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HEAT TRANSFER DURING IN~ TUBE CONDENSATION OF CFC~113 WITH 
DOWNFLOW IN VERTICAL, INTERNALLY~ENHANCED TUBES 

A Briggs, C Kelemenis and J W Rose 
Department of Engineering 

Queen Mary and Westfield College 
University of London 

London El 4NS 
UK 

ABSTRACT 
Accurate repeatable heat~ transfer measurements have been made for condensation of CFC~ 113 with downflow 

inside enhanced "micro~fm" tubes. The heat-transfer rate was calculated from the coolant flow rate and temperature 
rise, the latter measured using a ten-junction thermopile with careful attention paid to adequate coolant mixing and 
isothermal immersion of the thermopile leads. The surface temperature was found from thermocouples embedded in 
the tube wall. One plain tube and nine enhanced tubes with different fin heights, helix angles and number of starts 
were tested. Enhancement ratios (i.e. vapour-side, heat~transfer coefficient for the enhanced tube divided by that for 
a smooth tube at the same vapour~side temperature difference and vapour inlet velocity) between 1.6 and 5.6 were 
found, with values depending on vapour~side temperature difference and vapour inlet velocity. 

NOMENCLATURE 
A Constant in Eqn. (1) 
hrg Specific enthalpy of evaporation 
L Length (height) of test tube 
n Constant in Eqn. {1) 
q Mean heat flux based on inside surface area of 

test tube, using fin root diameter for enhanced 
tube 

Re Condensate film Reynolds number ( 4F I p) 
U; Vapour velocity at tube inlet 

a Vapour~side heat~transfer coefficient 
e Enhancement ratio i.e. ratio of vapour-side 

heat-transfer coefficients for plain and enhanced 
tubes at same vapour inlet velocity and 
temperature difference 

J.T Vapour-side temperature difference 
r Condensate mass flow rate per width at tube exit 

(qL!hrJ 
fJ Viscosity of condensate 

INTRODUCTION 
In recent years a range of internally enhanced tubes, using low "micro-fins", has become available. Khanpara et al. 

( 1986) reported heat ~transfer data for condensation of CFC~ 113 inside eight micro-fin tubes. All tubes had between 
60 and 70 fins per circumference with fin heights from 0.1 to 0.19 mm. Enhancement ratios between 1.9 and 2.3 
were found, with higher fins generally giving higher enhancement ratios. Schlager et al. (1990) condensed HCFC-22 
inside micro-fin tubes with fin heights up to 0.3 mm. Enhancement ratios between 1.5 and 1.8 were found. As before, 
larger fin heights gave higher enhancement ratios, with fin helix angle also having some effect. In a more recent study, 
Liu (1997) presented local heat~transfer data for one micro-fin tube condensing HFC-134a and HCFC~22. 

In all of the above, the advantage of micro-fin tubes over plain tubes is evident. General conclusions, however, are 
difficult to draw due to the number of (particularly geometric) parameters involved. More data are needed in order to 
identifY the important parameters and to develop general correlations. In this preliminary report, heat-transfer results 
are presented for nine enhanced tubes and a plain tube tested with condensation of CFC~ 113 in vertical downflow. In 
particular, fins heights up to 0.68 mm were tested, significantly higher than hitherto reported. 

Special attention has been paid to experimental accuracy. Work is continuing on a wider range of experimental 
parameters, including tubes with inserts, condensation in the presence of a non~condensing gas, condensation of 
mixtures and pressure drop measurements. 

EXPERIMENTAL METHOD 
The stainless~steel and glass test apparatus, shown schematically in Fig. l, consisted of a closed loop, with vapour 

generated in an electrically~heated boiler (maximum power 16 kW). The vapour was directed vertically downward 
through a calming section, before flowing through the test tube which was cooled externally by water flowing 
through an annulus in counterflow. Excess vapour passed to an auxiliary condenser from which the condensate 
returned to the boiler by gravity. CFCIB was used as the condensing fluid and all tests were done at a little above 
atmospheric pressure with three vapour velocities at entry (6.3 m/s, 7.5 m/s and 9.0 m/s). 

337 



The cooling water temperature rise, from which the heat-transfer rate to the test tube was calculated, was 

measured using a 1 0-junction thermopile. Care was taken to ensure adequate mixing and isothermal immersion of the 

thermopile leads in the vicinity of the junctions. A small predetermined correction for the dissipative temperature rise 

of the cooling water in the annulus and mixing boxes was incorporated in the calculation of the heat-transfer rate. The 

estimated accuracy of the measurement of the coolant temperature rise was better than 0.01 K. (All thermocouples 

were calibrated in a high precision constant temperature bath against a platinum resistance thermometer, accurate to 

0. 005 K. The accuracy of the thermo-emf measurement was 2 Jl V, equivalent to 0. 005 K for the ten-junction 

thermopile.) The range of coolant temperature rise was 1.1 K to 3.2 K. The coolant flow rate was measured using a 

variable-aperture, float-type flow meters with an accuracy better than 2%. The vapour velocity at approach to the test 

section was found from the measured power input to the boiler, with a small, predetermined correction for the heat 

loss from the well-insulated boiler and supply pipe to the test section (see Lee and Rose, 1984). 

The tubes tested in the present work were enhanced internally by low, spiral fins with trapezoidal profiles, 

supplied by . Nine different enhanced tubes were tested with different fin heights, fin pitches and 

helix angles. A plain tube was also tested for comparison. The tube dimensions are given in Table 1. 

Both the plain and enhanced tubes were instrumented with three thermocouples embedded in the tube wall 

positioned 187.5, 375 and 562.5 mm from the vapour inlet (top of tube). The wall thermocouples were placed in 25 

mm long slots in the outer tube wall and covered with soldered copper strips. The thermocouple leads were led out 

through the coolant via holes in the end bushes of the coolant annulus. 

TABLE 1 -TEST TUBE DIMENSIONS 

Tube Number of fins Helix Outside Fin root Fin tip Fin Wall Circum- Fin tip 

No angle* diameter diameter diameter height thickness ferential half angle 

I degree /mm /mm /mm /mm /mm fin pitch I degree 
/nun 

AI 36 25 25.0 23.0 21.6 0.68 1.0 2.01 30 

A2 36 25 25.2 23.0 22.0 0.51 1.1 2.01 30 

A3 36 25 25.3 23.0 22.3 0.36 1.2 2.01 30 

Bl 22 25 24.5 21.8 21.1 0.35 1.34 3.11 61 

B2 22 25 24.4 21.8 20.9 0.43 1.31 3.11 61 

B3 22 25 24.4 21.9 20.7 0.62 1.22 3.13 61 

C1 54 45 24.9 22.1 21.7 0.22 1.40 1.29 25 

C2 54 45 24.8 22.1 21.5 0.31 1.35 1.29 25 

C3 54 45 24.7 22.1 21.2 0.44 1.31 1.29 25 

* Measured from a line parallel to the tube axis 

RESULTS AND DISCUSSION 

All tubes were tested twice at each vapour inlet velocity to ensure repeatability. For tube AI and the plain tube 

Figs. 2 and 3 show respectively, the dependence of heat flux and vapour-side heat-transfer coefficient, both based on 

the fin-root diameter, on vapour-side temperature difference. The data shown include tests on different days and 

show excellent repeatability; the enhancement due to the fins can clearly be seen. Similar results, but with smaller 

enhancements, were found for the other eight enhanced tubes. The range of vapour -side temperature difference for 

each tube varied somewhat due to different coolant inlet temperatures on different days. 

When the data for the plain tube were compared to the models of Shekriladze and Gomelauri (1966) and Fujii and 

Uehara (1972) for laminar, forced-convection condensation on a vertical, flat plate, it was seen that the heat-transfer 

coefficients were up to 3 times higher than theory probably due to ripples and turbulence in the condensate film. The 

range of condensate Reynolds number ( 4fl J.l) for the plain tube data was 530 to 1300, well above the critical value 

for turbulent film flow in forced-convection condensation but below the critical value for turbulent film flow in free

convection (see, for instance Rohsenow and Choi, 1961). When compared to the free-convection, "laminar-wavy" 

film correlation of Kutetaladze (1963), the present heat-transfer coefficients were 2 to 3 times higher than the 

correlation. The data for inlet velocities of 6.3 and 7.5 mls were roughly in line with the free-convection, turbulent 

film models of Labuntsov (1960) and Colburn (1934) respectively, while the data for inlet velocity 9 m/s were 

approximately 50% higher than the Colburn correlation. When equations of the form 

q =A .dT (I) 
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were fitted to the data it was found that for the plain tube n was in all cases close to I, while for the enhanced tubes n 
was found to be close to 0.5. For tube AI and the plain tube Figs. 2 and 3 show best-fit lines with n set to these 
values. Using equation (I) with n = I for the plain tube and n = 0. 5 for the enhanced tubes we have 

£ "' ( q enhanced J "' ( a enhanced J = ( A enhanced J fl.T-0.5 

q ploirJ same .1.TandUI a plain s.ame ~T:andU, A plain. 
(2) 

where Aenhanced and Aplain relate to the respective constants in equation (1). From Equation (2) it is seen that the 
enhancement ratio, as defined, is a function of vapour-side temperature difference and vapour inlet velocity. (The 
latter because Aeohanced and Apta.in depend on vapour inlet velocity.) Since in Fig. 2 the origin is a point on all curves, 
equation (1) for the plain tubes, with the corresponding values of A, should extrapolate satisfactorily to lower values 
of L1T. The values of e given by equation (2) should therefore be reliable for the range of L1T used in the present tests. 
Table 2 lists the values of A for each tube and vapour inlet velocity together with the corresponding enhancement 
ratios for L1T = 12 K (where the plain and enhanced tube data overlap) and LiT= 4 K (the lower bound of the 
enhanced tube data). From Table 2 it can be seen that the best of the nine tubes was tube AI which, for a vapour inlet 
velocity of6.3 m/s, had an enhancement ratio of5.6 at LiT= 4 K and 3.2 at L1T= 12 K. 

Figure 4 shows the variation of enhancement ratio with fin height for all the tubes and for a vapour inlet velocity 
of 7.5 m/s. It may be noted that each point on Fig. 4 represents tests on two days and that if values of e are found 
separately for each day, virtually identical results are obtained. A clear dependence on fin height can be seen with 
higher fins giving greater enhancement. The exception to this is found when comparing the two C tubes with lowest 
fin heights, which gave almost identical enhancement. The reason for this is not clear but it is possible that for fins 
less than about 0.3 mm high the interfin space may be completely flooded with condensate retained by surface 
tension, resulting in no improvement with fin height up to this value. Comparing the A and B tubes it can be seen that 
that more fins (36 for the A tubes, 22 for the B tubes) results in greater enhancement for a given fin height as 
expected. On this basis one would expect the C tubes, with 54 fins, to be significantly better than the A tubes for a 
given fin height but this is not the case and could be due to the higher helix angle on the C tubes. A small helix angle 
(i.e. fins running closer to the axial direction) will aid condensate drainage both by gravity in the present vertical tubes 
and by vapour shear. 

From Table 2 it can be seen in most cases that enhancement ratio decreases with vapour velocity, indicating that 
vapour shear has a weaker effect on the enhanced tubes than on plain tube. The effect is strongest for the most highly 
enhanced tubes and weakest for the least enhanced tube. 

CONCLUSIONS 
A set of internally enhanced tubes has been carefully tested for condensation of downward flowing CFC-113. 

Enhancement ratios (defined as the heat flux or heat-transfer coefficient for the enhanced tube divided by that of the 
plain tube at the same vapour-side temperature difference and vapour inlet velocity) in the range 2.7 to 5.6 for L1T= 4 
K and 1.6 to 3.2 for 9= 12 K were found, with enhancement ratio decreasing with increasing vapour inlet velocity. 
The results also indicated that, for the present range of vapour-inlet velocity and vapour-side temperature difference, 
the enhancement ratio was inversely proportional to the square root of the vapour-side temperature difference. As 
noted earlier, this is a preliminary report of a much broader investigation. Further results will be reported in due 
course. 
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TABLE 2- SUMMARY OF RESULTS 

Tube Vapour A ( A.._.}K'" & & 

velocity at (see Eqn. (I))* (AT=4K, (AT= 12 K, see 
inlet I (m/s) A plain see Eqn. (2)) Eqn. (2)) 

Plain 6.3 1.12 1.00 - -
Plain 7.5 1.25 1.00 - -
Plain 9.0 1.61 1.00 - -
AI 6.3 12.52 11.18 5.59 3.23 

AI 7.5 12.82 10.26 5.13 2.96 

AI 9.0 14.05 8.73 4.36 2.52 

A2 6.3 10.50 9.38 4.69 2.71 

A2 7.5 11.00 8.80 4.40 2.54 

A2 9.0 12.52 7.78 3.89 2.24 

A3 6.3 8.60 7.68 3.84 2.22 

A3 7.5 9.40 7.52 3.76 2.17 

A3 9.0 10.60 6.58 3.29 1.90 

Bl 6.3 6.40 5.71 2.86 1.65 

Bl 7.5 7.31 5.85 2.92 1.69 

Bl 9.0 8.56 5.32 2.66 1.53 

B2 6.3 6.92 6.18 3.09 1.78 

B2 7.5 7.59 6.07 3.04 1.75 

B2 9.0 8.82 5.48 2.74 1.58 

B3 6.3 8.45 7.54 3.77 2.18 

B3 7.5 8.90 7.12 3.56 2.06 

B3 9.0 9.63 5.98 2.99 1.73 

Cl 6.3 7.81 6.97 3.49 2.01 

Cl 7.5 8.97 7.18 3.59 2.07 

C1 9.0 10.37 6.44 3.22 1.86 

C2 6.3 7.91 7.06 3.53 2.04 

C2 7.5 8.87 7.18 3.59 2.07 

C2 9.0 10.23 6.35 3.18 1.83 

C3 6.3 10.38 9.27 4.63 2.68 

C3 7.5 11.57 9.26 4.63 2.67 

C3 9.0 12.78 7.94 3.97 2.29 

*Note: For the plain tube A has units (kW/m2 K) and for the enhanced tubes units (kW/m2 K112
) 
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