current question. This process
permits the subject to focus on the question before answering
it and to ask the experimenter for clarification if needed. The
subject can then give her answer to the current question using
the dedicated text field. The subject can correct her answer until
she clicks on the button "Validate Answer". Clicking on this
button results in saving the answer and the information recorded
during the time-slot spent to give the answer. Then, the answer
text field, the button "Validate Answer", and the metamodel are
hidden. Moreover, this action disables the navigation features
and shows the next question with the button "Start". This process
is repeated until all the questions are answered. The metamodel
view is re-initialized between each question.

During each time-slot framed by the click on the buttons
"Start" and "Validate Answer", the subjects’ activity is recorded.
The subjects have been notified about the recording before the
experiments. The recorded information are composed of the
number of time that: the mouse is moved; the scroll bars are
moved; the mouse scroll is used; the Explen’s visualization
features are used. The time between the click on the two buttons
is also measured.

Several questions are asked at the end of the experiments to
the subjects through a questionnaire integrated in the GUI of the
latest used editor. These questions relate to the age, the current
position (Master student, PhD student, engineer, or assistant
professor), and the experience in MDE, EcoreTools, UML,
and RAM.

4.5. Tasks

Four questions (tasks) are successively asked to the subjects
through the panel integrated in the two metamodel viewers.
These tasks concern different parts of the studied metamodels.
They have been defined to evaluate various kinds of comprehen-
sion tasks.

4.5.1. Task Design
The tasks have been defined from a survey we conducted

on subjects working in the MDE community. This study aims
at identifying the main tasks that MDE stakeholders perform
while handling metamodels. This survey was conducted in two
steps. The goal of the first one is to identify tasks that MDE
stakeholders perform when handling metamodels. To this end,
we designed a first web questionnaire that consists in evaluating
the importance of 14 metamodeling tasks ("important" vs "not
important"). To be more complete, we encouraged the subjects
to suggest other non-listed tasks. The tasks that received at least
70 % of "important" answers were retained. The tasks frequently
suggested by different subjects have also been added. This web
questionnaire was filled by 68 subjects. These subjects were
composed of researchers (74 %), PhD students (12 %), industri-
als (10 %), research engineers (3 %), and master students (1 %).
They claimed to be expert (37 %), proficient (37 %), competent
(15 %), advanced beginner (7 %), and novice (4 %) in MDE. Out
of the 14 proposed tasks, 8 have been retained in addition to 2
tasks suggested by the subjects.

10

https://github.com/arnobl/kompren/wiki/Data-of-the-Experiment-on-Explen
https://github.com/arnobl/kompren/wiki/Data-of-the-Experiment-on-Explen

Figure 10: EcoreTools supplemented with a panel (on the right) for the experiments

Figure 11: Explen supplemented with a panel (on the right) for the experiments

11

A second web questionnaire was designed to order, by impor-
tance, the 10 tasks resulting from the first questionnaire. The
subjects had to rate the importance of each task on a 1-to-5
scale where 5 stands for "very relevant". The second question-
naire was filled by 60 subjects. These subjects were composed
of researchers (66 %), PhD students (14 %), industrials (11 %),
research engineers (4 %), and others (5 %). They claimed to be
expert (41 %), proficient (39 %), competent (13 %), advanced
beginner (4 %), and novice (4 %) in MDE.

Ranking Task Average
importance

1 Defining a concrete syntax for a metamodel 4.32
2 Instantiating a metamodel 4.30
3 Transforming models into text or code 4.25
4 Maintaining a metamodel 4.20
5 Creating editing tools for a metamodel 4.11
6 Transforming elements of a metamodel into 4.02

elements of another one
7 Defining invariants and/or constraints on 3.86

metamodel importance
8 Identifying how elements of a metamodel are 3.80

linked to others (of the same metamodel)
9 Analyzing that a metamodel is well designed 3.57
10 Comparing metamodels 3.10

Table 2: The ranking of the selected tasks that MDE stakeholders perform while
handling metamodels

The average importance of the 10 tasks is given in Table 2.
From this table, we make the following observations that led
to the identification of four categories of tasks. First, all these
tasks require to learn or understand the metamodel under study.
This understanding can be partial (e.g. for developing a model
transformation) or complete (e.g. for developing a concrete syn-
tax). Second, refactoring takes an important role in these tasks:
maintaining a metamodel implies maintaining all its associated
tools and model transformations. Third, metamodel instantia-
tion is an important activity underlying most of these tasks. For
instance, metamodel editors provide facilities for instantiating
metamodels. Last, metamodel quality raises interest from the
subjects.

4.5.2. Tasks Description
Our experiments consist of subjects using two different meta-

model visualization tools to observe whether their understanding
of metamodels is improved when interactive visualization tech-
niques are provided. Therefore, our experiments must rely on
visualization and navigation tasks for identifying the metamodel
elements (classes, roles, etc.) required to perform one of the
10 identified tasks. Following the 10 tasks and the four cate-
gories we identified, we designed four tasks. Each of these four
tasks has one variant. All these tasks have been adapted to the
metamodel under study (UML and RAM). It implies that if the
question remains unchanged, the metamodel elements to identify
may vary. These tasks are defined as follows:

Tasks related to metamodel instantiation.

T1a "If you have to create an instance of the
class Operation corresponding to the operation
Double add(Double value), what would be
the other concrete classes of the metamodel to instantiate?
This task is asked identically for both the UML and RAM
metamodels since the concept of operation is shared by
these two metamodels but with different designs. The
purpose of this task is to evaluate how subjects can identify
concepts in a metamodel used by a specific model example.

T1b "If you have to create an instance of the class Condition-
alNode, what would be the mandatory concrete classes in
relation with ConditionalNode that must be also instanti-
ated?"
This question is for UML. For RAM, the class of interest is
Message. The purpose of this task is to evaluate the ability
of the subjects to explore the metamodels to identify the
required metamodel elements. Mandatory classes are either
classes directly or indirectly in relation with Condition-
alNode with a min cardinality greater than 0, or concrete
sub-classes of mandatory abstract classes. This definition is
explained during the tutorial starting each experiment and
is available all along it.

Tasks related to metamodel refactoring.

T2a "List the name of the abstract classes in the super class
hierarchy of FlowFinalNode that are not doing much (i.e.
that do not contain attributes, operations, and output refer-
ences/compositions) and that can be removed".
This question is for UML. For RAM, the class of interest
is Class. The purpose of this task to evaluate the ability of
the subjects to identify a bad smell, Speculative Generality
[28] in this case.

T2b "Give the name of the redundant attribute (direct or inher-
ited) of the class Device (i.e. same name and type)"
This question is for UML. For RAM, the class of interest is
Reference. The purpose of this task to evaluate the ability of
the subjects to identify a bad smell, Duplicated Code [28]
in this case.

Tasks related to metamodel quality.

T3a "The classes Actor and Trigger are coupled only by one
unique reference via another class. Give the name of this
reference that would make these classes independent if
removed."
This question is for UML. For RAM, the classes of interest
are respectively Aspect and Type. The purpose of this task
is to evaluate the ability of the subjects to navigate through
the relations and classes linked to a given class in order to
perform metamodel changes.

T3b Give the name of at least one class that has a high num-
ber of incoming and a high number of outgoing references
compared to the other classes." The purpose of this task is
to evaluate the ability of the subjects to identify bottleneck
classes of a metamodel.

12

Tasks related to metamodel understanding.

T4a "Give the name of at least one intermediate class between
the class State to the class Transition."
This question is for UML. For RAM, the classes are Life-
Line and FragmentContainer respectively. The purpose of
this task is evaluate the ability of subjects to navigate from
one class to another one using relations.

T4b "Enumerate the name of all the attributes (direct or inher-
ited) of the class Feature."
This question is for UML. For RAM, the class is RInt. The
purpose of this task is to evaluate the ability of the subjects
to navigate through the inheritance tree of a given class.

4.6. Procedure

Before the experiments, the procedure and the tools have been
tested on several subjects. Several bugs in the question panels
(that supplemented each tool for the experiments) have been
identified and corrected and several task descriptions have been
precised. These tests also permitted to have an estimation of
the time required to performed each task. Then, the experiments
have been performed following the procedure described in this
section.

Tools EcoreTools Explen

Metamodels UML RAM UML RAM

Group 1 T1a T2a T3a T4a

Group 2 T2b T3a T4b T1a

Group 3 T3b T4b T1b T2b

Group 4 T4a T1b T2a T3b

Table 3: Distribution of the tasks.

The experiments were conducted over three days during sev-
eral sessions on 32 subjects. Each session involved between two
and four subjects. We requested subjects not to talk about the
experiments until its end. Each subject performed four succes-
sive tasks. This number of tasks was defined to limit the duration
of the experiments on one subject to around 20 minutes. As
depicted by Table 3, the subjects were clustered in four groups
(eight subjects per group) to vary the execution order of the tasks
on each metamodel and each tool. So, each group performed
the four tasks but not using the same metamodel and tool for
each task. For each group, two tasks (one with UML and another
one with RAM) have been performed using EcoreTools, and
similarly two others using Explen. Each of the eight tasks were
executed two times by different groups on different metamodels
and tools. The execution order, depicted by Table 4, of the four
tasks has been manually randomized for each subject of a group.

Each session started with an explanation about the experi-
ment and what the subjects had to do. The subjects were also
notified that: anonymized data would be recorded; there is no
time limit to perform the tasks but around 20 minutes should be
enough; there is no reward. A 2-page document was provided
to the subjects. It describes the user interface of the two tools,
their features, and how the Explen’s features work. Before

Subjects Group 1 Group 2 Group 3 Group 4

Si1 T1a T2a T3a T4a T2b T3a T4b T1a T3b T4b T1b T2b T4a T1b T2a T3b

Si2 T1a T2a T4a T3a T2b T3a T1a T4b T3b T4b T2b T1b T4a T1b T3b T2a

Si3 T2a T1a T3a T4a T3a T2b T4b T1a T4b T3b T1b T2b T1b T4a T2a T3b

Si4 T2a T1a T4a T3a T3a T2b T1a T4b T4b T3b T2b T1b T1b T4a T3b T2a

Si5 T3a T4a T1a T2a T4b T1a T2b T3a T1b T2b T3b T4b T2a T3b T4a T1b

Si6 T3a T4a T2a T1a T4b T1a T3a T2b T1b T2b T4b T3b T2a T3b T1b T4a

Si7 T4a T3a T1a T2a T1a T4b T2b T3a T2b T1b T3b T4b T3b T2a T4a T1b

Si8 T3a T4a T1a T2a T1a T4b T3a T2b T2b T1b T4b T3b T3b T2a T1b T4a

Table 4: Randomization of the execution order of the tasks for each subject of
each group. For technical reasons, the tasks performed using the same tool must
be grouped.

the experiments, the subjects could train during around 10 min-
utes on the two tools on metamodels and questions that differ
from those of the experiments. The subjects that already know
EcoreTools could spend their training time on Explen to
balance the proficiency on the two tools. Once the experiments
finished, a form appeared in the user interface of each tool to
gather information about the subjects (see Section 4.4). Finally,
we proposed to each subject to write informal and anonymous
feedback about the tools and the experiments.

5. Analysis and Results

The results of the experiments are analyzed and discussed in
this section. This analysis focuses on the three research questions
introduced in Section 4.2:

Q1 Do these visualization features reduce the time needed to
complete those tasks?

Q2 Do the visualization features, provided by Explen, im-
prove the correctness of typical tasks performed on meta-
models?

Q3 Do these visualization features reduce the navigation effort
needed to complete those tasks?

Dependent Mean (#)
variable Explen

PRUNINGT 1 4.1
PRUNINGT 2 3.8
PRUNINGT 3 4.3
PRUNINGT 4 1.3
PRUNINGAll 3.3

HIERARCHYT 1 1.2
HIERARCHYT 2 1.6
HIERARCHYT 3 0.4
HIERARCHYT 4 0.4
HIERARCHYAll 0.9

FLATT 1 0.8
FLATT 2 0.9
FLATT 3 0.4
FLATT 4 3.9
FLATAll 0.6

Table 5: Explen interactive features usage.

13

Dependent Mean (#) Mean (#) Normal Mean (#) Significance
variable Explen EcoreTools Distrib. ? Diff p-value

MOV ET 1 5735 5909 N -173 .792
MOV ET 2 3894 4443 N -549 .113
MOV ET 3 4138 3772 N 366 .763
MOV ET 4 1152 4505 N -3353 <.001

H03 : MOV EAll 3730 4657 N -927 0.1

SCROLLT 1 212 962 N -750 .002
SCROLLT 2 177 716 N -538 .004
SCROLLT 3 137 394 N -257 .003
SCROLLT 4 7 588 N -581 <.001

H03 : SCROLLAll 133 665 N -531 <.001

Table 6: Mouse Usage.

We apply the independent samples t-test and Mann-Whitney
tests [29] to compare the performance, in terms of time and cor-
rectness, and the navigation effort of the two tools, using a 95 %
confidence level (i.e. p-value<0.05). These both statistical tests
are based on the null hypothesis and assess whether two indepen-
dent populations are the same against an alternative hypothesis.
In particular, they assess that one of the populations tends to have
larger average values than the other one. The Mann-Whitney test
makes no assumptions about the distributions of assessed vari-
ables whereas the independent samples t-test applies on normal
distributions.

The discussion of the results is based on data obtained from
the measured dependent variables (Tables 5 and 6).

5.1. Time Analysis

Dependent Mean (s) Mean (s) Normal Mean (s) Significance
variable Explen EcoreTools Distrib. ? Diff p-value

T IMET 1 311 375 Y -64 0.31
T IMET 2 200 259 Y -59 0.44
T IMET 3 213 214 Y -1 0.99
T IMET 4 73 288 Y -215 <0.001

H01 : T IMEAll 199 284 N -85 0.04

Table 7: The average time measured for each task.

Explen Ecore Tools

10
0

15
0

20
0

25
0

30
0

35
0

Explen Ecore Tools

10
0

15
0

20
0

25
0

30
0

35
0

T
IM

E
 (

s)

Figure 12: Comparison between Explen and EcoreTools in terms of time.

Table 7 summarizes the average time measured for each task
during the experiments. Figure 12 provides a visual representa-
tion of these results in the form of boxplots. Regarding Task T1,

the average time measured is in favor of Explen (−64 s less)
but it is not statistically significant. T1, which deals about meta-
model instantiation, requires to explore metamodels to identify
the required metamodel elements.

Task T2 exhibits similar results than T1. T2, which deals about
metamodel refactoring, corresponds to the identification of bad
smells. It requires to explore the super inheritance tree to find
duplicated attributes and useless abstract classes.

Task T3, which deals about metamodel quality, does not high-
light any statistically significant difference in the average time
(1 second) between Explen and EcoreTools. One possible
explanation is that the interactive features we propose may not
be adequate for this task.

The average measured time of Task T4 is clearly in favor of
Explen (more than 3 minutes less) and statistically significant.
T4, dedicated to metamodel comprehension, consists of identify-
ing metamodel elements in relation with a given class.

When considering all the tasks, the average time is in favor
of Explen and statistically significant with a p-value of 0.04
(< 0.05). This can be explained by the reduced mouse usage in
favor of the Explen’s interactive features. Therefore, we can
reject the null hypothesis H01 "There is no difference between
the subjects using EcoreTools and subjects using Explen in
the average time they needed to complete the provided tasks" and
accept the alternative hypothesis H11 "The average time needed
to complete tasks on metamodels is lower for the subjects using
Explen than for the subjects using EcoreTools".

5.2. Correctness Analysis

Dependent Mean (%) Mean (%) Normal Mean (%) Significance
variable Explen EcoreTools Distrib. ? Diff p-value

CORRT 1 25 23 Y 2 % 0.85
CORRT 2 71 22 N 49 % 0.01
CORRT 3 56 70 N -14 % 0.51
CORRT 4 99 48 N 51 % 0.02

H01 : CORRAll 63 41 N 22 % 0.03

Table 8: The average correctness of each task.

Explen Ecore Tools

20
40

60
80

10
0

Explen Ecore Tools

20
40

60
80

10
0

C
O

R
R

 (
%

)

Figure 13: Comparison between Explen and EcoreTools in terms of cor-
rectness.

14

Regarding the correctness of the tasks performed by the sub-
jects (Table 8 and Figure 13), the results follow the trend of
the time analysis with one relative difference concerning Task
T1 related to metamodel instantiation. The correctness of this
task does not show a significant difference between Explen
and EcoreTools. The correctness for this task is rather low
for both these tools (resp. 25 % and 23 %). One explanation
of these low results might be the difficulty to execute Task T1,
which requires more thought and exploration of the metamod-
els, compared to the other tasks, which are more specific and
straightforward to execute.

Task T2 for metamodel refactoring exhibits better correctness
results for Explen (71 % vs 22 %, statistically significant). T2
is the task where subjects used in average the most Explen in-
teractive features (3.8 prunings, 1.6 hierarchies, 0.9 flats). These
features allow refining the search and perform with accuracy the
sub-tasks targeted.

Task T3, which deals about metamodel quality, shows worst
correctness results for Explen but this result is not statistically
significant. T3 consists of finding one class that has a high num-
ber of incoming and outgoing references, i.e. references that link
two given classes. As the time analysis, an explanation may be
the inadequacy of the interactive features of Explen.

Similarly to T2, Task T4 shows better correctness results for
Explen (99 % vs 48 %) and is statistically significant. As men-
tioned in the time analysis, the use of the flattening of a class
hierarchy may explain the advantage of Explen.

When considering all the tasks, correctness is in favor of
Explen (63 % vs 41 %) and is statistically significant. There-
fore, we can reject the null hypothesis H02 "There is no difference
between the subjects using EcoreTools and the subjects us-
ing Explen in the average correctness of their answers given
to complete the provided tasks" and accept the alternative hy-
pothesis H12 "The average correctness of the answers given to
complete tasks on metamodels is better for the subjects using
Explen than for the subjects using EcoreTools".

5.3. Navigation Effort Analysis

Explen Ecore Tools

10
00

20
00

30
00

40
00

50
00

60
00

Explen Ecore Tools

10
00

20
00

30
00

40
00

50
00

60
00

M
O

V
E

 (
#)

Figure 14: Comparison between Explen and EcoreTools in terms of mouse
move.

Explen Ecore Tools

0
20

0
40

0
60

0
80

0
10

00

Explen Ecore Tools

0
20

0
40

0
60

0
80

0
10

00

S
C

R
O

LL
 (

#)

Figure 15: Comparison between Explen and EcoreTools in terms of mouse
scroll.

Table 6 summarizes the average mouse move and mouse
scroll measured for each task during the experiments. Figures 14
and 15 provide a visual representation of these results in the
form of boxplots. All the results that concern the mouse scroll
usage are statistically significant. Only T4 and the average results
of the mouse move usage are statistically significant.

Regarding T1, using EcoreTools the subjects intensively
used the scrolling features (Table 6: 962 scrolls). Using Explen
this use decreased to 212. The mouse move results, however, are
slightly in favor of Explen (5735 vs 5909). This may explain
the different execution times as detailed in the previous sections.
Moreover, we can observe that the use of the slicing features
(4.1 pruning, 1.2 hierarchy, 0.8 flattening) may limit the use of
the scrolling features.

Similarly to T1, the subjects intensively used the scrolling
features with EcoreTools on T2 (Table 6: 716 scrolls) by op-
position to Explen (177 scrolls). The number of mouse moves
is also reduced using Explen (3894 vs 4443). The subjects pro-
duced less mouse moves and scrolls in T2 compared to T1. This
may be explained by the fact that the common representation
of super inheritance has to follow a bottom-up representation,
which limits the search directions.

On T3, the results regarding the mouse move usage is in favor
of EcoreTools (3772 vs 4138). However, the mouse scroll
usage is in factor of Explen (137 vs 394). It may mean that
without a dedicated interactive navigation feature, the subjects
explored the metamodels by moving the mouse.

Similarly to T1 and T2, on T4 the subjects intensively used the
scrolling features (588) and moved their mouse (4505) when
using EcoreTools. Using Explen, the use of the scrolling
features is reduced to 7 and the mouse moves to 1152. The reason
is the use of the flattening feature (3.9) provided by Explen
that reduces the need of scrolling by flattening a class hierarchy.

When considering all the tasks, mouse move and scroll usages
are in favor of Explen (respectively 3730 vs 4657 and 133 vs
665) and are statistically significant. Therefore, we can reject
the null hypothesis H03 "There is no difference between the
subjects using EcoreTools and subjects using Explen in
the average navigation effort spent to complete the provided

15

tasks" and accept the alternative hypothesis H13 "The average
navigation effort needed to complete tasks on metamodels is
lower for the subjects using Explen than for the subjects using
EcoreTools".

5.4. Discussion

When considering all the tasks in terms of time, correctness,
and navigation effort, they are in favor of Explen and are sta-
tistically significant. Depending on the task and when using
Explen, the subjects used different Explen interactive fea-
tures. The use of these interactive features may be the reason
of the decreasing use of classical mouse interactions (moves,
scrolls). Reduction of the number of visible classes and flat-
tening of hierarchical trees are Explen features, which aim at
limiting the navigation effort users have to do to explore parts
of metamodels. The answers of the questionnaire provided to
the subjects after the experiments confirm the benefits of the
Explen features. The subjective comments of the subjects are
that, in general, they appreciated the developed interactive fea-
tures. For instance, some of the comments include: "Explen
is really helpful for software modelers to understand the rela-
tions among classes", "Explen helps users to navigate in the
diagram", "using EcoreTools I gave up". Some drawbacks
were also mentioned: "Explen did not help me when searching
for high numbers of incoming/outcoming references", "Using
the flattening feature large classes are still difficult to visualize".
The former follows our analysis of the results of T3, while the
latter correctly summarizes one limit of the flattening feature.
Suggestions, related to the tasks, were also provided: A feature
for identifying the paths between two classes is missing. This
remark concerns Task T3 were the subjects had to identify a
reference between two classes.

Several subjects’ comments suggested that complementing
the 2D representation with other ones may be useful: "Sometimes
I use the EcoreTools tree view to navigate". We agree that
providing users with multiple kinds of views may improve the
exploration of metamodels. In this work we focus on the standard
2D representation of metamodels to study the impact of our
proposed techniques. We thus forbid the subjects to use the tree
view representation that EcoreTools provides.

In summary, if the conducted experiments exhibit results in fa-
vor of Explen, this last has some limitations and requires other
interactive visualization techniques. For instance, Task T3 high-
lighted the need for interactive visualization techniques show-
ing the common elements shared by several classes. However,
Explen provides efficient capabilities when dealing with a
subset of a metamodel inferred by inheritance and references
relationships. It also provides attractive features for navigating
through these two kinds of relationships.

5.5. Threats to Validity

Internal validity. The obtained results depend on the layout
of the tools. Indeed, the algorithm layout and the drawing of
the relations differ from Explen to EcoreTools (straight
lines with Explen, multi-lines using EcoreTools). More-
over, EcoreTools is embedded with the Eclipse environment

while Explen is a Java Swing application. However, we lessen
this threat by closing various Eclipse panels and toolbars to
present EcoreTools and Explen as similar as possible. In
particular, we set the same dimensions of the diagram area for
both tools. Moreover, the layout algorithms of Explen and
EcoreTools follow the standard representation of metamodel
(bottom-up inheritance, same symbols, etc.). The results also
depend on the tasks performed during the experiments. Thus,
we performed a survey among the MDE community to identify
the most common and representative set of tasks performed by
metamodelers so as not to influence the results.

External validity. This threat concerns the possibility to gen-
eralize our findings. We designed the experiments using two
metamodels (UML and RAM) and 8 tasks to diversify the ob-
servations. The two metamodels selected, UML and RAM, have
various sizes (respectively, 256 classes/583 relations and 61 class-
es/135 relations) and focus on different concerns. Moreover, the
UML metamodel is widely used. The eight tasks, selected inde-
pendently following a survey, relate also to different metamodel-
ing concerns : instantiation, refactoring, quality, and understand-
ing. Despite the efforts made to select multiple representative
modeling tasks in our experiments, we do not pretend that for
any task taken in isolation Kompren will give better results
that EcoreTools. Indeed, the results may be sensitive to the
designed tasks. It would be interesting to characterize the kinds
of tasks performed with Kompren, which have a positive or neg-
ative impact (e.g. Task T3) on different criteria including time,
correctness and navigation effort.

Regarding the population validity, we asked the subjects to
fill a questionnaire at the end of the experiments on their knowl-
edge in modeling. We selected the data of subjects having good
knowledge in software modeling. This selection permitted to
analyze the data corresponding to a representative population of
modeling practitioners.

Construct validity. This threat relates to the perceived over-
all validity of the experiments. Two threats may have affect
the validity of our experiments: the learning gap and the tired-
ness. Unlike Explen and RAM, several subjects knew Eclipse,
EcoreTools, and UML. To reduce this gap, we provided a
training period on Explen and EcoreTools with another
metamodel than RAM and UML. We did not provide a train-
ing period on the UML metamodel because, although it is not
necessarily known by all modelers, the UML metamodel is still
self-descriptive and uses common well-known elements. As for
the tiredness, we limited the number of tasks per subjects and
make sure that they can be performed in a reasonable time frame
by evaluating their duration in the early experiments.

6. Related Work

6.1. Visualizing Models

Musial et al. applied focus+context techniques on UML mod-
els [30]. They proposed a lens showing different levels of detail
of UML models. The level of detail of a UML element is com-
puted according to the degree of interest in relation with the
current situation. For instance, this lens reduces the details of

16

classes having little connections with a given one. We use this
principle to build the Explen semantic zoom where the roles
and cardinality of references may not be visible depending on
the zoom level. This principle could be also used with Explen
instead of hidden the metamodel elements.

Adora is a modeling tool that embeds hierarchical navigation
features [31]. These features consist of semantic zooms that
permit to select the desired level of detail. Users can also filter out
individual nodes to reduce the size and complexity of diagrams
without modifying the underlying model, as in EcoreTools.

Various works have been conducted on layout to propose
new algorithms and methods for minimizing relations cross-
ing [9, 10, 11]. Different guidelines for drawing class diagrams
have also been proposed [12, 13]. Moreover, several research
works proposed to represent class models differently than using
class diagrams [14] or in 3D [15, 16, 17]. In our work, however,
we focus on how to produce interactive visualization features
dedicated to metamodels rather than the rendering of metamod-
els. We also keep the focus on the class diagram representation
promoted and widely-used within the MDE community.

Complementary to our work, techniques have been proposed
to visualize large UML class diagrams based on focus+context
techniques [32, 33].

Regarding MDE activities, research works have been pro-
posed to ease the development of model visualizers and their
layout [34], or to use gestures within modeling editors [35]. Our
work follows this trend that aims at easing the development pro-
cess of modeling editors and completing them with advanced
interactive navigation features.

Lange et al. proposed several views to improve the understand-
ing of UML models [36]. The authors proposed a view, called
context view, that consists of all the model elements related to
a specific one. Such a view corresponds to slicing filter we pro-
posed. However, our slicing filter provides parameters dedicated
to metamodels (cardinality, radius, composition). Moreover, a
contribution of our work is the use of Kompren to ease the
development of such interactive navigation features. In the same
work, Lange et al. also proposed a metric view that combines
the rendering of class diagrams with various metrics. We think
that such a view may improve metamodeling tasks related to
metamodel quality (T3 in our experiments).

Kagdi et al. [32] propose the use of onion graphs [37] as an-
other focus+context technique for visualizing large UML class
models. The focus area is presented in detail with standard UML
notation while the rest of the model is abstracted at various lev-
els of detail and presented in onion notation. The pure-onion
notation represents abstractions in which a set of structural prop-
erties holds for all the members in the group (e.g. all the grouped
classes have a generalization relationship). The onion supports
semantic zooming and incremental exploration.

SDViz is an interactive system for visualizing technical dia-
grams [38]. This system embeds several interactive visualization
features, in particular focus+context techniques, to keep con-
textual information while visualizing diagrams. SDViz does not
provide users with interactive filtering features as those we pro-
posed.

Ducasse et al. propose a visualization technique for under-
standing relations between packages [39]. Our work does not
consider packages since we demonstrated that their use within
metamodels is limited in practices.

In the context of MDE, the interest for the generation of graph-
ical modeling editors from various description models [40] has
been mainly emphasized by the Graphical Modeling Framework
(GMF)5 of the Eclipse project. GMF provides the infrastruc-
ture and components for the generation of graphical modeling
editors. GMF relies on the definition a set of models that de-
scribe the modeling editor. These models are then compiled
into Java code dedicated to run on top of the Eclipse platform.
Still, GEF3D is a graphical framework for developing graphical
2D editors running on top of Eclipse [41]. Following the trend
of GMF, various approaches have been proposed for modeling
and generating modeling editors [42, 43, 44, 45]6. To our best
knowledge, neither of these approaches, DaisyViz [45] excluded,
consider the modeling, the development, or the generation of in-
teractive visualization features as we proposed using Kompren.
DaisyViz is a a model-based user interface toolkit for develop-
ing domain-specific information visualization systems [45]. It
allows programmers to develop visualization systems having
advanced interactive visualization features such dynamic queries
or focus+context. We think that our Explen prototype could
have been developed using DaisyViz but no implementation is
available.

Complementary to our work, several model-driven approaches
focus on improving the interactivity while editing models graph-
ically, for instance using sketching-based techniques [46, 47].

SHriMP is a visualization technique to browse and explore
complex information spaces efficiently [48]. Initially designed
for code comprehension, SHriMP has been generalized to flow
diagrams. In addition to its semantic zoom, SHriMP provides a
hierarchical overview of nodes of interest. Nodes can be filtered
manually or following a given node type. This feature is close to
our filters with the difference that ours are based on the specific
characteristics of metamodels (inheritance, reference, cardinality,
etc.) and not only the node type. Kompren can also permit
developers of visualization tools to build domain-specific filters.

6.2. Interactive visualization techniques for graphs

Visualizing and interacting with graphs has been widely stud-
ied [49, 50, 51, 52, 53]. In this section, we will focus on interac-
tive navigation features related to those we proposed.

PDQ Tree-browser is a graph visualization tool supplemented
with several visualization techniques [54] This tool provides
filtering features, that can be viewed as a query language, to
reduce the data set to a smaller size.

Mondrian is a visualization framework for producing data
views from scripts [55]. Such scripts can be considered as queries
on the data under study. In our work we focus on interacting
directly on the representation of metamodels rather than building
view from data using a query language.

5http://www.eclipse.org/modeling/gmp/
6http://www.eclipse.org/sirius/

17

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/sirius/

SpaceTree is a 2D visualization techniques for exploring large
trees [56]. SpaceTree is generalized to trees and, therefore, pro-
vides not provide features tailed for metamodels or class dia-
grams. However, SpaceTree provides a filtering feature to re-
move the element irrelevant regarding the searched word. It also
allows opening and closing tree branches as in tree views. This
feature permits to manually reduce the amount of displayed data
and could be added to Explen.

Closely related, visualization techniques dedicated to clus-
tered graphs have been proposed [57]. The goal of these tech-
niques is to alleviate the visualization of graphs thanks to a
three dimensional representation sliced in layers. In a comple-
mentary manner, navigating throughout graphs using identified
clusters can ease their understanding [58]. In our context, such
approaches can be used to visualize highly nested models.

The use of lenses for visualizing graphs has also been pro-
posed [59]. If our work does not focus on lenses, this visualiza-
tion techniques should be investigated. For instance, Tominski et
al. developed a lens dedicated for visualizing edges of local
nodes by hiding the other edges [59].

6.3. Empirical Studies
Empirical studies have been conducted on the understanding

of UML class diagrams when doing maintenance activities on
class diagrams [60], or depending on the layout used [61, 62].
In particular, Purchase et al. highlight that when visualizing
domain-specific graphs (e.g. class diagrams) the semantic of the
domain should be considered in the layout process [62]. Our
work follows this conclusion with the difference that interactive
visualization techniques should be considered similarly.

Nugroho focuses on the level of detail of UML models and its
impact on the impact on their comprehension [63]. This work
exhibits that UML models with a higher level of detail improves
their comprehension. However, the UML class diagrams used in
the experiments were composed of 20 classes only. In Explen,
the level of detail of a metamodel can be customized using the
semantic zoom to permit users to select the level they expect.

The empirical study conducted by Lemon et al. on diagram
comprehension highlights interesting results [64]. The results of
this study shown that the size of diagrams (number of entities and
relations), the relations crossing, and the number of bends per re-
lations have a negative effect on diagram comprehension. These
results motivate our work on reducing the displayed metamodel
elements according to the users interest.

Störrle conducted several experiments on the effects of the
layout of UML models on their comprehension [65]. The result-
ing conclusions state that good layout helps UML modelers to
understand the model under study, even more for novice model-
ers. We paid only little attention to the layout we developed for
Explen. So, the results in favor of Explen exhibited by our
experiments may be improved thanks to a optimized layout.

Guéhéneuc developed a method based on eye-tracking for
evaluating class diagrams comprehension [6]. This principle has
also been used to measure: the efficiency of several design pat-
tern representations using the UML class diagram notation [8];
the impact of the status and expertise of subjects when perform-
ing maintenance tasks on UML class diagrams [60]. Closely,

Yusuf et al. studied the comprehension of UML class diagrams
via eye tracking [7]. These works focus on class diagram repre-
sentation and layout while our work targets interactive naviga-
tion features for metamodel. However, the use of eye-trackers
may be used for validating the cognitive-load of modelers while
interacting with metamodel editors.

6.4. Program and Model Slicing

Program slicing [20] is a “technique for focusing on certain
aspects of a program’s behavior and removing all other parts of
code not concerned with this behavior [66]”. Program slicing is
an operation that takes as input slicing criteria, i.e. variables and
their position in the program to slice. This operation produces as
output a slice composed of the statements that have (or may have)
effects on the slicing criteria. The two major slicing methods
are static and dynamic slicing. The static slicing operation does
not execute or interpret the program so that the output slice may
not be minimal. Dynamic slicing remedies this drawback by
evaluating the programs’ statements. The interested reader can
refer to [67, 68, 69, 70, 71] for more details on program slicing.

As introduced in Section 3, model slicing is a model compre-
hension technique inspired by program slicing. Model slicing is
used for various purposes and with various modeling languages.
For instance, slicing state-based models has been widely tackled
in the literature, in particular for minimizing models [72, 73].
Another use of model slicing is the (meta-)model footprinting
operation that statically or dynamically extracts elements from
(meta-)models (e.g. from a model operation to get the effec-
tive metamodel used by the transformation) [74]. To our best
knowledge, all these approaches produced as output a model (the
output slice). Instead, we leverage the model slicing principles
to build a filtering and viewpoint engine that can be mapped to
metamodel visualization toolkits.

7. Conclusion and Future Work

7.1. Conclusion

Metamodels are cornerstones of MDE activities. Handling
metamodels requires a good understanding of, or a part of, the
metamodel under study. The current mainstream metamodel
editors follow the graphical guidelines established for represent-
ing metamodels graphically in 2D. These editors, however, still
rely on basic interactive features for navigating through and
visualizing metamodels while advanced interactive navigation
features exist. In this work, we conducted an empirical study
to assess the benefits of several visualization techniques when
performing different MDE activities. To do so, we implemented
a metamodel visualizer, called Explen, we compared to the
mainstream metamodel editor EcoreTools. The results of
this study exhibits significant positive results for Explen re-
garding time, correctness, and navigation effort. The Explen’s
visualization features were developed using Kompren, a do-
main specific language for modeling model slicers. We show
that developing such interactive features can be eased when
model slicing techniques are used.

18

7.2. Research Agenda
The studies described in this paper focus on metamodels and

are a first step towards developing interactive navigation fea-
tures for graphical model editors. More generally, models, that
conform to their respective metamodels, can also be represented
graphically using a dedicated textual or graphical concrete repre-
sentation. Tools, such as Sirius7, dedicated to the creation of
modeling workbenches provide facilities for designing graphical
concrete syntaxes and generating modeling editors. These tools,
similarly to EcoreTools, still rely on basic visualization tech-
niques. In future work, we will investigate the integration of the
visualization techniques used in Explen into the development
process of model editors. The goal is to provide these editors
with dedicated visualization techniques to ease the visualiza-
tion and navigation of any kind of models represented with a
graphical syntax.

We will also investigate other kinds of interactive navigation
features for graphs that could be applied to metamodels. For
instance, the notion of dynamic inset consisting of painting vi-
sual insets for off-screen nodes should be studied [75]. Another
improvement can be the support of animations when applying
filters to preserve the mental map [76, 58].

The analysis of the results shows that the benefits of our
proposal can be sensitive to the design of modeling tasks. A
future work can focus on characterizing the kinds of tasks that
benefit from sliced-based visualization features.

Finally, we also think that this approach can be adapted to
UML class diagrams or code visualization. For instance, Sillito et
al. conducted an experiment to identify questions programmers
asked when doing software evolution tasks based on the source
code graph [77]. The resulting questions have been classified
into four categories: finding initial focus points; building on
those points; understanding a subgraph; questions over groups
of subgraphs. These categories are closed to the goal of the
interactive visualization features we propose and applying our
approach to this domain may be investigated.

Acknowledgements

This work is partially supported by the French BGLE Project
CONNEXION and by NSERC (Natural Sciences and Engineer-
ing Research Council of Canada) research grants.

References

[1] OMG, UML 2.1.1 Specification (2007).
[2] S. Zhao, M. J. McGuffin, M. H. Chignell, Elastic hierarchies: Combining

treemaps and node-link diagrams, in: Proceedings of the Proceedings of
the 2005 IEEE Symposium on Information Visualization, 2005, p. 8.

[3] F. Fondement, P. Muller, L. Thiry, Big Metamodels Are Evil, in: Model
Driven Engineering Languages and Systems, MODELS’13, 2013, pp. 138–
153.

[4] M.-A. D. Storey, F. D. Fracchia, H. A. Müller, Cognitive design elements
to support the construction of a mental model during software exploration,
Journal of Systems and Software 44 (3) (1999) 171–185.

7http://www.eclipse.org/sirius/
[5] D. Gračanin, K. Matković, M. Eltoweissy, Software visualization, Innova-

tions in Systems and Software Engineering 1 (2) (2005) 221–230.

[6] Y.-G. Guéhéneuc, TAUPE: towards understanding program comprehen-
sion, in: Proceedings of the 2006 conference of the Center for Advanced
Studies on Collaborative research, CASCON ’06, 2006.

[7] S. Yusuf, H. Kagdi, J. Maletic, Assessing the comprehension of UML class
diagrams via eye tracking, in: Program Comprehension, 2007. ICPC ’07.
15th IEEE International Conference on, 2007, pp. 113–122.

[8] G. Cepeda Porras, Y.-G. Guéhéneuc, An empirical study on the efficiency
of different design pattern representations in UML class diagrams, Empiri-
cal Softw. Eng. 15 (5) (2010) 493–522.

[9] J. Seemann, Extending the Sugiyama algorithm for drawing UML class
diagrams: Towards automatic layout of object-oriented software diagrams,
in: Graph Drawing, 1997, pp. 415–424.

[10] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, P. Mutzel, A
new approach for visualizing UML class diagrams, in: Proc. of SoftVis’03,
ACM Press, 2003, p. 179.

[11] K. Wong, D. Sun, On evaluating the layout of UML diagrams for program
comprehension, Software Quality Journal 14 (2006) 233–259.

[12] H. Eichelberger, Nice class diagrams admit good design?, Proceedings of
the 2003 ACM Symposium on Software Visualization (2003) 159–168.

[13] H. Eichelberger, K. Schmid, Guidelines on the aesthetic quality of UML
class diagrams, Information and Software Technology 51 (12) (2009) 1686–
1698.

[14] S. Ducasse, M. Lanza, The class blueprint: Visually supporting the under-
standing of classes, IEEE Transactions on Software Engineering 31 (2005)
75–90.

[15] M. Gogolla, O. Radfelder, M. Richters, Towards three-dimensional repre-
sentation and animation of UML diagrams, in: Proc. of UML’99, 1999, pp.
1–12.

[16] T. Dwyer, Three dimensional UML using force directed layout, in: Proc.
of APSEC’01, 2001, pp. 77–85.

[17] P. McIntosh, M. Hamilton, R. van Schyndel, X3D-UML: 3D UML state
machine diagrams, in: ACM/IEEE 11th International Conference on Model
Driven Engineering Languages and Systems, 2008, pp. 264–279.

[18] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux, Kompren: Modeling
and generating model slicers, Software and Systems Modeling (SoSyM)
(2012) 1–17.

[19] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux, Modeling model
slicers, in: ACM/IEEE 14th International Conference on Model Driven
Engineering Languages and Systems (MODELS’11), 2011, pp. 62–76.

[20] M. Weiser, Program slicing, in: Proceedings of the 5th international con-
ference on Software engineering, IEEE Press, 1981, pp. 439–449.

[21] A. Blouin, N. Moha, B. Baudry, H. Sahraoui, Slicing-based techniques for
visualizing large metamodels, in: IEEE Working Conference on Software
Visualization (VISSOFT 2014), IEEE, 2014.

[22] C. Ware, H. Purchase, L. Colpoys, M. McGill, Cognitive measurements of
graph aesthetics, Information Visualization 1 (2) (2002) 103–110.

[23] B. Shneiderman, Dynamic queries for visual information seeking, Software,
IEEE (1994) 1–18.

[24] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, F. Fouquet,
Mashup of Meta-Languages and its Implementation in the Kermeta Lan-
guage Workbench, Software and Systems Modeling.

[25] A. Blouin, O. Beaudoux, Improving modularity and usability of interactive
systems with Malai, in: EICS’10: Proceedings of the 2nd ACM SIGCHI
symposium on Engineering interactive computing systems, 2010, pp. 115–
124.

[26] A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers, J.-M. Jézéquel,
Combining Aspect-Oriented Modeling with Property-Based Reasoning to
Improve User Interface Adaptation, in: EICS’11: Proceedings of the 3rd
ACM SIGCHI symposium on Engineering interactive computing systems,
2011, pp. 85–94.

[27] J. Kienzle, W. Al Abed, F. Fleurey, J.-M. Jézéquel, J. Klein, Aspect-oriented
design with reusable aspect models, Transactions on aspect-oriented soft-
ware development (2010) 272–320.

[28] M. Fowler, Refactoring: improving the design of existing code, Addison-
Wesley Professional, 1999.

[29] D. J. Sheskin, Handbook Of Parametric And Nonparametric Statistical
Procedures, Fourth Edition, Chapman & Hall/CRC, 2007.

[30] B. Musial, T. Jacobs, Application of focus + context to UML, in: Proceed-
ings of the Asia-Pacific symposium on Information visualisation - Volume
24, APVis ’03, Australian Computer Society, 2003, pp. 75–80.

19

http://www.eclipse.org/sirius/

[31] M. Glinz, S. Berner, S. Joos, Object-oriented modeling with ADORA,
Information Systems 27 (2002) 425–444.

[32] H. Kagdi, J. Maletic, Onion graphs for focus+context views of UML class
diagrams, in: IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT’07), 2007, pp. 80–87.

[33] M. Frisch, R. Dachselt, Off-screen visualization techniques for class dia-
grams, in: Proc. of SOFTVIS’10, 2010, p. 163.

[34] H. Fuhrmann, R. von Hanxleden, Taming graphical modeling, in: Proc. of
MODELS’10, 2010, pp. 196–210.

[35] A. Scharf, T. Amma, Dynamic injection of sketching features into GEF
based diagram editors, in: Proc. of ICSE’13, 2013, pp. 822–831.

[36] C. Lange, M. Chaudron, Interactive Views to Improve the Comprehension
of UML Models - An Experimental Validation, in: 15th IEEE International
Conference on Program Comprehension, 2007, pp. 221–230.

[37] G. Sindre, B. Gulla, H. G. Jokstad, Onion graphs: Aesthetics and layout,
in: IEEE Workshop on Visual Languages, 1993, pp. 287–291.

[38] I. Woo, S. Y. Kim, R. Maciejewski, D. S. Ebert, T. D. Ropp, K. Thomas,
SDViz: A Context-Preserving Interactive Visualization System for Techni-
cal Diagrams, in: Proceedings of the 11th Eurographics / IEEE - VGTC
conference on Visualization, 2009, pp. 943–950.

[39] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, I. Alloui, Package surface
blueprints: Visually supporting the understanding of package relationships,
in: Proc. of ICSM’07, 2007, pp. 94–103.

[40] M. Minas, G. Viehstaedt, DiaGen: a generator for diagram editors pro-
viding direct manipulation and execution of diagrams, in: Proceedings of
Symposium on Visual Languages, IEEE, 1995, pp. 203–210.

[41] J. von Pilgrim, K. Duske, GEF3D: a framework for two-, two-and-a-half-,
and three-dimensional graphical editors, in: Proceedings of the 4th ACM
symposium on Software visualization, 2008, pp. 95–104.

[42] K. Ehrig, C. Ermel, S. Hänsgen, G. Taentzer, Generation of visual editors
as eclipse plug-ins, in: Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, 2005, p. 134.

[43] J. Grundy, J. Hosking, N. Zhu, N. Liu, N. Zealand, Generating Domain-
Specific Visual Language Editors from High-level Tool Specifications, in:
Proc. of ASE’06, 2006, pp. 25–36.

[44] R. I. Bull, M.-A. Storey, B. Columbia, J.-m. Favre, M. Litoiu, M. Ontario,
An Architecture to Support Model Driven Software Visualization, in: Proc.
of ICPC’06, 2006, pp. 100–106.

[45] L. Ren, F. Tian, X. (Luke) Zhang, L. Zhang, DaisyViz: A model-based user
interface toolkit for interactive information visualization systems, Journal
of Visual Languages & Computing 21 (4) (2010) 209–229.

[46] J. Grundy, J. Hosking, Supporting generic sketching-based input of dia-
grams in a domain-specific visual language meta-tool, in: 29th International
Conference on Software Engineering, 2007, pp. 21–26.

[47] W. A. Abed, V. Bonnet, M. Schöttle, TouchRAM: A multitouch-enabled
tool for aspect-oriented software design, in: Software Language Engineer-
ing, 2013.

[48] D. Rayside, M. Litoiu, M.-A. Storey, Visualizing flow diagrams in web-
sphere studio using SHriMP views, Information Systems Frontiers 5 (2)
(2003) 161–174.

[49] I. Herman, G. Melançon, M. S. Marshall, Graph visualization and naviga-
tion in information visualization: A survey, IEEE Transactions on Visual-
ization and Computer Graphics 6 (2000) 24–43.

[50] A. Cockburn, A. Karlson, B. B. Bederson, A review of overview+detail,
zooming, and focus+context interfaces, ACM Comput. Surv. 41 (1) (2009)
2:1–2:31.

[51] P. Caserta, O. Zendra, Visualization of the Static Aspects of Software: A
Survey, IEEE transactions on visualization and computer graphics 17 (7)
(2010) 913–933.

[52] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk,
J.-D. Fekete, D. Fellner, Visual analysis of large graphs: State-of-the-art
and future research challenges, Computer Graphics Forum 30 (6) (2011)
1719–1749.

[53] H. Schulz, S. Hadlak, H. Schumann, The design space of implicit hierar-
chy visualization: A survey, Visualization and Computer Graphics, IEEE
Transactions on 17 (4) (2011) 393–411.

[54] H. P. Kumar, C. Plaisant, B. Shneiderman, Browsing hierarchical data
with multi-level dynamic queries and pruning, International Journal of
Human-Computer Studies 46 (1) (1997) 103 – 124.

[55] M. Meyer, T. Gîrba, M. Lungu, Mondrian: an agile information visualiza-
tion framework, in: ACM symposium on Software visualization, 2006, pp.
135–144.

[56] C. Plaisant, J. Grosjean, B. Bederson, Spacetree: supporting exploration in
large node link tree, design evolution and empirical evaluation, in: IEEE
Symposium on Information Visualization, 2002, pp. 57–64.

[57] P. Eades, Q.-W. Feng, Multilevel visualization of clustered graphs, in:
Graph drawing, 1997, pp. 101–112.

[58] P. Eades, M. L. Huang, Navigating clustered graphs using force-directed
methods, J. Graph Algorithms Appl. 4 (3) (2000) 157–181.

[59] T. Christian, J. Abello, F. van Ham, H. Schumann, Fisheye tree views
and lenses for graph visualization, in: Proceedings of the conference on
Information Visualization, IV ’06, 2006, pp. 17–24.

[60] Z. Soh, Z. Sharafi, B. Van den Plas, G. Porras, Y. Gueheneuc, G. Antoniol,
Professional status and expertise for UML class diagram comprehension:
An empirical study, in: Proc. of ICPC’12, 2012, pp. 163–172.

[61] B. Sharif, J. I. Maletic, The effect of layout on the comprehension of UML
class diagrams: A controlled experiment, in: Proc. of Vissoft’09, 2009, pp.
11–18.

[62] H. Purchase, M. McGill, Graph drawing aesthetics and the comprehension
of UML class diagrams: an empirical study, in: Proc. of APVIS’01, 2001,
pp. 129–137.

[63] A. Nugroho, Level of detail in UML models and its impact on model
comprehension: A controlled experiment, Information and Software Tech-
nology 51 (12) (2009) 1670–1685.

[64] K. Lemon, E. B. Allen, J. C. Carver, G. L. Bradshaw, An Empirical Study
of the Effects of Gestalt Principles on Diagram Understandability, in: 1st
International Symposium on Empirical Software Engineering and Mea-
surement, IEEE, 2007, pp. 156–165.

[65] H. Störrle, On the Impact of Layout Quality to Understanding UML Di-
agrams: Diagram Type and Expertise, in: IEEE Symposium on Visual
Languages and Human-Centric Computing, 2012, 2012, pp. 49–56.

[66] J. T. Lallchandani, R. Mall, A Dynamic Slicing Technique for UML Ar-
chitectural Models, IEEE Transactions on Software Engineering 99.

[67] J. Silva, A vocabulary of program-slicing based techniques, ACM Com-
puting Surveys.

[68] M. Harman, R. Hierons, An overview of program slicing, Software Focus
2 (3) (2001) 85–92.

[69] K. Gallagher, D. Binkley, Program slicing, in: In Proceedings of Frontiers
of Software Maintenance, 2008.

[70] B. Xu, J. Qian, X. Zhang, Z. Wu, L. Chen, A brief survey of program
slicing, SIGSOFT Softw. Eng. Notes 30 (2005) 1–36.

[71] F. Tip, A Survey of Program Slicing Techniques, Journal of Programming
Languages 3 (1995) 121–189.

[72] B. Korel, I. Singh, L. Tahat, B. Vaysburg, Slicing of state-based models,
in: Proc. of the IEEE International Conference on Software Maintenance
(ICSM’03), 2003.

[73] K. Androutsopoulos, D. Binkley, D. Clark, N. Gold, M. Harman, K. Lano,
Z. Li, Model projection: Simplifying models in response to restricting
the environment, in: International Conference on Software Engineering
(ICSE’11), 2011.

[74] C. Jeanneret, M. Glinz, B. Baudry, Estimating footprints of model oper-
ations, in: International Conference on Software Engineering (ICSE’11),
2011.

[75] S. Ghani, N. H. Riche, N. Elmqvist, Dynamic Insets for Context-Aware
Graph Navigation, Computer Graphics Forum 30 (3) (2011) 861–870.

[76] P. Eades, W. Lai, K. Misue, K. Sugiyama, Preserving the mental map of a
diagram, International Institute for Advanced Study of Social Information
Science, Fujitsu Limited, 1991.

[77] J. Sillito, G. C. Murphy, K. De Volder, Questions programmers ask during
software evolution tasks, in: Proc. of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, 2006, p. 23.

20

	1 Introduction
	2 Motivating Scenario
	3 Leveraging Model Slicing for Developing Metamodel Visualization Techniques
	3.1 On the benefits of model slicing to build filtering features
	3.2 Background on Model Slicing
	3.3 Explen: a Kompren-Based Metamodel Visualization Tool
	3.3.1 Development Process
	3.3.2 Interactive Visualization Features for Metamodels

	4 Experimental Design
	4.1 Objects
	4.2 Hypotheses
	4.3 Dependent Variables
	4.4 Data Collection
	4.5 Tasks
	4.5.1 Task Design
	4.5.2 Tasks Description

	4.6 Procedure

	5 Analysis and Results
	5.1 Time Analysis
	5.2 Correctness Analysis
	5.3 Navigation Effort Analysis
	5.4 Discussion
	5.5 Threats to Validity

	6 Related Work
	6.1 Visualizing Models
	6.2 Interactive visualization techniques for graphs
	6.3 Empirical Studies
	6.4 Program and Model Slicing

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Research Agenda

