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TRANSPORT PROPERTIES AND SURFACE TENSION 
OF R23/116 AZEOTROPIC MIXTURE 

Vladimir Z. Geller and Vitaliy P. Zhelezny 

Thermophysics Research Center 
San Francisco, CA 94116 

Donald B. Bivens and Akimichi Y okozeki 

E. I. du Pont de Nemours & Company 
Wilmington, DE 19898 

ABSTRACT 

Transport properties (viscosity and thermal conductivity) and surface tension have been measured 
for the R23/116 azeotropic mixture (46/54 :rnass %). Viscosity was measured by capillary tube method, 
thermal conductivity was measured using steady state hot wire method, and surface tension was measured 
by differential capillary rise method. Saturated transport properties and surface tension were determined 
over a temperature range from -100 to l0°C. Transport properties for the vapors at atmospheric pressure 
were measured over a temperature range from -80 to 100°C. Calculated uncertainties of the experimental 
viscosity, thermal conductivity, and surface tension data are less then ±1.2%, ±1.0%, and ±0.05 mN/m, 
respectively. A set of equations for viscosity, thermal conductivity, and surface tension are presented. 

INTRODUCTION 

Transport properties (viscosity f..L and thermal conductivity A.) and surface tension cr have various 
applications in the design of refrigeration systems, such as heat exchanger design, equipment retrofit etc., 
but the research of these properties for alternative refrigerants is very limited, especially for refrigerant 
mixtures. 

The azeotropic mixture of the refrigerants R23/116 (46/54 mass %) has been introduced as an 
alternative to R503 for low-temperature applications. The R23/116 mixture has the proposed ASHRAE 
number R508B. The successful application of this mixture as 
working fluid for refrigerating systems requires reliable thermophysical properties over a range of 
parameters including the saturated liquid and vapor and the single-phase vapor region. In this paper, we 
present new measurements of saturated-liquid and saturated-vapor viscosity and thermal conductivity, 
viscosity and thermal conductivity for the superheated vapors, and also a new original experimental 
apparatus and the obtained results for the surface tension of R23/116 mixture. A set of correlation for 
transport properties and surface tension are also presented. 

EXPERIMENTAL PROCEDURE AND RESULTS 

Viscosity 

Viscosity of R508B was measured using the modified capillary tube method. A detailed 
description of the viscometer and the experimental procedure are given in our paper [1]. The experimental 
technique for the viscosity measurements involves creating a pressure difference within a glass mercury 
pump placed inside a high-pressure vessel. A special design feature of the pump provides for the return of 
mercury to its initial position after each experiment. Capillary tube with diameters of 0.076 and 0.92 mm 
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and a length of approximately 50 mm were used in these experiments. Parameters for the mercury pump 

(initial pressure difference, final pressure difference, volume of the fluid flowing in the capillary over the 

time of experiment, etc.) were found by calibrations. The viscosity values were calculated taking into 

account the corrections for the capillary end effects, thermal expansion of the capillary tube, and kinetic­

energy factor. The sum of these corrections did not exceed 0.4% of the measured viscosity. Also, the 

following assumptions about the experiment were taken into account: the fluid expands in the capillary 

tube; the fluid is compressed inside the pump during the experiment due to a decrease in the pressure 

difference associated with the decrease in the height of the mercury; some energy dissipates to create the 

kinetic energy of the fluid flow. As a consequence, an average value for the pressure drop, a density change 

due to the pressure change, and a change in the mass flow due to the pressure change have been employed. 

In these experiments, temperature was measured to within ±0.01 "'C using mercury thermometers, 

and pressure was measured to within ±1 kPa with a digital pressure transducer. All measurements for 

vapor phase were done using a single capillary tube but different values of the pressure drop (from 0.6 to 

3.1 kPa) corresponding to Reynolds number from 5 to 1000. For liquid phase, Re numbers were in the limits 

of 150-400. Error in the measurement of the pressure drop was ±0.2% and that in the flowrate was ±0.4%. 

The estimated uncertainties in the experimental viscosity data did not exceed ±1.2% at the 95% confidence 

leveL Each experiment was repeated at least ten times at each temperature. The deviation of the 

individual measurements from the average viscosity value at each temperature did not exceed ±0.2%. 

Experiments for viscosity of R508B were carried out over a temperature range from -100 to 10°C. 

The obtained results are given in Table. 1. 

Table 1. Experimental Viscosity Data of R508B 

-90 
-80 
-70 
-50 

-48.44 
-40.00 
-30.00 
-20.00 
-10.00 
0.00 
4.00 
5.00 
6.09 
8.02 
20.00 
40.00 
60.00 
80.00 
100.00 

Vapor at Atmospheric 
Pressure 

9.70 
10.21 
11.20 

12.74 

13.73 

14.71 
15.70 
16.67 
17.65 
18.59 

Viscosity (Jl.Pa·s) 

Saturated Vapor 
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9.81 
10.32 
11.41 

11.73 
12.45 
13.40 
14.48 
16.21 

17.85 

19.34 

Saturated Liquid 

373.2 

285.2 
222.3 
217.7 
196.5 
173.0 
150.0 

. 130.5 
111.4 
101.1 

95.61 



Thermal Conductivity 

The thermal conductivity of R508B was measured using a modified steady-state hot-wire method. 
A detailed description of the apparatus and the experimental technique are given elsewhere [2]. A special 
feature of the thermal conductivity apparatus is the application of a thin-walled platinum capillary 
tube (outside diameter = 1.0 rom, inside diameter = 0.9 rom) as the outer resistance thermometer. A 
platinum wire (diameter= 0.1 rom and length= 80 rom) located inside this capillary tube is used as an 
electric heater and at the same time as the inner resistance thermometer. Jn order to center this wire inside 
the capillary tube, the latter was placed within a glass tube that can be adjusted in two orthogonal 
directions by set screws. The wire was centered by visual observation using a microscope. The frame for this 
apparatus was designed to have minimal clearance with the glass tube, thus eliminating convective heat 
transfer on the outside of the tube. 

Thermal conductivity was calculated from the measured temperature difference, current, and 
geometric constant. The geometric constant was determined by direct measurements, and was then verified 
using standard reference data for toluene. Thermal conductivity was calculated taking into account the 
corrections for end effects, eccentricity of the wire, and radiation heat transfer. The sum of these 
corrections does not exceed 1% of the measured thermal conductivity for liquid and 2% for vapor. 

The apparatus was installed in a high-pressure vessel, placed in a special constant temperature 
bath to provide temperature control to within ±0.002°C. The temperatures of both resistance thermometers 
were determined by measuring the potential difference across each thermometer relative to the potential 
across standard resistances. The accuracy of these measurements using a digital voltmeter is to within ±1 
n V . The pressure was measured with a digital pressure transducer to within ±1 kPa. 

During the thermal conductivity measurements the temperature difference in the fluid sample 
between the wire and the capillary tube is 1 - 4°C for liquid phase and 4 - 10°C for vapors. For these 
conditions, Gr · Pr numbers (Gr is Grashof number and Pr is Prandtl number) were less than 1500 in all 
experiments, indicating negligible effects due to natural convection. Calculated uncertainties in the 
experimental thermal conductivities are less than or equal to ±1 %. 

The obtained thermal conductivity data are given in Table. 2. 

Table 2. Experimental Thermal Conductivity Data of R508B 

Vapor at Atmospheric Pressure Saturated Vapor Saturated Liquid 

T (OC) I A. (mW /m, oq T (OC) I A. (mW /m, oq T (OC) I A. (mW /m, oq 
-73.19 7.27 -78.49 7.54 -96.54 109.8 
-70.18 7.48 -74.93 7.77 -94.74 109.0 
-37.94 9.31 -61.22 8.75 -78.30 100.4 
-34.20 9.53 -58.48 8.98 -76.90 99.7 
-16.59 10.59 -46.23 10.13 -61.11 91.2 
-11.80 10.79 -44.18 10.34 -59.68 90.5 
10.08 12.12 -34.96 11.28 -48.00 84.6 
13.28 12.34 -33.12 11.54 -46.71 83.9 
38.90 13.78 -23.50 12.86 -37.38 78.8 
67.18 15.41 -21.63 13.05 -35.94 77.8 
70.38 15.70 -9.23 15.38 -22.71 70.6 
94.93 17.07 -8.01 15.81 -21.30 70.1 
98.15 17.26 1.64 19.20 -6.50 61.9 

2.90 19.96 -4.74 61.2 
6.88 22.60 1.45 57.6 
7.73 23.29 2.55 57.7 

7.19 54.0 
8.05 53.7 
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Surface Tension 

A new original experimental apparatus was designed for measuring the surface tension of 

alternative pure and mixed refrigerants as well as refrigerant/lubricant oil mixtures over a range of 

parameters_ This apparatus use the differential capillary rise method that allowed us to avoid the 

influence of the location of the bulk meniscus. In order to increase the reliability of the obtained results, 

the measurements were made using a set of 5 calibrated capillary tubes with different diameters. 

A schematic diagram of the experimental apparatus is shown in Fig. 1. A set of capillary tubes is 

installed inside the optical cell made from stainless steel and provided with the highly processed 

sapphire optical windows. The optical cell is immersed into a special constant temperature bath to 

provide temperature control to within ±0.002°C. The temperature was measured with a resistance 

thermometer to within ±0.02°C, and the pressure was measured with a digital pressure transducer to 

within ±1 kPa. A cathetometer was used for measuring the differential capillary rising. 

Fig. 1. Surface Tension Apparatus 

The surface tension was calculated from the well known Rayleigh equation 

(1) 
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where g is the local gravitational acceleration in m/s2; dsz and dsv are the saturated-liquid and the 
saturated-vapor densities, respectively, in kg/m3; M is the differential capillary rising in mm; R1 and R2 
are inner radius of the two capillaries under consideration in mm. 

Surface tension of R23/116 mixture (46/54 mass%) was measured over a temperature range from 
-100 to 10°C. The experimental data are given in Table 3. Calculated uncertainties of the experimental 
data are to be within ±0.05 roN /m. The reliability of the obtained results is confirmed by measuring the 
surface tension of R134a and comparisons of the obtained results with the most accurate data available 
from the literature. 

Table 2. Experimental Surface Tension Data of R508B 

Temperature, oc 

-100.0 
-78.2 
-70.0 
-55.0 
-40.0 
-29.8 
-20.0 
-10.0 
0.0 

10.0 

Surface Tension, mN/m 

15.62 
12.14 
10.79 
8.462 
6.221 
4.809 
3.475 
2.262 
1.143 
0.223 

MODEL AND CORRELATIONS 

The following equations have been obtained for representing the measured R508B transport 
properties within the temperature range from -100 to 10°C: 

f.1o = 13.7 + 4.% 10-2r- 9.48·10-6r2 (2) 

flsl = 110- 2.11 T- 4.92·10-3 y2 - 1.52 ·10-4 y3 (3) 

flsv = 16.2 + 1.92·10-1 T + 3.96·10-3 y2 + 5.26·1o-5 T3 + 2.58·10-7 y4 (4) 

Ao = 11.5 + 5.8Ho-2 T + 1.15·1o-7 y2 (5) 

.A.sz = 58.4- 0.546 T- 1.38·I0-4r2 (6) 

Asv = 18.9 +3.65·10-1 T + 6.06·10-3 y2 + 6.06·10-5 y3 + 2.45·10-7 y4 (7) 

where J.1o and A.o are viscosity and thermal conductivity of the vapor at atmospheric pressure, f.lsl and A.5z 
are viscosity and thermal conductivity of the saturated liquid, f.lsv and A.5v are viscosity and thermal 
conductivity of the saturated vapor, and T is the temperature (f.l in J,.LPa·s; A. in mW /m, °C; T in °C). 

Calculated transport properties can be based on modified [3] or "extended" [4, 5] corresponding 
states models, or on the empirical or semi-empirical correlations. It should be noted that the methods 
based on the corresponding states models require some additional information: the order parameters for 
the modified corresponding states method and the shape factors for the "extended" corresponding states 
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models. In the application of corresponding states to mixtures, the mixing rules for these parameters 

require further study. 

In our previous paper [2], we considered the method for calculating liquid thermal conductivities 

and viscosities of binary refrigerant mixtures on the basis of pure-component data alone, and the following 

equations for the thermal conductivity and the viscosity, respectively, were proposed 

f.J.mix :::: f.J.id (1 - f3X1X2) 

(8) 

(9) 

where Aid = A.1X1 + A.2X2; .1/... = /...1- A.z; f.J.id = 11-1X1 + 11-2X2; Xi is the mass fraction of component i, a and f3 

are coefficients that are functions of density (d) and vary from 0 when d = 0 to a constant value when d 2:: 

2dc. For mixed liquid refrigerants the coefficients are found to be a= 0.72 and f3 = 0.25. 

The accuracy of this approach for the saturated liquid transport properties of R508B is quite good. 

The deviations are less that 2% for the thermal conductivity and do not exceed 2.5% for the viscosity. 

The following equation for the surface tension has been obtained on the basis of our experimental 

results 

(10) 

where ~is surface tension in mN/m; cro = 52.90 mN/m; k = 1.271; Tr = 1- T/Tci cp(Tr) is found to be an 

universal function 

(11) 

The deviations between the calculated results from the above correlation with the experimental 

surface tension data are within 1.5%. 

CONCLUSIONS 

New transport properties (viscosity and thermal conductivity) and surface tension measurements 

of R23/116 mixture (R508B) over a range of parameters are presented. The experimental apparatus for 

measuring the surface tension is described. A set of equations for calculating saturated-liquid viscosity, 

saturated-liquid thermal conductivity, and surface tension of R508B is also presented. 
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