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Learning the Shape of Image Moments
for Optimal 3D Structure Estimation

Paolo Robuffo Giordano, Riccardo Spica, and François Chaumette

Abstract— The selection of a suitable set of visual features
for an optimal performance of closed-loop visual control or
Structure from Motion (SfM) schemes is still an open problem
in the visual servoing community. For instance, when consid-
ering integral region-based features such as image moments,
only heuristic, partial, or local results are currently available
for guiding the selection of an appropriate moment set. The
goal of this paper is to propose a novel learning strategy able to
automatically optimize online the shape of a given class of image
moments as a function of the observed scene for improving the
SfM performance in estimating the scene structure. As case
study, the problem of recovering the (unknown) 3D parame-
ters of a planar scene from measured moments and known
camera motion is considered. The reported simulation results
fully confirm the soundness of the approach and its superior
performance over more consolidated solutions in increasing the
information gain during the estimation task.

I. INTRODUCTION

The quest for finding a good set of features for visual
control and 3D Structure from Motion (SfM) is a classical
problem in the visual servoing community, and it has indeed
attracted a large body of literature over the last decades.
A number of approaches has been proposed over the years
for exploiting local geometrical primitives, such as points
or lines tracked on the image, as visual features to be
measured/controlled. A comprehensive overview of these
possibilities can be found in [1]. In parallel, another very
successful line of research has considered the use of more
‘integral’ image descriptors able to encode the information
contained over a region of interest on the image plane (e.g.,
enclosed by the contour of a tracked object). This indeed
usually results in a (relatively) easier extraction, matching
and spatio-temporal tracking across multiple frames of the
region of interest, thus generally improving the robustness
against image processing errors.

Image moments of binary dense closed regions or of
discrete sets of points [2] are a typical (and by now clas-
sical) example of integral features exploited for visually
controlling the camera pose [3]–[5]. Further extensions of
these ideas have dealt with, e.g., the use of particular kernels
for evaluating the image moments [6], or the direct use of
pixel intensities [7] by processing the whole acquired image.
Image moments from dense regions [8] or discrete point
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clouds [9], [10] have also been exploited as visual features
for recovering the 3D structure of a planar scene via SfM
schemes.

Despite this state-of-the-art, it is however worth noting that
the selection of a good set of image moments for 6-dof visual
control or SfM is still an open problem. Ideally, one would
like to find a unique set of visual features resulting in the
‘most linear’ control problem with the largest convergence
domain, or in maximum observability (i.e., information gain)
for a given camera displacement in case of SfM tasks.
However, to the best of our knowledge, only local, partial
(e.g., depending of the particular shape of the object) or
heuristic results are currently available. For instance, [2],
[6], [7] propose different combinations of image moments
able to only guarantee local 6-dof stability of the servoing
loop around the desired pose, and with a basin of attraction
to be heuristically determined case by case. As for what
concerns the SfM case, the choice of which moments to
exploit for allowing a converging estimation of the scene
structure is also not straightforward. In [8], [11] the area a
and barycenter coordinates (xg, yg) of a dense region are
successfully fed to a SfM scheme based on the (intuitive)
motivation that the same set (a, xg, yg) is also the typical
choice for controlling the camera translational motion in a
servoing loop [2]. However, this intuition breaks down when
considering moments of a discrete point cloud: in this case,
the typical choice for controlling the camera translational
motion, that is, the set (xg, yg, µ20 + µ02) (see [2]), is
empirically shown in [10] to not provide enough information
for allowing a converging estimation of the scene structure.

One could argue that the hope of finding a unique set
of visual features optimal in all situations might eventually
prove to be unrealistic, if not impossible, while it could just
be more appropriate (and reasonable) to rely on an automatic
and online selection of the best feature set (within a given
class) tailored to the particular task at hand. Motivated by
these considerations, the goal of this work is to propose an
automatic learning strategy able to select online the ‘best’ set
of image moments in order to optimize the SfM performance
in recovering the (unknown) 3D parameters of a planar scene.

The rest of the paper is organized as follows: first some
preliminary concepts of interests are reviewed in Sect. II,
and then the definition of weighted parametric moment,
central for the paper developments, is introduced in Sect. III.
Section IV discusses a possible strategy for automatically
adjusting the shape of the weighted moments so as to
maximize an ‘observability measure’ (or information gain) of
the chosen SfM task, and Sect. V reports the results of several



simulations where the benefits of the proposed approach can
be clearly appreciated. Finally, Sect. VI concludes the paper
and draws some future perspectives.

II. PRELIMINARIES

Consider a planar scene with equation P : nTE+d = 0,
with n ∈ S2 being the unit normal vector and d ∈ R the
plane distance from the camera center, and let (v, ω) ∈ R6

represent the linear/angular camera velocity1. The (i, j)-th
image moment mij of a collection of N point features pk =
(xk, yk, 1) tracked on P is defined as

mij =

N∑
k=1

xiky
j
k. (1)

Furthermore, xg = m10/N and yg = m01/N denote the
barycenter coordinates and

µij =

N∑
k=1

(xk − xg)i(yk − yg)j

the (i, j)-th centered moment.
By letting χ = −n/d ∈ R3, the dynamics of mij is

known to take the following expression linear in χ

ṁij = fωij (mkl, ω) + fχij (mkl, v)χ, (2)

see [2] for further details. In (2), mkl stands for a generic
(k, l)-th moment of order up to i+ j + 1 and χ represents
the 3D structure of the observed planar scene P (not directly
measurable from sole image quantities). A conceptually
equivalent derivation can also be obtained for the barycenter,
for the centered moments, and for the case of image moments
of dense planar regions [2].

Equation (2) is at the core of virtually all algorithms for
3D structure estimation with image moments playing the
role of measurements. For instance, owing to the linearity
of (2) w.r.t. χ, several SfM schemes meant to recover the
(unmeasurable) 3D structure χ from the measured s(t) and
the known camera motion (v, ω) have been proposed in [8]–
[10]. However, as discussed in the Introduction, a satisfactory
SfM performance requires the preliminary identification of a
suitable set of image moments ‘rich enough’ for ensuring
observability of the scene structure. Specifically, given a
collection of m measured moments s = (mi1j1 , . . . , mimjm)
and defining (using (2))

Ω =
[
fTχi1j1 (mkl, v) . . . f

T
χinjn

(mkl, v)
]
∈ R3×m, (3)

the ‘observability matrix’ ΩΩT ∈ R3×3 must remain full
rank during the camera motion [11].

The weighted parametric moments introduced hereafter
are meant to provide an adjustable visual feature set that
can be tuned online for automatically coping with this
observability requirement.

1All quantities are expressed in the camera frame, and the camera is
assumed calibrated.

III. DEFINITION OF WEIGHTED PARAMETRIC
IMAGE MOMENTS

Let w = w(x, y, θ) be a smooth function of the coordi-
nates (x, y) on the image plane and of a vector of parameters
θ ∈ Rp. One can generalize (1) and define a weighted
parametric image moment for N observed features pk

mw(θ) =

N∑
k=1

w(xk, yk, θ), (4)

with, obviously, mw = mij for w(x, y, θ) = xiyj . Function
w(x, y, θ) can be seen as the class of all the considered
image moments (e.g., a quadratic form in x, y) parameterized
by vector θ (e.g., the coefficients of the quadratic form).
Consider now the following additional definitions

mx
wij (θ) =

N∑
k=1

xiky
j
k

∂w(x, y, θ)

∂x

∣∣∣∣
(xk, yk)

my
wij (θ) =

N∑
k=1

xiky
j
k

∂w(x, y, θ)

∂y

∣∣∣∣
(xk, yk)

mθ
w(θ) =

N∑
k=1

∂w(x, y, θ)

∂θ

∣∣∣∣
(xk, yk)

,

(5)

and note that mθ
w is a row vector of dimension p. Following

the derivations in [2], it is easy to show that the dynamics
of mw(θ) takes the expression (reminiscent of (2))

ṁw(θ) =[mA(v, θ) mB(v, θ) mC(v, θ)]χ

+ [mωx(θ) mωy (θ) mωz (θ)]ω +mθ
w(θ)θ̇

(6)

with 

mA =−mx
w10

vx −my
w10

vy + (mx
w20

+my
w11

)vz

mB =−mx
w01

vx −my
w01

vy + (mx
w11

+my
w02

)vz

mC =−mx
w00

vx −my
w00

vy + (mx
w10

+my
w01

)vz

mωx =(mx
w11

+my
w02

+my
w00

)

mωy =(−mx
w00
−mx

w20
−my

w11
)

mωz =(mx
w01
−my

w10
)

, (7)

and χ = (A, B, C) = −n/d.
One can then exploit (4–7) for implementing a visual

control or estimation algorithm as in the classical case, but
with the additional possibility of acting on vector θ (a free
parameter) for optimizing any criterium of interest (e.g., the
norm of the observability matrix ΩΩT during an estimation
task as it will be discussed in Sect. IV).

A. Design of the weighting function w(x, y, θ)
Clearly, there exist many possibilities for designing the

weighting function w(·), i.e., the class of moments spanned
by vector θ. A convenient choice, in our opinion, is to take
w(·) as some polynomial basis in x and y with θ being the
vector of coefficients. Indeed, in this way the weighted mo-
ments (4), the expressions in (5) and, eventually, all the terms
in (7) will reduce to linear combinations of the unweighted
moments mij in (1). The overall computational complexity
will then result equivalent to the classical case [2].

As for which polynomial basis to exploit, many choices
are possible depending on the constraints/requirements of the
particular application. Within the scope of this work, two
possibilities are considered:



1) Polynomial basis of fixed degree: first, one can take
w(·) as a polynomial in x and y of a given degree δ ∈ N+,
that is,

w(x, y, θ) =

δ∑
j=1

j∑
k=0

θTj+kx
(j−k)yk (8)

with Tj =
(
j+1
2

)
and θ = (θ1, . . . . . . θTδ+δ) ∈ RTδ+δ .

Indeed, this allows (4) to span all the moment linear com-
binations of order up to δ with coefficients in vector θ.
As illustration, by choosing δ = 2 in (8), one obtains the
following quadratic polynomial

w(x, y, θ) = θ1x+ θ2y + θ3x
2 + θ4xy + θ5y

2

that, when plugged in (4), yields

mw(θ) = θ1m10 + θ2m01 + θ3m20 + θ4m11 + θ5m02. (9)

The class (9) can then specialize into, e.g., the barycenter
coordinate xg for θ = (1/N, 0, 0, 0, 0), the centered mo-
ment µ02 for θ = (0, −yg, 0, 0, 1), and so on. Clearly,
the larger the value of the degree δ, the richer the basis
representation power in encoding the scene geometry, but at
the (well-known) cost of an increasing noise level with the
moment order.

2) Constrained polynomial basis: a second possibility is
to design a constrained polynomial basis for coping with the
possible loss/gain of point features during the camera motion
because of the limited camera field of view (fov). Indeed, by
imposing that w(·) vanishes (with vanishing derivative) at
the image borders, any point feature close to the limits will
smoothly enter or leave the image plane and, thus, prevent
any discontinuity in the moment dynamics (6).

Let then xmin < xmax and ymin < ymax represent the
limits of a rectangular image plane, and consider a weighting
function w(·) partitioned as

w(x, y, θ) = wx(x,θx)wy(y,θy), (10)

where wx(x,θx) and wx(x,θy) are polynomial bases and
θ = (θx, θy) ∈ Rpx+py , px + py = p, is the vector of
coefficients. Assuming px ≥ 4 and imposing

wx(xmin,θ
x) = wx(xmax,θ

x) = 0

∂wx(x,θx)

∂x

∣∣∣∣
xmin

=
∂wx(x,θx)

∂x

∣∣∣∣
xmax

= 0
, (11)

one can solve for a set of 4 parameters in vector θx for
shaping wx(x,θx) as desired. For instance, by taking

wx(x, θx) = θx1x
5 + θx2x

4 + θx3x
3 + θx4x

2 + θx5x+ θx6 (12)

and by (arbitrarily) choosing the pair (θx1 , θ
x
2 ) as free param-

eters in vector θx, system (11) yields

θx3 = (−3x2max − 3x2min − 4xmaxxmin)θ
x
1

+(−2xmin − 2xmax)θ
x
2

θx4 = (2x3max + 8x2maxxmin + 8xmaxx
2
min + 2x3min)θ

x
1

+(x2max + 4xmaxxmin + x2min)θ
x
2

θx5 = (−7x2maxx2min − 4x3minxmax − 4x3maxxmin)θ
x
1

+(−2xmaxx2min − 2x2maxxmin)θ
x
2

θx6 = (2x3maxx
2
min + 2x2maxx

3
min)θ

x
1 + x2maxx

2
minθ

x
2

.

(13)

−1
0

1
−1

0

1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

y
x

w
(x
,
y
,
θ
)

−1
0

1
−1

0

1

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

y
x

w
(x
,
y
,
θ
)

−1
0

1
−1

0

1

−0.1

−0.05

0

0.05

0.1

0.15

y
x

w
(x
,
y
,
θ
)

Fig. 1: Three examples of the constrained polynomial basis
w(x, y, θ) in (10–13). Note how w(x, y, θ) smoothly vanishes
at the image borders of size [−1, 1]× [−1, 1]

Imposing analogous conditions to function wy(y,θy) at ymin
and ymax (with again py ≥ 4) will then constrain a total of 8
parameters in vector θ, with the remaining p−8 coefficients
still free to be exploited for optimization purposes. For the
sake of illustration, Fig. 1 shows three examples of weighting
functions w(·) smoothly vanishing at the borders of an image
plane of size [−1, 1] × [−1, 1] and obtained by picking at
random three values for the free parameters in vector θ.

We conclude by noting that, compared to the previous
case (8), this latter possibility necessitates of a polynomial
basis (10) with a degree of at least 7. Indeed, as explained,
the vanishing conditions at the image border will constrain
4+4 coefficients in θx and θy , thus forcing both wx(x,θx)
and wy(y,θy) to have a degree of (at least) 3 for ensuring
px ≥ 4 and py ≥ 4 as required (see (12)). However, for any
optimization of the coefficient vector θ to be possible, either
px > 4 or py > 4 must hold for allowing presence of at least
one free coefficient to be optimized besides those already
constrained by the vanishing conditions. On the other hand,
if either px > 4 or py > 4, the final polynomial basis (10)
will necessarily result of at least degree 7.

Therefore, the use of higher-order moments (of at least
order 7) is the ‘price to pay’ for smoothly taking into account
the loss/gain of point features during the camera motion2. In
contrast, the degree of the polynomial basis in (8) can be
chosen at will and thus adjusted, if necessary, for limiting
the noise level in the measured moments.

IV. OPTIMIZATION OF THE WEIGHTED
PARAMETRIC IMAGE MOMENTS

Let again s ∈ Rm represent the set of measured image
moments. As explained in Sect. II (and discussed in more
detail in [11]), when attempting to estimate the 3D structure
χ from the measured s (and the known camera motion
(v, ω)), full rankness of the square matrix ΩΩT from (3)
plays the role of a necessary (observability) condition for
ensuring a converging estimation. Since in all SfM problems
one has Ω = Ω(s, v) (see again [11]), it is possible to act
on the camera linear velocity v in order to maximize some

2Of course, the use of different functional bases, also non-polynomial,
could be possible.



conditioning measure of ΩΩT for increasing the information
gain during the camera motion. This insight has motivated
some recent work in the context of active Structure from
Motion for planar and 3D scenes [10]–[12].

Consider now a set of m ≥ 3 weighted moments

s = (mw(θ1), . . . , mw(θm)) ∈ Rm

with θ = (θ1, . . . , θm) ∈ Rp being the stack of all
parameters. Plugging the weighted moment dynamics (6–7)
in the definition (3), one has

Ω(s, v, θ) =

 mA(s, v, θ1) · · · mA(s, v, θm)
mB(s, v, θ1) · · · mB(s, v, θm)
mC(s, v, θ1) · · · mC(s, v, θm)

 ∈ R3×m.

(14)
Therefore, when employing the weighted parametric mo-
ments (4) instead of the classical moments (1), one gains
the additional possibility of also acting on vector θ (i.e., on
the ‘moment shape’) for affecting matrix ΩΩT .

Different scalar quantities can be taken as a measure of
the conditioning of the square (and semi-positive definite)
matrix ΩΩT . For instance, the analysis in [11] shows that
its smallest eigenvalue σ2

1 directly affects the convergence
rate of the employed estimator, and thus a reasonable choice
is to maximize σ2

1 over time. However, the evaluation of
the derivative/gradient of an eigenvalue is unfortunately not
well-defined for repeated eigenvalues [13]. In order to avoid
this issue, in this work we chose to take the quantity

ρ = det(ΩΩT ) (15)

as a conditioning measure for matrix ΩΩT . Indeed, from
classical linear algebra [14] the following relationship holds
for a square matrix A

d det(A)

dt
= tr

(
adj(A)

d(A)

dt

)
(16)

with tr(·) and adj(·) being the trace and adjugate operators,
respectively. Contrarily to the derivative of an eigenvalue, the
relationship (16) is always well-defined with, in particular,
no possible ill-conditioning due to repeated eigenvalues. By
then applying (16) to matrix ΩΩT and expanding the various
terms, one obtains

ρ̇ =
∑
i

tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂vi

)
v̇i +

∑
i

tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂θi

)
θ̇i

+
∑
i

tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂si

)
ṡi = Jvv̇ + Jθθ̇ + Jsṡ

(17)
where the Jacobian matrixes

Jv =

[
. . . tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂vi

)
. . .

]
∈ R1×3

Jθ =

[
. . . tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂θi

)
. . .

]
∈ R1×p

Js =

[
. . . tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂si

)
. . .

]
∈ R1×m

(18)

are function of (s, v, θ) (all available quantities). We stress
that all the terms in (18) can be computed in closed-form.

The relation (17) can then be exploited for affecting ρ(t)
over time by acting on v̇ (the camera linear acceleration)
and/or θ̇ (the parameter vector). Among the many possibil-
ities, we considered here the following update rules

v̇ = kv

(
I − vv

T

vTv

)
JTv

θ̇ = kθ

(
I − θθ

T

θTθ

)
JTθ

, kv > 0, kθ > 0 (19)

which are meant to maximize ρ(t) by following its gradient
w.r.t. (v, θ) projected on the null-spaces of the constant-
norm constraints ‖v(t)‖ = const and ‖θ(t)‖ = const. As
explained in [11], the constraint ‖v(t)‖ = const is meant
to prevent a better conditioning of matrix ΩΩT only due to
a faster camera motion while observing the scene. Indeed,
since, roughly speaking, ‖ΩΩT ‖ is monotonically increasing
with ‖v‖2, the faster the camera motion the faster the SfM
convergence regardless of any other optimization action. The
second constraint ‖θ(t)‖ = const is motivated by similar
arguments: an increasing ‖θ(t)‖ would (artificially) magnify
ρ(t) at the cost of an increased noise level (all the terms
in (7) would just result amplified).

The optimization action (19) will then maximize the
observability measure det(ΩΩT ) for the SfM task at hand
by (i) adjusting the direction of the camera linear velocity
v and, at the same time, (ii) by adapting the shape of
the m weighted moments s = (mw(θ1), . . . , mw(θm)) as
only a function of the perceived scene and camera motion.
We also remark that (19) (or any other equivalent strategy)
assumes the possibility of acting at will on the direction of
the linear camera velocity v. There could be cases where this
is not (fully) possible, and v (or components of it) are given
(for example during a combined estimation/servoing loop as
in [15]). In all these cases, it is obviously still possible to just
keep on optimizing θ(t) during the (given/known) camera
motion in order to adapt, as best as possible, the moment
shape. Finally, since Ω(t) (and thus ρ(t)) does not depend
on the camera angular velocity, one can freely choose ω to
fulfil any additional goal of interest.

V. SIMULATION RESULTS

All the following simulations consider a free-flying camera
observing a planar scene P consisting of N = 30 points,
and with plane parameters n = (0, 0,−1) and d = 1.5 [m]
in 0FC (the initial camera frame at t = t0). The initial
estimations of the plane normal and distance are always
taken as n̂(t0) = (−0.87, 0, −0.49) and d̂(t0) = 1 [m],
thus representing an initial incertitude of ≈ 60 [deg] on the
real normal direction and of 0.5 [m] on the real distance to
the plane. Finally, the point features pk, k = 1 . . . N , are
sampled at 60 Hz and then corrupted component-wise by a
uniformly distributed random noise of magnitude 2 pixels
before being processed for evaluating the image moments.
The camera motion (and the optimization (19)) is instead
updated at 100 Hz.
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Fig. 2: Results obtained by employing the classical moment set
(xg, yg, µ20 + µ02) and optimizing for the camera linear velocity
v. In this case ρ(t) keeps very close to zero (the scale of Fig. (a)
is 10−9) and as a consequence the estimation error z(t) does not
converge (Fig. (b))

As for the SfM algorithm providing an estimation
χ̂(t) = −n̂(t)/d̂(t) of the unknown 3D structure χ(t) =
−n(t)/d(t), we made use of the general scheme recently
discussed in [11] in the context of active SfM and already
exploited in, e.g., [9], [10], [12] in a number of different
applications. The reader is referred to these works for full
details on the inner machinery of the algorithm: for our
goals it is just worth mentioning that, for a given choice
of the estimation gains, the convergence rate of the structure
estimation error defined as

z(t) = χ(t)− χ̂(t)

is directly determined by the norm of matrix ΩΩT . Thus, the
larger the value of ρ(t) from (15) during the camera motion,
the faster the expected convergence of z(t)→ 0.

A. Unconstrained polynomial basis

We start with the results obtained by making use of
the unconstrained polynomial basis (8) of fixed degree δ
introduced in Sect. III-A.1. In particular, we tested our
method by considering a set of m = 3 weighted moments
s = (mw(θ1), mw(θ2), mw(θ3)) ∈ R3 with degree δ = 2
defined as in (9), with then θi ∈ R5, i = 1 . . . 3, and
θ = (θ1, θ2, θ3) ∈ Rp, p = 15. This choice was meant
to provide a direct comparison against the use of:

1) the more ‘classical set’ (xg, yg, µ20 +µ02) that, as ex-
plained, is known to be an optimal choice for controlling
the camera translational motion but also to yield poor
results when employed for SfM purposes;

2) the set of five moments (xg, yg, µ20, µ11, µ02) which,
as reported in [10], does allow for a converging esti-
mation but at cost of an increased complexity (need of
propagating five image moments).

The goal of the comparison is to prove that estimation of
vector χ is, instead, fully possible when a suitable combi-
nation of just three moments of order up to 2 is selected.

Figures 2(a–b) start showing the results obtained by em-
ploying the set (xg, yg, µ20 + µ02) for estimating vector
χ while, at the same time, optimizing the camera linear
velocity v by implementing the first row of (19) with kv = 1.
The linear velocity was initially set to v(t0) = [0 0.1 0]T

[m/s] with then ‖v(t)‖ = ‖v(t0)‖ = 0.1 [m/s] during the
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Fig. 3: Solid lines: results obtained by employing three weighted
moments of degree δ = 2 defined as in (9), and optimizing
for both vector θ and the camera linear velocity v. Fig. (a):
the value of ρ is now ≈ 107 times larger than in the previous
case of Fig. 2(a). This then allows for a quick convergence of
the error quantities z(t), ed(t) and en(t) (Figs. (b–d)). For a
comparison, in all plots dashed lines correspond to the use of
the five moments (xg, yg, µ20, µ11, µ02): it is worth noting how,
despite the increased measurement set (five moments vs. only
three), the estimation convergence results still slower than in the
weighted moment case

camera motion. As expected, and even despite the velocity
optimization, the value of ρ(t) keeps (numerically) very close
to 0 with a maximum of ≈ 1.2 · 10−9 (Fig. 2(a)). Thus, the
chosen set (xg, yg, µ20+µ02) is not able to provide enough
information for allowing convergence of the SfM scheme,
and indeed the estimation error z(t) = χ(t) − χ̂(t) even
starts diverging (Fig. 2(b)).

On the other hand, exploiting the three weighted moments
of degree 2 yields a much more satisfactory estimation
performance: Figs. 3(a–d) report in solid lines the results
obtained by implementing (19) with kv = 1 and kθ = 3, and
by taking again v(t0) = [0 0.1 0]T [m] as in the previous
case. The parameter vector θ was instead chosen at random
under the constraint ‖θi(t0)‖ = 1, i = 1 . . . 3.

Looking at Fig. 3(a) one can then verify how now ρ(t)
attains an overall quite larger value compared to Fig. 2(a),
with a maximum of ≈ 1.8 · 10−2 (thus, more than 107

times larger than in the previous case). As a result, the
estimation error z(t) is able to quickly converge towards
0 in about 4 seconds (Fig. 3(b)). For a better appreciation
of the estimation performance, Figs. 3(c–d) also report the
behavior of ed(t) = d(t) − d̂(t) (the error in estimating the
plane distance d) and en = arccos(nT (t)n̂(t)) (the angular
error in estimating the direction of the plane normal n)
with d̂ = 1/‖χ̂‖ and n̂ = −χ̂/‖χ̂‖. Finally, Figs. 3(a–
d) superimpose in dashed lines the behavior of ρ(t) and
of the estimation errors when instead relying on the set of
m = 5 moments (xg, yg, µ20, µ11, µ02) for estimating χ:
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Fig. 4: Results obtained by employing three weighted moments
of degree δ = 2 defined as in (9) and only optimizing for
vector θ. Fig.(a): note how ρ(t) still reaches a range of values
comparable with the previous case of Fig. 3(a) despite the lack of
any optimization of the camera velocity v. Figs. (b–d): behavior of
the error quantities z(t), ed(t) and en(t)

in this case, the estimation error does actually converge (as
expected), but nevertheless at a slower rate compared to the
weighted moment case (indeed, the maximum value of ρ(t)
is now ‘only’ ≈ 5.9 · 10−4). We then believe these results
clearly show the advantages of the proposed approach: the
SfM scheme has its best performance when relying on the
optimization (19) for automatically selecting (online) the best
combination of three moments of order up to 2.

As an additional evaluation, Figs. 4(a–d) show the results
obtained when only optimizing the parameter vector θ while
keeping a constant linear velocity v(t) = v(t0) during the
whole motion (thus, by setting kv = 0 in (19)). This case is
meant to assess the optimization performance in a situation
in which the camera velocity cannot be arbitrarily adjusted
but it must be considered as ‘given’ by an external source.
Thus, the only possibility for improving the conditioning of
the observability matrix ΩΩT is to act on vector θ, i.e., on
the moment shape. Nevertheless also in this situation ρ(t)
still reaches a range of values comparable with the previous
case, with indeed max ρ(t) ≈ 1.05·10−2 against the previous
1.6·10−2 (thus, still ≈ 107 times larger than when employing
the classical set (xg, yg, µ20 + µ02)). As a result, vector
z(t) keeps converging to 0 in about 4 [s] (Fig. 4(b)) even if
slightly more slowly w.r.t. the previous case of Fig. 3(b) (as
one could expect because of the smaller value of ρ(t)). In any
case, we believe it is worth noting how the sole optimization
of the moment shape (via vector θ) is still able to yield a
very satisfactory SfM performance even for a non-optimal
camera motion.

We finally remark that in all simulations the camera
angular velocity ω was exploited for keeping the centroid
of the observed point features pi at the center of the image
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Fig. 5: Results obtained by employing the constrained weighted
moments (10–11), a camera with limited fov, and optimizing for
both vector θ and the linear velocity v. Fig. (a): camera trajectory
and direction of the optical axis during the estimation task. Fig. (b):
number Np of tracked point features over time
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Fig. 6: Solid lines: results obtained by employing the constrained
weighted moments (10–11), a camera with limited fov, and optimiz-
ing for both vector θ and the linear velocity v. Fig. (a): behavior of
ρ(t) which reaches a maximum of ≈ 2.9 · 10−4 before starting to
decrease because of the fewer tracked points. Figs. (b–d): behavior
of the error quantities z(t), ed(t) and en(t). Note how all quantities
keep behaving smoothly despite the frequent loss of tracked points.
In dashed lines, the behavior that all quantities would have had in
case no optimization of θ had been performed

plane (we recall that matrix Ω and, thus, ρ(t) do not depend
on ω that can then be freely chosen without affecting the
estimation performance).

B. Constrained polynomial basis

We now address the case of the constrained polynomial ba-
sis (10–11) described in Sect. III-A.2 and meant to smoothly
take into account the loss/gain of point features because of
the camera limited fov. We consider again a set of m = 3
weighted moments s = (mw(θ1), mw(θ2), mw(θ3)) ∈ R3

with both functions wx(·) and wy(·) taken as the fifth-
order polynomials given in (12) with, therefore, a total of
px + py − 8 = 4 parameters to be optimized. The initial
camera velocity v(t0) was set as in the previous cases, and
the optimization action (19) was again implemented with
kv = 1 and kθ = 3. The camera angular velocity ω was
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Fig. 7: Four snapshots of the weighting function w(x, y, θ1) taken
during the camera motion. It is interesting to visualize how function
w(·) automatically adjusts its shape as a function of the observed
scene (e.g., it tends to peak around clusters of points)

instead kept null for facilitating the loss or point features
during motion.

Figure 5(a) shows the camera trajectory during the es-
timation task, and Fig. 5(b) reports the number Np(t) of
tracked features over time: after about 5 [s] some points start
being lost, dropping from a total of 30 to a minimum of 6 at
t = 10 [s]. Nevertheless, thanks to the adopted constrained
weighted moments, the scene structure is still correctly
estimated without suffering from discontinuities or numerical
instabilities because of the lost features. Figure 6(a) reports
again the behavior of ρ(t) (blue solid line) that reaches a
maximum of ≈ 2.9·10−4 before starting to decrease at t ≈ 5
[s] because of the fewer tracked points. As a comparison,
Fig. 6(a) also reports the superimposed behavior of ρ(t) in
case no optimization of vector θ had been performed (the
almost horizontal red dashed line). In this case, the maximum
attained value for ρ(t) would have been ≈ 1.2 · 10−6 (100
times smaller), thus proving again the importance of properly
optimizing the shape of the chosen weighting function w(·).
Figures 6(b–d) then show (in solid lines) the behavior of
the estimation error z(t) and of the corresponding quantities
ed(t) and en(t) that smoothly reach convergence in about
10 [s] of motion despite the loss of point features. Again,
for a comparison, Figs. 6(b–d) also report the superimposed
behavior (in dashed lines) of the estimation errors in case
of no optimization of vector θ (all quantities have a slower
convergence rate as expected).

Finally, Fig. 7 depicts four snapshots of the shape of
function w(x, y, θ1) used to compute the first constrained
weighted moment. The reader can then appreciate how the
function shape evolves over time and, in particular, automat-
ically polarizes its peaks around the location of the tracked
point features. A video showing an animation of the reported
simulations is also attached to the paper.

VI. CONCLUSIONS

In this paper we addressed the problem of automatically
selecting an optimal set of image moments for improving
the performance in estimating the 3D structure of a planar
scene. This is achieved by replacing the classical definition
of unweighted moments with the novel concept of parametric
weighted moments that can span a whole class of image mo-
ments as a function of a parameter vector. By then optimizing
online this parameter vector, the moment shape can be
automatically adjusted as a function of the perceived scene.
A number of simulation results, involving the estimation of
the 3D parameters of a planar scene from measured moments
(and known camera motion), fully confirms the effectiveness
of the proposed approach. We are currently working towards
an experimental validation of these results, as well as the
application of these ideas in the context of image-based
visual servoing.
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