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Hybrid Automatic Visual Servoing Scheme using Defocus Information
for 6-DoF Micropositioning

Le Cui1, Eric Marchand1, Sinan Haliyo2 and Stéphane Régnier2

Abstract— Direct photometric visual servoing uses only the
pure image information as a visual feature, instead of using
classic geometric features such as points or lines. It was
demonstrated efficiently in 6 degrees of freedom (DoF) posi-
tioning. However, in micro-scale, using only image intensity
as a visual feature performs unsatisfactorily in cases where
the photometric variation is low, such as motions along vision
sensor’s focal axis under a high magnification. In order to
improve the performance and accuracy in those cases, an
approach using hybrid visual features is proposed in this paper.
Image gradient is employed as a visual feature on z axis while
image intensity is used on the other 5 DoFs to control the
motion. A 6-DoF micro-positioning task is accomplished by
this hybrid visual servoing scheme. The experimental results
obtained on a parallel positioning micro-stage under a digital
microscope show the robustness and efficiency of the proposed
method.

I. INTRODUCTION

Automatic and reliable positioning, handling and assembly
of the micro-structures have shown their potential in fabrica-
tion of micro-structures and microelectromechanical systems
(MEMS) over the past few decades. In the micro-scale,
the prevailing spatial sensing technique is vision, through
optical or electron microscopy. Visual servoing is hence an
unavoidable tool to automate manipulation tasks [1], [2].
The accuracy in position and orientation of a sample in the
camera reference frame is one important issue [3], [4]. Many
approaches in this domain rely the observation of object
features [5], [6]. The pose (i.e., position and orientation)
of samples is computed by estimating the position and
orientation of these features. Furthermore, available imaging
techniques at the micro-scale by an optical or electronic
microscope exhibit several limitations such as high signal-
to-noise ratio, low refresh rate, contrast, etc., leading to the
bottleneck of pose detection.

Recently, a novel visual servoing technique has been
proposed to overcome these different issues. This approach
uses the photometric information [7], [8] as a visual feature
in the image based control law. In this case, only the image
intensity is needed while visual tracking, including feature
extraction and motion prediction is no longer necessary.
This approach is demonstrated in micro-positioning on 3-
DoF (translation along x and y axes, and rotation around z
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axis) [9], and on 6-DoF with some limitations on translation
along z axis [10].

Particularly in micro-nano scale, the motion along z axis is
difficult to observe due to microscope projection model [11].
As a microscope provides a long focal length, a motion
along z axis causes only a tiny variation on the observed
image. Using only image intensity information as a visual
feature, the accuracy of the translation on z axis is inferior to
other DoFs. Accurate depth information is an important issue
for correct positioning. Many approaches in depth detection
have been proposed in computer vision. One idea is to
employ stereo vision and reconstruct the tree-dimensional
(3D) image from several two-dimensional (2D) images [12],
in which the reliable extraction of features is necessary. Both
extraction and feature matching could be computationally
expensive. Considering focus information, depth from focus
(DFF) [13] has been proposed. The basic of this method
is to obtain different focus levels by adjusting the camera
parameters (i.e., the distance between the lens and image
plane, the focal length and the aperture radius). It involves
obtaining many observations for the various camera param-
eters and estimating the focus using a criterion function.
Since many camera parameters and observations should be
considered, it is not practical in positioning. Alternatively,
the depth from defocus (DFD) based approaches have been
also widely discussed [14], [15]. The main idea of these
methods is objects at a particular distance from the lens
will be focused in an optical system, whereas objects at
other distances will be blurred. By measuring the amount
of defocus of the object on the observed image, the depth of
the object with respect to the lens can be recovered from the
geometric optics. In these methods, the defocus parameters
can by estimated from the image by an inverse filter in
the Fourier domain [14], by modeling the depth and the
image as separate Markov random fields [16], or by some
spatial domain-based techniques [17], etc. Inspired from the
DFD, considering that the image sharpness and focus vary
significantly when using an optical path which provides a
small depth of field, the image gradient information can be
hence used for controlling z motion in a visual servoing
scheme.

This study addresses a closed-loop control scheme for
visual servoing using image intensity and image gradient for
a micro-positioning task in 6-DoF. The proposed method is
demonstrated experimentally on a 6-DoF parallel-kinematics
positioning stage and a digital microscope. The manuscript
is organized as follows: Section II briefly recalls the classic
visual servoing and introduces the general approach. Section



III describes selected visual features, image intensity and
gradient. The hybrid control laws constructed with these
features are presented in Section III C. Experimental results
obtained on a 6-DoF parallel micro-assembly workcell are
shown in Section IV.

II. CLASSICAL VISUAL SERVOING

Two distinct robot-camera relation cases exist in classical
visual servoing [18]: eye-in-hand case, in which the camera
is installed in the end-effector, and alternatively, the eye-to-
hand case, where the camera is fixed and look toward the
end-effector. In micro/nano-robotics, the eye-to-hand case is
generally considered since the sensor (microscope) is usually
motionless.

In classical visual servoing, the objective is to minimize
the error e between the current visual feature s(q) and the
desired one s⇤:

e(q) = s(q)� s⇤ (1)

The relation between the time derivative ṡ and the robot
joint velocity q̇ is given by:

ṡ = J
s

q̇ (2)

where J
s

represents the visual feature Jacobian.
With an exponential decrease of the error ė = ��e, with

(1) and (2), the control law can be expressed as:

q̇ = ��J+
s

e (3)

where � is the proportional coefficient and J+
s

is the pseudo-
inverse of J

s

.
Considering the eye-to-hand visual servoing context, the

Jacobian J
s

can be expressed as:

J
s

= �L
s

cV
F

F J
n

(q) (4)

where L
s

represents the interaction matrix, which links the
relative camera instantaneous velocity v and the feature mo-
tion ṡ, cV

F

is the motion transform matrix which transforms
velocity expressed in camera reference frame onto the robot
frame, F J

n

(q) is the robot Jacobian in the robot reference
frame.

To improve the robustness of algorithm, a Levenberg-
Marquardt-like method is considered:

q̇ = ��(H + µ · diag(H))�1J>
s

e(q) (5)

where µ is a coefficient whose typical value ranges from
0.001 to 0.0001. diag(H) represents a diagonal matrix of
the matrix H = J>

s

J
s

.

III. PURE IMAGE INFORMATION BASED VISUAL
FEATURES

In visual servoing, one or more feature information, such
as geometric measurements (e.g. position and orientation
of interesting points) or direct image information including
image gradient [19],[20] and image entropy [21] can be
extracted as visual features. In [9],[10], the photometric in-
formation is shown to be efficient for 6-DoF visual servoing.
However, the accuracy of translation along z axis is much

inferior to others due to the lack of observation on z axis in
micro/nano imaging: At high magnifications, existing models
assume an orthogonal projection hence the output image
varies slowly over the object/camera distance. In this paper
a hybrid approach with features extracted from the pure
image information is proposed for 6-DoF visual servoing.
The general idea is to use image gradient information for
controlling the motion on z axis and to use image intensity
information to control the other degrees of freedom.

A. Image intensity as a visual feature
First considering the intensity of all the pixels I from the

pure image as the main visual feature s, the cost function is
defined as:

e
I

(q) = I(q)� I⇤ (6)

For a pixel x = (x, y) on image plane, the time deviation of
x can be expressed by

ẋ = Lxv. (7)

where v = (v,w) contains the relative camera instantaneous
linear velocity v and angular velocity w, Lx is the interaction
matrix:

Lx =


� 1

Z

0 xy �(1 + x

2) y

0 � 1
Z

1 + y

2 �xy �x

�
. (8)

Let I(x, t) be the intensity of the pixel x at time t, then

rI =


@I

@x

0
0 @I

@y

�
, (9)

the total deviation of the intensity I(x, t) can be written as

İ(x, t) = rI ẋ + İ , (10)

where İ = @I

@t

represents the time variation of I . According
to [22] based on the temporal luminance constancy hypoth-
esis, İ(x, t) = 0. In this case,

İ = �rILxv = L
I

v. (11)

Considering the entire image, I = (I00, I01, · · · , IMN

),
where M,N represent the image size:

İ =

0

B@
L
I00

...
L
I

MN

1

CA v = LIv (12)

where İ is the variation of the whole image intensity. LI is a
MN ⇥ 5 matrix that theoretically allows a control law able
to compute the 5 DoFs.

B. Image gradient as a visual feature
As mentioned before, one difficulty in micro/nano vision

at a high magnification is the lack of observation on z axis.
Actually, for a sensor with small depth of field, it is evident
that the image sharpness changes when z position changes.
That leads the motion on z can be controlled according to
the image sharpness. Hence, the image gradient is chosen
as a visual feature to control the motion along z axis. An
approach employing image gradient information in visual



servoing is proposed in this part. The general idea is to
consider that the image gradient varies when object position
on z axis changes, where the focal length of the sensor is
always a constant. Practically, for a sensor with a small depth
of field, the focal length of sensor can be adjusted in order
to acquire a sharp image at the desired pose. In this case,
the aim is to minimize the error of image gradient between
the image at current pose and the image at desired pose to
move the object to the target pose.

The linear image formation model, which is commonly
used in the case of optical sensors [13] is employed here.
Let Z be the current position on z axis, the defocus image
I(x, y, Z) at the position Z can be expressed as the convo-
lution of a sharp image I⇤(x, y, Z⇤) at the desired pose Z

⇤

and a defocus kernel f(x, y):

I(x, y, Z) = I⇤(x, y, Z⇤) ⇤ f(x, y) (13)

In previous studies, such as [23], the Gaussian kernel
is widely used as an approximation of defocus model by
many authors. Its probability density function (PDF) can be
expressed by

f(x, y) =
1

2⇡�2
e

� x

2+y

2

2�2
. (14)

For a small displacement dZ on z axis, consider a propor-
tional relation between d� and dZ:

d� = mdZ. (15)

where m is a constant coefficient.
For an image I(x, y, Z) at Z on z axis, the square of the

norm of the image gradient at a point (x, y) on the image
plane is

g(x, y, Z) = krI(x, y, Z)k2

= rI

2
x

(x, y, Z) +rI

2
y

(x, y, Z)
(16)

Considering the square of the norm of the image gradient
for the whole image as the visual feature:

G(Z) =
MX

x=0

NX

y=0

g(x, y, Z)

=
MX

x=0

NX

y=0

(rI

x

2(x, y, Z) +rI

y

2(x, y, Z))

(17)

One goal is then to minimize the error of the current image
gradient G(Z) and the desired image gradient G

⇤(Z⇤). In
this case, the cost function is defined as:

e

G

(Z) = G(Z)�G

⇤(Z⇤) (18)

The relation between the relative camera instantaneous linear
velocity v

z

along z axis and the time variation of image
gradient G is

Ġ = L

G

v

z

(19)

where L

G

is the Jacobian (hence a scalar) which can be
expressed by:

L

G

=
@G

@�

@�

@Z

(20)

From (15), it leads to

L

G

= m

@G

@�

. (21)

where
@G

@�

can be expressed by

@G

@�

=
MX

x=0

NX

y=0

2(rI

x

(x, y)
@rI

x

(x, y)

@�

+rI

y

(x, y)
@rI

y

(x, y)

@�

)

(22)

In (13), the convolution can also be written as:

I(x, y) =
X

u

X

v

I⇤(x� u, y � v)f(u, v). (23)

From (14), compute the derivative

@f(u, v)

@�

=
1

2⇡
(u2 + v

2 � 2�2)��5
e

�u

2+v

2

2�2
. (24)

According to (23) and (24):

@rI

x

(x, y)

@�

=
X

u

X

v

r(I⇤
x

(x� u, y � v)

· 1

2⇡
(u2 + v

2 � 2�2)��5
e

�u

2+v

2

2�2 )

(25)

and

@rI

y

(x, y)

@�

=
X

u

X

v

r(I⇤
y

(x� u, y � v)

· 1

2⇡
(u2 + v

2 � 2�2)��5
e

�u

2+v

2

2�2 )

(26)

Considering (25) and (26) in (22), L
G

can be finally com-
puted.

C. Control law for hybrid visual servoing

For the hybrid visual servoing, both image intensity
and image gradient are considered as visual features s =
(I(q), G(Z))>. Using image intensity as a visual feature,
the velocities (the linear and angular velocities on x, y axes,
and the angular velocity around z axis) of the end-effector
can be computed from (4), where the Jacobian is

J
I

= �L
I

cV
F

F J
n

(q). (27)

Similarly, using image gradient as a visual feature, the linear
velocity along z axis is:

Ż = ��

z

L

�1
G

e

G

(Z) (28)

where �

z

is an exponential coefficient. During the visual
servoing process, the control laws for motion along z axis
and the other 5 DoFs are computed respectively and simul-
taneously.



Fig. 1. The micropositioning workcell
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Fig. 2. Parallel positioning stage

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Experiments are accomplished on a micropositioning
workcell installed on an anti-vibration table shown in Fig. 1.
It contains a 6-DoF positioning-kinematics micro-stage 1 as
well as its modular control system and a digital microscope 2

with an aperture-adjustable lens towards the top-plate of
positioning stage. Experiments are realized on an optical
magnification of 60⇥.

TABLE I
POSITIONING STAGE SPECIFICATIONS

Travel range Closed-loop resolution
X +/-6 mm 1 nm
Y +/-6 mm 1 nm
Z +/-3 mm 1 nm
✓X +/-10° 1 µrad
✓Y +/-10° 1 µrad
✓Z +/-20° 1 µrad

The SmarPod positioning stage is a parallel robot (hexa-
pod) that provides three positioners supporting a top-plate.
By the motion of its positioners, the top-plate can be moved
in three directions and rotated around three axes. The hexa-
pod and the reference frame are shown in Fig. 2. Table I
describes its specifications.

The specimen is a microchip which measures 10 mm⇥5
mm, with 0.5 mm in thickness. The resolution of acquired

1SmarPod 70.42-S-HV made by SmarAct and its positioner SLC 17.20-
S-HV

2Basler acA1600-60gm
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Fig. 3. Image gradient per pixel with respect to z position

image in our experiments from the digital microscope is
659⇥ 494 pixels.

B. Validation of the method

First, the positioning stage is moved from -2.3 mm to
2.1 mm along the z axis to evaluate the variation of image
gradient with respect to z position. Images are acquired at
each 40 µm step. By computing the image gradient per pixel
for each image, the relation between the image gradient and z

position is shown in Fig. 3. It can be seen from the figure that
the depth of field is small enough for an accurate positioning
and a single optimum is found in image gradient.

In positioning experiments, the stage is first set to an initial
pose then moved to a predefined desired pose iteratively by
comparing the image at the desired pose with the image at
the current pose. The focus of microscope is adjusted so that
the image is focused at the desired pose.

To validate the method, the initial pose of positioning stage
is set to 500 µm in x and 1 mm in y axes, 2 mm in z

axis; 0.1° around x axis, 2° around z axes away from the
desired pose to test the performance of the proposed method.
The initial image and desired image after image processing
is shown in Fig. 5(a) and Fig. 5(b), respectively. Fig. 5(c)
to Fig. 5(d) shows the evolution of image intensity error
e
I

(q) = I(q)�I⇤ until the end of visual servoing procedure.
The velocities converge fast to 0. As a consequence of
optimization, the error image is almost null.

The experimental results are shown in Fig. 4. Since visual
servoing is robust to calibration errors [24], the positioning
task without explicit calibration performs also quite well.
The image intensity error as well as image gradient error
per pixel decrease to negligible values when the velocities
converge. The object pose errors between the final pose and
the desired pose reach 0.65 µm, 0.47 µm and 0.17 µm in
translation along x, y, z axes; 0.027°, 0.036° and 0.003° in
rotation around x, y, z axes, respectively. It can be mentioned
that in Fig. 4(c), the image gradient error increases around
the 70th iteration. It is mainly because the sample is too
large that cannot be presented in the whole image. When
the positioning stage is moving, details of the sample on the
image vary, which causes the computation of image gradient
to be slightly disturbed. In experiments, the proposed visual
servoing scheme shows robustness to such situations.
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Fig. 4. 6-DoF positioning using hybrid visual servoing (a) Evolution of
joint velocity (in mm/s and rad/s). (b) Evolution of object pose error (in µm/s
and degree). (c) Evolution of image intensity error and image gradient error
per pixel. (d) Object trajectory in camera frame

Fig. 5. Progress of 6-DoF positioning using hybrid visual servoing (a)
Initial image, (b) desired image, (c) to (f) show image error eI(q) at 1st,
16th, 82th and last iteration.
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Fig. 7. Positioning using hybrid visual servoing: Evolution of joint velocity
(in mm/s and rad/s)

C. Hybrid visual servoing vs visual servoing using image
intensity

Experiments have been achieved to evaluate the proposed
hybrid visual servoing by comparing to an approach using
only image intensity [10] in the same conditions. The initial
pose of the positioning stage is set to be 2 mm on z

axis and 2°around z axis away from the desired pose. The
positioning task based on the proposed hybrid visual servoing
and image intensity based visual servoing are accomplished
respectively. The evolution of joint velocity are illustrated in
Fig. 6 and Fig. 7. The positioning error on translation along z

axis with hybrid visual servoing is 0.26 µm, which is smaller
than with the image intensity based visual servoing (1.66
µm), where also more iterations are needed to converge.
On other DoFs, both these two methods perform equivalent,
where the pose errors are less than 0.6 µm in translation
along x and y axes, less than 0.01° in rotation around x, y
and z axes. Furthermore, because of the limited travel range
of the positioning stage on z axis, the initial pose on z cannot
be extremely far away from the desired pose. Indeed, in
that case, the image-intensity-only method fails to converge
because little details can be extracted from the initial blur
image. However, the hybrid visual servoing performs well
since the motion on z axis can be conducted even the image
is heavily blurred.

D. Robustness to light variation
As the proposed method uses photometric information, the

sensibility to variable light conditions is indeed an important
issue. Therefore, the robustness to light variation of the
proposed method is tested. The initial pose of the stage
is also set to be 2 mm on z axis and 2° around z axis.
Fig. 8 shows the evolution of joint velocity. The luminance
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Fig. 8. Positioning using hybrid visual servoing with lightning perturbation:
Evolution of joint velocities (in mm/s and rad/s)

of the environment light is changed suddenly at the 8th
iteration. Oscillations in velocities appear, caused by the
lighting changes. However, the convergence and the accuracy
are unaffected in spite of the changing light. The system
keeps stable for a small perturbation occurring during the
positioning task.

V. CONCLUSION

In this paper, a hybrid visual servoing scheme is pro-
posed for an accurate and robust 6-DoF micropositioning.
Differently from traditional visual tracking and object local-
ization approach, only pure image photometric information
is needed in this method. The image intensity information is
employed to control the linear motion along x, y axes and the
angular motion around x, y, z axes. To improve the precision
of positioning on z axis, image gradient is introduced as
a new visual feature according to the variation of image
sharpness due to the motion along z axis. This method is
validated by experiments on a 6-DoF parallel positioning
stage and a digital microscope. Although the initial pose is
far away from the desired pose (2 mm in translation and 2°
in rotation), the results are accurate (pose errors are below
1 µm in translation, below 0.04° in rotation around x, y and
0.003° in rotation around z). Future work will be to modify
the sensor projection model and to validate this approach
with a scanning electron microscope.
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