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Power for fans and pumps in heat exchangers of refrigerating plants 
Eric Granryd, professor, 

Abstract 

Div. of Applied Thermodynamics and Refrigeration, 
Royal Institute of Technology, KTH, Stockholm, Sweden. 

The energy consumption to operate auxiliaries such as fans and pumps in heat exchangers have a significant 
influence on the total energy demand for operating a refrigerating system. With a starting point in a simple entropy 
analysis a more practical approach is adopted for common cases of air coil fans in evaporators or condensers. 
Examples are given to illustrate how the power for evaporator or condenser fans will affect the capacity and total 
energy demand of refrigerating systems. 

It is shown that the two different criteria: 
-maximum of capacity or 
-minimum of energy demand (equivalent to maximum system COP) 

will give different optima for the power to be used in fans or pumps. 

Simple relations are derived for optimum power in fans or pumps for the two different criteria applicable for many 
general cases in refrigerating systems. 

Introduction 
The energy needed to operate fans or pumps is important when considering the total energy demand to operate a 
refrigerating plant or a heat pump. It is not unusual that the electric power of such auxiliaries is in the order of25% 
or more of the power to operate the compressor in a system. The purpose of this paper is to illustrate and exemplify 
this issue. Simple relations will be derived for optimum power in fans or pumps to reach criteria like maximum 
capacity or maximum system COP. 

Let us exemplify with the application of an evaporator. As a starting point let us assume that we have a given plant 
where we can adjust the fan speed - in practice perhaps by means of an inverter control. It is obvious that by using a 
high fan speed the evaporator will operate with smaller temperature differences between the inlet air and the 
refrigerant evaporating temperature than if low speed is used. This will decrease the temperature lift of the cycle and 
thus decrease the compressor work. However we will have to pay for the fan power and what is of interest is the sum 
of the power for the compressor and the fan. It is obvious that there must exist a certain fan power that we can call 
optimal from the point of view of energy consumption. 

Two different approaches will be used: First a treatment minimizing the entropy generation and, secondly, a more 
practically oriented way of treatment will be demonstrated. This treatment will concentrate on refrigerating 
applications. Slightly different relations will be obtained for heat pump operation. Space limitations prevents a 
treatment for that case but the practical result for minimum energy demand are quite similar. 

Relations between pumping power and temperature difference 
The pumping power will influence the temperature difference for a case with given geometry. A reasonable 
assumption is that the overall heat transfer coefficient is proportional to V"u where Vis the fluid flow and nu is an 
exponent, which in most cases has a value in the range of 0,3 to 0,6. The pressure drop can be set proportional to 
V"P where for turbulent flow np = 1,8. The pumping power, Ep, will hence (assuming constant pump efficiency) be 
proportional to V(np+lJ. Based on a reasoning indicated we can write the overall temperature difference, 8, as 

where 

8=:: C·(EPFnE: 

nE:: _!!!!____ which hence for most cases will be in the order ofO,l to 0,2 
np+] 

C is a constant. 
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If we consider different operating conditions for a given geometry we can express the constant C based on the 

temperature difference Bo and pumping power Epo in a reference case ( "o "); thus C = Bo · { Epo FE . 

Entropy generation in forced flow heat exchange processes 

A thermodynamic approach for the analysis of the heat exchange in a heat exchanger can be used minimizing the 

entropy generation. (E.g. Bejan, 1996, give thorough discussion on methods. De Jong et al 1997 show an 

application.) A simple treatment can be made as follows: 

The "entropy generation" due to the temperature differences in a heat exchanger where the heat flow Q is transferred 

between two media of temperatures Ta and Tb is 

Q Q Q 
L1Shx =--- = --· (Ta- Tb} 

Ta Tb Ta·Tb 

which also can be written 

.JS~ =' SL.(} 
T2 

where Tis the average temperature;=( ../Ta · Tb) and 8 (= Ta- Tb) is the temperature difference. 

However in a system with forced convection the pumping power will be dissipated (at o; temperature T) by friction 

and other irreversibilities so that, in total, the entropy generation is: 

Q Er 
&tot =' - • (} +- (2) 

T2 T 

Figure 1 shows the relation between the entropy 

generation and the pumping power for three examples 

with different reference temperature differences B0 • 

(The relation between (} and Er as given by equation 1 

is used.) 
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Figure 1. Entropy generation (.dStor /Q) 

for heat exchange for three cases 
with reference temperature differ

ences fJo = 5; 10 and 20 K. (For all 

cases nE =0, 15). 
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Pumping power, E p/Q 

It is obvious that a certain pumping power will result in a minimum entropy generation. Given the assumptions made 

it can be shown that the following value of the pumping power will result in this minimum entropy generation: 

Er (} 
(Q )AS min=' nE. T (3) 

Notice that the larger the temperature difference is, the larger fan power should be used to minimize entropy 

generation. 

Example: Let us assume that the temperature difference in the operating point considered is (} =' l0°C, T = 273K and 

exponent nE= 0,15 then we fmd that 

Ep 
(Q)LlSmm:;: 0,15 · JO /273 := 0,005 

This means that a fan power of only about 5 Watts per kW heat transferred should be spent!! Can we trust the results 

form the entropy approach also for practical applications? Let us also a more practical approach: 
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A practical approach 
Let us consider a complete refrigerating systemas shown in figure 2 (compare Granryd, 1973) We can assume that 
system exists, with given components. Let us also assume that we have a possibility to adjust the fan speed to any 
level we desire without other changes in the plant. In figure 3 a number of parameters are exemplified versus the air 
velocity in the evaporator fan coil for a given system. 

It is obvious that there is a certain velocity resulting in a maximum net cooling capacity of the plant and still another 
velocity that will give minimum energy demand. Which speed should we choose? It is obvious that we can have 
different criteria in mind: 

• Maximum cooling capacity with a given set of components 
• Lowest total energy demand for a given cooling load duty. 
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Figure 2. Refrigerating system and schematic 
temperatures in evaporator and condenser 

Figure 3. Influence of air velocity in evaporator 
(Data: Wo = 2,5 m/s; Q2o= 10 kW; Ejo=0,5 kW; t100m= 
0°C; t2o= -J0°C; t1= 30°C; !cq:::: 0,055; nE= 0,]5) 

Net cooling capacity. 
To derive the net useful cooling capacity Q2N we must, from the compressor cooling capacity Q2, deduct the fan 
power, Ep, which will be dissipated in the cooled space: 

Qm=Q2-EP (4) 
Often the cooling capacity for a vapor compression system can be set 

Q2 = Q2o • {1- kq • (!2- f2o}} (5) 

where o(Qz) . d" . h . h "thth . /cq = --- a parameter m 1catmg ow capac1ty c anges w1 e evaporanng temperature. o(tz) 
Often kq is in the order of 0,05 (5% increase in cooling capacity per degree increasing evaporating temperature), 
somewhat depending on the type of compressor and operating temperatures. 

Inserting t2= tRoom-B with B as given by eq. (1) we will (with Q2o and Epo denote the cooling capacity 
and fan power in the reference case in which we have temperature difference B 0 ) have: 

(6) 
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The net cooling capacity compared to that for the reference case (Q2IIQ2No) is exemplified in Figure 4 as a ftmction if 

the fan power in the evaporator. Three reference cases are shown with different temperature differences in the 

evaporator. Changes in the cooling capacity will for a practical case with given net cooling load be compensated by 

changes in the relative running time of the compressor (provided that we have an on·offtype capacity modulation). 
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Figure 4. Influence of evaporator fan power on net cooling capacity, Q1IIQ2No, and total energy, E10/Qm. (Example 

with tl = 30 "C; !Room= 0 °C; kq = 0,055; nE = 0,15; TJcr = 0,5. Also the evaporator temperature, tz, is indicated in 

the lower part of the diagram.) , 

Total energy demand 
For many operating conditions the plant is oversized and the user does not need maximum cooling capacity for the 

cooling duty. The plant may thus be operated on·off or with reduced capacity. The user wants naturally to operate his 

plant as efficiently as possible, saving energy and money. Let us examine how the pumping power influences the 

energy demand. 

The power to operate the plant is basically the power for the compressor and for the pumps or fans. We can, with 

reference to figure 2, write the total energy demand (denoting the compressor cycle performance COP2 = Q/Ecompr): 

Eror = [ C~~1 + Epz + Epl] (7) 

or, which is more interesting, the total energy demand in relation to net cooling capacity, QzN: 

Eror Qz [ 1 Epz Epl Q1] 
Q2N = QzN. COPz + Qz +0· Qz 

(8) 

The compressor COP2 of the system is influenced by the evaporating and condensing temperatures. Let us express 

this relation by introducing a total Carnot efficiency of the system, by which: 

where 

Tz (9) 

TJCt =total cycle Carnot efficiency (including refrigerant cycle as well as compressor efficiencies) 

T 2 = evaporating temperature = Tsource • 8 z 

Tl = condensing temperature = T.mk + e I 
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T.rource is the temperature in the heat source (or the room to be cooled) 
Tsmk is the temperature of the heat sink (ambient temperature or cooling water) 
(} 2 and (} 1 are the temperature differences in evaporator and COndenser. 

Figure 4 exemplifies the influence of the fan power on the net cooling capacity Q2NIQ2No as well as the total energy 
demand , £ 10/QJN, of a plant. Notice that the minimum of E10/Q2N (corresponding to maximum of an overall COP of 
the system) is achieved with considerably lower fan power than what is needed to reach maximum cooling capacity! 
As is seen the curves are quite flat around the optima It might in practice for simplicity be beneficial to choose a fan 
power somewhere between the two criteria. Simple relations can however be derived for the two optima as follows: 

Evaporator fan power for maximum net cooling capacity 
From the equations (6) and (1) it can be shown that the following very simple relation give the optimum evaporator 
fan power to reach maximum net cooling capacity 

(Ep2/ Q2)Qma< = nE2·kq ·Bz"" = C2Qmax·B2 •. (10) 

where 82 •· is the temperature difference prevailing for the given plant in conditions for the criteria Qmax· 

Example: With typical values nE2 ~ 0,15 and kq ~ 0,05 

the result is: ( EpJ/ Q2}Qmw::::: 0,15 · 0,05 · (}/' := 0,0075 ·Bz"" 

and for design temperature differences: 
82"" ~ 

this means: 
5 
0,038 

10 
0,075 

It is thus beneficial to spend larger fan power the larger the temperature differences in the evaporator. Commercial 
evaporators are often equipped with fans in the order of 5 to 8 % of the nominal capacity. This seem to coincide 
quite well with the criteria for maximum capacity for cases where the temperature differences are about 10 °C. 

Fan power for minimum energy demand 
Evaporator side 

Based on the equations (1) and (8) to (9) it can be shown that the minimum energy demand for a given net cooling 
capacity will be obtained if the pumping power is chosen to satisfy the following relation: 

where 

( Ep2 / QlN }E min S: C2E min• (}/ (11) 

82 • is the temperature difference prevailing for the given plant in conditions for the criteria Emm· 

C2E mm =: [nE2 · rpl · T!] 
TI-T2·(1-TJCt) T2 

lp2 is a factor which for practical cases can be set to := 1,25 (strictly a function of T1, T2; TJCt and kq, The 
interested reader is referred to Granryd, 1973) 

T1 and T2 are the condensing and evaporating temperatures, expressed in absolute temperature (K) 
7Jc1 ~the total Carnot efficiency of the cycle 

Condenser side 

Minimum total energy demand for a given net cooling capacity is similarly achieved if the fan power is chosen to 

(12) 

where (},· is the condenser temperature difference for the given plant in conditions for the criteria Emin 

CJE mm =:: [nEJ· rpl ] 
TI- T2. (1-TJC!) 

lp1 is a factor (in analogy to lp2 ) which for practical cases can be set:= 1,05 

199 



Example: 
Let us use the following temperatures and data which can be representative for a typical practical example: 

Temperatures: T1 = 303K (= 30°C) T2 = 263K (= -l0°C); 

and data: kg= 0,055 1/K ne1 = 0,15 ne2 = 0,15 TJct = 0,5 

The result is, for the different criteria: 
Minimum energy demand: 

Maximum net cooling capacity Evaporator side Condenser side: 

C/Emln;: 0,001 (lfOC) 

Assuming temperature differences in the evaporator and condenser in the order of I 0°C the result is (by equations 

10, 11 and 12 respectively): 

(Ep/QJJEmin =: 0,012 or 1,2% (Ep/QJEmin=> O,Olor 1%. 

Discussion and some conclusions 

Many commercially sold evaporators have often, as mentioned, fan power installed in the range of 5 to 8% of the 

nominal capacity at a temperature difference of I 0 °C. This corresponds for many cases quite closely to the criterion 

of maximum cooling capacity but it is 6 to 8 times higher than what strictly would correspond to a maximum of 

system COP. The ratio of fan power for maximum capacity to that for maximum system COP corresponds roughly to 

what is achieved if the full fan speed (used in conditions where max. capacity is needed) would be cut in half to save 

energy in conditions when the capacity is large enough for the demand. 

For advanced fan speed control e.g. by inverters the relations derived here may be beneficial to use for an intelligent 

microprocessor control of the fan (or pump) speed at different conditions to reach optimal control for different 

criteria and in different operating conditions. As is seen from figure 4 the curves are quite flat around the optima and 

it might in practice for simplicity be beneficial to make a compromise between the two criteria and choose the fan 

power somewhere in between. 

Slightly different relations will be obtained for heat pump operation but the fmal result for minimum energy demand 

will be quite similar. 

Summary 

Relations for the fan power resulting in maximum net cooling capacity and minimum energy requirement for a given 

net cooling load can be summarized by the following relations: 

For maximum net cooling capacity the fan power in the evaporator should be chosen as: 

( Ep2 I Q2 N )Q max = C2Q max· e·· 
and minimum energy demand for given net cooling capacity the fan power should be chosen as:: 

( Ep I Q)e min = Ce min' e· 
where 8" and e· are temperature differences (in operating point with optimal fan power). 

C2g max:; 0,005 ~ 0,01 l/°C 

Ce min = 0,001 - 0,002 l/°C which is roughly applicable for both evaporators as well as condensers. 
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