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Abstract

Background: The complexity of genome-scale metabolic models makes them quite difficult for human users to
read, since they contain thousands of reactions that must be included for accurate computer simulation. Interestingly,
hidden similarities between groups of reactions can be discovered, and generalized to reveal higher-level patterns.

Results: The web-based navigation system Mimoza allows a human expert to explore metabolic network models in a
semantically zoomable manner: The most general view represents the compartments of the model; the next view
shows the generalized versions of reactions and metabolites in each compartment; and the most detailed view
represents the initial network with the generalization-based layout (where similar metabolites and reactions are
placed next to each other). It allows a human expert to grasp the general structure of the network and analyze it in a
top-down manner

Conclusions: Mimoza can be installed standalone, or used on-line at http://mimoza.bordeaux.inria.fr/, or installed in
a Galaxy server for use in workflows. Mimoza views can be embedded in web pages, or downloaded as COMBINE
archives.
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Background
Semantic generalization of metabolic network models [1]
is a theoretical method designed to aid users in under-
standing complex models. Generalization identifies and
groups into classes biochemically similar metabolites and
functionally similar reactions in the network. While we
say “similar” in the commonsense way that a biologist
would consider that the entities belong to the same class,
we mean precisely that the two concepts are related by
is-a relations in the corresponding ontology. For exam-
ple, in a generalized model we might group all hexoses,
and thus group together most hexose transporters, for a
study where the differences between these transporters
is not pertinent. Generalization is a kind of dimension
reduction in complex models. It can also be used on
several models simultaneously: a challenge in compar-
ing models of related organisms, or in reconciling two
models of the same organism, is that different cura-
tion standards may have been applied to the different
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models. Generalization can bring disparate models to
the same level of abstraction so that they can be com-
pared. To explore the opportunities of model general-
ization, we implement it here as a practical tool that
can be easily adopted and easily integrated into existing
workflows.
The zooming user interface (ZUI) [2] paradigm has

proven to be a powerful tool for representation of data at
different scales. It is being adopted for various domains of
applications, including cartographic [3], exploratory data
visualization [4], collaborative interfaces [5] and biological
data [6,7]. The challenge is how to use ZUI-based visual-
ization for semantic generalization of metabolic networks.

Metabolic network reconstruction and infrastructure
There is a conflict between the level of detail of metabolic
models needed for computer simulation and the one that
can be easily analyzed by a human curator: Genome-scale
metabolic models include thousands of reactions that may
participate in organism’s metabolism (e.g., 2 251 reactions
in the metabolic network of the bacterium E. coli [8],
2 352 reactions in the yeast 7 metabolic network model of
S. cerevisiae [9], 7 440 reactions in recon 2, a global human
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metabolism reconstruction [10]), while human experts
understand best small-sized networks, containing up to
hundreds of nodes [11,12].
Metabolic network reconstruction can address various

objectives. Examples include creation of a model for a
new organism from its genomic data and a reference
model for a similar organism; creation of a larger-scale
model by combining several models of different aspects
of organism’s metabolism; improving an existing model
by incorporating new data and new expertise. To accom-
plish these objectives the following tasks are used (see
Figure 1).

Inference
The metabolic network reconstruction process is becom-
ing more advanced, and there now exist various tools
for semi-automatic model inference, e.g., Pathway-
Tools [13], the RAVEN toolbox [14], KEGGtranslator [15],
CoReCo [16], SuBliMinaL [17] (see [18] for a review).
Starting from a model for a related organism or a collec-

tion of pathways, and genomic data, they produce a draft
model for the target organism. Existing metabolic mod-
els can be found in several resources, including Biomodels
Database [19], BiGG [20], JWS online [21]. KEGG [22]

and Reactome [23,24] provide an extensive collection of
pathways.
Models are stored and shared using established formats,

such as SBML [25], SBGN-ML [26], CellML [27]. A model
represented in these formats can be further enriched with
the knowledge from biological databases and ontologies,
e.g., ChEBI [28], Uniprot [29], by annotating elements of
themodels (such as metabolites, reactions) with appropri-
ate identifiers. Further in this manuscript we will consider
metabolic models in SBML format.
Although automatic model inference tools and genomic

comparison methods are becoming steadily more sophis-
ticated, they may still leave gaps in the model or add
erroneous reactions. The intrinsic and extrinsic correct-
ness of the model should be checked during the phases of
analysis and curation.

Curation and analysis
The inferred draft network needs to be refined dur-
ing several iterations of analysis, curation and improve-
ment [17,30]. The goal of the model analysis is to verify
that the model does not contain inner contradictions and
errors, e.g., that the network is connected; the trans-
port reactions between compartments are well defined;

Figure 1Metabolic modeling workflow. The processes highlighted in yellow represent themodel creation cycle: The draft model is created by
model inference tools based on models for similar organism, pathway and reaction information extracted frommodel repositories and pathway and
reaction databases; it is then iteratively improved during the process of curation and analysis. The resulting model can in its turn be added to model
repositories. The processes highlighted in red showmodel usages: simulation and knowledge-oriented exploration. The processes highlighted in
green describe comparison and combination of several models. As the model creation cycle, they also include the curation and analysis stage. The
processes represented with the red arrows require human expert’s intervention, and thus need good visualization tools, ways of splittingmodels
into modules and different levels of abstraction.
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the reactions are chemically balanced, etc. Various model
analysis tools, e.g, FASTGAPFILL [31] for gap filling, Cell-
NetAnalyser [32] for for finding dead ends and blocked
reactions, SuBliMinaL Toolbox [17] for reaction balanc-
ing, can facilitate model analysis; but human expert’s
knowledge on organism’s metabolism still plays an impor-
tant role.
Curation is performed to ensure, first, that all of the

knowledge that the experts deem pertinent is recorded in
the model, and second, that the knowledge is recorded in
a coherent way. The first depends on the requirements of
the experts: a model for a cell factory used in an industrial
process would need precise kinetics but may only require
the reactions active in steady state that participate in the
pathway that produces or consumes the target molecule,
whereas a whole-genomemodel used to understand func-
tional dependencies between genes would need to be as
complete as possible but may not require reaction kinet-
ics. The second concerns the internal consistency of what
is recorded: metabolites and reactions must be annotated
with ontology terms from appropriate knowledge bases,
reaction stoichiometry must be consistent, transport

between compartments must be assured, and so on. Cura-
tion and analysis of models is an iterative process, ideally
repeated many times to refine the draft model until the
needed level of quality is achieved.
The curation by a human expert requires a means of

splitting genome-scale models into smaller units that can
be checked and analyzed independently. At a higher level,
appropriate levels of abstraction need to be found to allow
experts to compare whole genome networks. Good model
visualization tools are also required.

Simulation
The improved model, created during the iterations of
curation and analysis, can be used for computer simu-
lation to obtain numerical results (see [33] for a review
of simulation and flux analysis tools). We do not exploit
simulation in this manuscript.

Exploration
The model can also be used for knowledge-oriented
exploration to obtain new knowledge about the processes
happening in the organisms’ metabolism, and the relation-
ships between them, e.g., the “redundancy” of the model:
discovery of similar reactions, and alternative pathways.
Means of splitting genome-scale models into smaller
units, appropriate levels of abstraction and good model
visualization tools are as important for model exploration
task as they are for curation.

Comparison and combination
Model comparison and combination is another important
task. Possible scenarios include comparison to a different
model of the same organism, with potential merging into

a new, more complete, model; comparison of a model of
a healthy organism to the one of a metabolism suffer-
ing from a disease to discover disease-specific metabolic
adaptations. A genome-scale model can be created by
combining several smaller models, describing different
metabolic processes in a species [34], where model com-
parison is needed to detect overlaps. Such a model can
be used as a draft model, and will need to undergo the
analysis and curation phase. Finally, a group of models for
related species can be compared and combined to produce
a concise representation of their common metabolism, to
study the common properties of a group, as well as the
organism-specific adaptations.
There exist various software facilitating model merging,

e.g., semanticSBML [35], OREMPdb [36], PathCase-SB
Model Composition Tool [37], but all of them require
human expert’s intervention in cases when the models to
be merged are incompatible or contradict to each other,
as well as for better discovery of common parts. Thereby,
after the creation, the combined model becomes a draft
and should in its turn undergo the analysis and curation
cycle.
By combining these modeling tasks into workflows, as

in Figure 1, one can accomplish the modeling objectives
listed above.
At least three of the aforementioned tasks (curation,

exploration, comparison) require the intervention of a
human expert, and thus require methods of dealing with
the complexity of the models, e.g., by splitting them into
smaller modules, by defining different levels of abstrac-
tion, and by visualization.

Existing visualization approaches
There exist variousmodeling tools formetabolic networks
that also support visualization. Desktop tools include
CellDesigner [38], VANTED [39], and Cytoscape [40].
They produce reasonably good visualizations of small
networks (up to hundreds of reactions), but become clut-
tered at the genome-scale level, making the visualization
unreadable.
Web-based tools allowing for metabolic network visu-

alization are also available. JWS online [21], for example,
provides a mechanism for network visualization using a
force-directed layout algorithm [41,42]. It also encoun-
ters the aforementioned issues and thus is not capable of
providing a readable representation for large networks.
MetDraw [43] is an online tool for genome-scale

metabolic model visualization, that makes use of decom-
position of the model into compartments and pathways (if
the pathway information is present in the model as a sub-
system annotation of reactions) and duplication of minor
metabolites. Metabolite duplication reduces clutter, but
the huge number of reactions in the compartments of
some models and missing subsystem annotations, makes
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the visualization consume too much space and do not
allow a user to grasp the essential structure of the network.
Due to the huge numbers of reactions and ofmetabolites

participating in multiple reactions, we have an uncom-
fortable choice between either many edge crossings in
an automatic visualization of a genome-scale network, or
over-duplication of various metabolites making the essen-
tial parts of the network disconnected and the visualiza-
tion too large to grasp. Therefore an approach different to
a simple graph layout algorithm is necessary. ZUIs, which
can change the size and nature of the content displayed at
different zoom levels, provide a pertinent alternative. Two
main types of magnification can be considered: geomet-
ric zooming, in which a region of the network is enlarged;
and semantic zooming, in which additional properties are
introduced with enlargement [7].
Semantic zooming was first introduced for biological

data visualization in 1988 with Zomit [6], a generic appli-
cation programming interface for developing servers for
zoomable navigation and visualization, and illustrated
with an example of ZoomMap, a prototype browser for
HuGeMap human genome database [44]. The work by
Jianlu and Laidlaw [45] evaluates geometric zooming with
the Google Maps interface on five examples (a gene
co-regulation visualization, a gene expression heatmap
viewer, a genome browser, a protein interaction network,
and neural projections), and describes a positive feedback
provided by both domain experts and less experienced
users. Another example of a Google Maps-based ZUI is
X:map [46], a genome annotation database that supports
zoomable data browsing. It does not use semantic zoom-
ing, but allows for showing/hiding layers with additional
information (EST and GenScan predictions).
There exist several web-based tools that include a

zoomable representation of metabolic networks. Genome
Projector [47] is a zoomable genome map with multi-
ple views, including a pathway map. The pathway map
is based on the Roche Biochemical Pathway wall chart
available from the ExPASy proteomics server [48]. The
Roche Biochemical Pathway wall chart has a large size and
shows the collection of biochemically known molecules,
enzymes and reactions. Genome Projector provides a geo-
metric zooming on the map and overlay layers to highlight
reactions present in the organism of interest. The list
of organisms is fixed to 320 bacterial genomes. The full
Roche Biochemical Pathway map with the imposed lay-
out is always shown, but only the reactions of interest
(corresponding to the chosen organism) are highlighted.
NaviCell [49] is a web environment that permits

exploiting large maps of molecular interactions, includ-
ing metabolic maps. It allows users to create their own
maps, but does not provide a solution to the problem of
huge network layout. The map creation is not fully auto-
matic: The user must create a map in CellDesigner, export

it as an image and partly manually edit it in a graphical
designer to produce intermediate views (possibly with dif-
ferent level of details for semantic zooming). In addition,
NaviCell permits a user to split the map into submaps
called modules.
Another web-based tool, the Cellular Overview [50]

creates interactive diagrams for metabolic maps of
organisms in the BioCyc database [51]. It is pathway-
oriented, and supports only geometric zooming.
Another drawback is that it does not show the
compartmentalization.
The Reactome pathway database [23,24] browser pro-

vides a zommable visualization of manually curated path-
ways for 19 organisms. It has two semantic zoom levels:
a general representation of organism’s pathways (nodes
represent pathways, the edges connect the related ones);
and submaps showing the details of each of the pathways,
including compartmentalization. Several levels of geomet-
ric zoom are available on both semantic zoom levels.
Reactome is pathway-oriented. Inside each pathway the
layout is imposed: reactions, metabolites, and compart-
ments common to two organisms have the same layout
in corresponding representations. On the other hand, the
positions and sizes of compartments might differ between
pathways of the same organism.
None of the ZUI tools for metabolic map representation

described above, except for NaviCell, allow users to input
their own models. Moreover, as these examples show, not
only geometric zoom but also model decomposition and
semantic zoom are important for multi-level visualization
of huge models. At the general level, the network needs to
be decomposed into several meaningful modules (such as
compartments, pathways). If after such a decomposition
the model remains complicated (e.g., the mitochondrial
compartment of the yeast consensus model [52] contain-
ing 230 reactions), a further decomposition is required.
We address these issues below by combining model gen-
eralization with a ZUI.

Implementation
Choosing zoom levels
We address the problem of large-scale metabolic model
visualization by combining meaningful decomposition
into modules with automatic multi-level abstraction.
Decomposition is performed in the following way: The
network is first split into compartments; then the model
generalization method is applied to each compartment
to detect the generalized modules. Thereby, the most
appropriate is to adopt 3 levels of semantic zooming:

1. The most abstract level represents
compartmentalization of the network, and focuses on
such questions as: Are all the compartments present?
Are they well connected by transport reactions?
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This level shows the compartments of the model, the
transport reactions between them, and other
reactions happening inside the cytoplasm. If the
model does not describe compartments, this level
will be missing.

2. The second level shows the modules inside each of
the compartments. The questions that can be
addressed at this level include: Are all the reactions
or more generally pathways desired by the curators
present? are the input-output relations of functional
modules consistent with what the expert expects
from her knowledge? Does the model show
organism-specific adaptations, seen in the model as
shortcuts or meanders?
We use our knowledge-based generalization method
to identify the modules inside the compartments. It
detects similar metabolites and reactions and clusters
them together to represent them as generalized
metabolites and reactions with the same structure
(numbers of consumed and produced metabolites).
The generalized representation reveals the overall
structure of the network while hiding the details.
If no similar metabolites/reactions can be detected by
the generalization method (due to the model
structure or to missing ChEBI metabolite
annotations), this level will be missing.

3. The most detailed level is intended for computer
simulation and represents the inner structure of each
of the modules with all the metabolites, reactions and
their kinetics, stoichiometries and constraints.
Our method places similar metabolites and reactions
(detected at level 2) next to each other, thus
simplifying the analysis of their presence.

Figure 2 shows such a 3-level representation on the
example of the model of β-oxidation of fatty acids [53] in
the peroxisome compartment of a yeast Y. lipolytica. The
first level (bottom) shows the peroxisome compartment,
and the transport reactions; the second level (middle)
shows the generalized structure of the peroxisome; the
most detailed level (top) represents the complete model,
placing semantically similar metabolites and reactions
next to each other.

Model generalization
The metabolic model generalization method [1], which
we recall here, groups similar metabolites and reactions
in the network based on its structure and the knowledge
extracted from metabolite ontologies. A generalization is
made specifically for a given model and is maximal with
respect to the relations in the model; it respects semantic
constraints such as reaction stoichiometry, connectivity,
and transport between compartments; and it is performed

through a heuristic method that is efficient in practice
for genome-scale models. The reader is referred to [1] for
these technical details, which are beyond the scope of this
article.
To make metabolite grouping semantically meaningful,

an ontology describing hierarchical relationships between
biochemical entities is used. Each metabolite can be gen-
eralized up to one of its ancestors in the ontology. We
use the ChEBI ontology, as it is the de facto standard for
metabolite annotation in metabolic networks. If a ChEBI
annotation for a metabolite is not present in the model,
the method attempts to automatically deduce it by com-
paring metabolite’s name to ChEBI terms’ names and
synonyms.
Reactions that share the same generalized reactants and

the same generalized products, are considered equivalent
and are factored together into a generalized reaction.
The appropriate level of abstraction for metabolites and

reactions is defined by the network itself as the most
general one that satisfies two restrictions:

1. Stoichiometry preserving restriction: metabolites
that participate in the same reaction cannot be
grouped together;

2. Metabolite diversity restriction: metabolites that do
not participate in any pair of similar reactions are not
grouped together (as there is no evidence of their
similarity in the network).

Overall, the generalization method is composed of three
modules:

1. Aggressive reaction grouping based on the most
general metabolite grouping (defined by ChEBI), in
order to generate reaction grouping candidates;

2. Ungrouping of some metabolites and reactions to
correct for violation of the stoichiometry preserving
restriction;

3. Ungrouping of some metabolites (while keeping the
reaction grouping intact) to correct for violation of
the metabolite diversity restriction.

For instance, (S)-3-hydroxydecanoyl-CoA, (S)-3-
hydroxylauroyl-CoA and (S)-3-hydroxytetradecanoyl-CoA
have a common ancestor hydroxy fatty acyl-CoA in
ChEBI. They can be grouped and generalized into hydroxy
fatty acyl-CoA, if in the network there is no reaction
whose stoichiometry would be changed by such a gen-
eralization (stoichiometry preserving restriction), and
exist similar reactions that consume or produce them
(metabolite diversity restriction).
The method is available as a python library [54] that

operates on models in SBML [55] format. It takes an
SBML file of level 2 or 3 (any version) and produces an
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Figure 2 Three zoom levels. The most general zoom level (bottom) shows the peroxisome and a generalized transport reaction. The intermediate
zoom (middle) shows the generalized processes inside the peroxisome compartment. The most detailed view (top) reveals the metabolites and
reactions of the initial model.

SBML level 3 version 1 file with groups extension [56] that
contains the initial model plus groups for all non-trivial
similar metabolite and reaction sets (see Figure 3).
The compression that can be achieved with the model

generalization method depends on the model structure
and on how well the model is annotated with the ChEBI
ontology (as the metabolites lacking ChEBI annotations
are not generalized). Additional file 1: Table S1 shows
the results of the application of the model generaliza-
tion method to 269 metabolic models from Path2Model
project [57]. All those models are genome-scale, the aver-
age number of reactions per model is 2 879. The average
compression ratio r is 1.14:

r = number of reactions in the initial model
number of reactions in the generalized model

(1)

Layers layout
To visualize a metabolic network we first represent it
as a bipartite graph [58] with two disjoint sets of nodes
(metabolites and reactions), and edges that connect the
reactions to their substrate and product metabolites. To
achieve such a representation, we implemented a con-
verter from SBML to TLP format, that is used by the Tulip
graph visualization tool [59]. TLP format stores nodes
and edges of the graph, and associates each node and
edge to a list of named attributes: standard ones, such as
shape, size, color; and user-defined ones, such as, in our
case, element type (compartment, reaction or metabolite),
ChEBI identifier, group number, gene association, etc. The
SBML-to-TLP converter is implemented in python, using
libSBML library [60], and is available as a part of Mimoza
software.
While layout of large graphs is widely studied [61], the

correspondence between the layouts of different seman-
tic zoom levels remains a hard task. To compute the
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Figure 3 Representation of a generalized model in SBML level 3 version 1 format with groups extension. The output SBML file contains the
initial model (including the lists of metabolites (called species in SBML), reactions, etc.) plus the listOfGroups section that represents non-trivial
quotient metabolite and reaction sets. In the figure, a group representing a quotient metabolite set of hydroxy fatty acyl-CoAs is shown; it includes
(S)-3-hydroxydecanoyl-CoA (s_0045), (S)-3-hydroxylauroyl-CoA (s_0051), etc. Each of those metabolites was previously declared in the listOfSpecies
section.

layout for different semantic zoom levels we combine two
different approaches.

Generalizedmodel layout
In order to lay out the sub-networks corresponding to
each of the compartments after the generalization, we
use a combination of standard layout algorithms pro-
vided by Tulip. We divide the compartment graph into
connected components (i.e., subgraphs in which any two
nodes are connected to each other by undirected paths,
and which are not connected to any additional nodes
in the supergraph), using a method provided by Tulip.

We then apply an appropriate layout algorithm on each
of them. The results are combined together using the
Connected Component Packing algorithm (provided by
Tulip), which places the components close to each other
while removing the overlaps between them.
Regarding each of the connected component sub-

graphs as a directed graph (the direction of the edges
is defined by the direction of the corresponding reac-
tions; for reversible reactions edges in both directions
are considered), we detect their strongly connected com-
ponents (i.e., subgraphs where every vertex is reachable
from every other vertex) using path-based depth-first
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search algorithm [62]. Depending on the number of cycles
in each strongly connected component subgraph, we
choose one of the following layout algorithms, provided by
Tulip:

• Circular Layout for the strongly connected
components with less than 20 cycles (Circular
(OGDF) [42], with O(|E|2) time and space
complexity);

• For components with more cycles we use
Force-Directed Layout (FM3 (OGDF) [63], that has
the asymptotic worst-case running time of
O(|V |log|V |+|E|) with linear memory requirements)
to reduce the number of edge intersections.

We then represent each strongly connected com-
ponent as a meta-node [59], apply a Hierarchical
Layout (Sugiyama (OGDF) [64] algorithm (complex-
ity of O(|V ||E|) in time and of O(|V | + |E|) in
space) on the initial connected component subgraph
(that now contains no cycles), and then open the
meta-nodes.
To avoid clutter we duplicate all the minor metabo-

lites (oxygen, hydrogen, water, ATP, etc.) before applying
the layout algorithms, so that there is a copy of a minor
metabolite for each reaction in which it is used. We then
extract a subgraph, containing all but the minor metabo-
lites, apply the combined layout on it, and then place the
minor metabolites next to the reactions in which they
participate.

Generalization-based fullmodel layout
The layout for the full model is based on the corre-
sponding generalized model’s layout. To allow zooming
into the generalized model, we keep the same coor-
dinates as in the generalized model for the minor
metabolites and the ungeneralized metabolites and reac-
tions, and place similar metabolites or reactions next to
each other inside the space used by the corresponding
generalized metabolites or reactions in the generalized
model.
An edge in the generalized view might expand into sev-

eral edges in the full-model view, for example, if it is a
generalized edge connecting a generalized metabolite to a
generalized reaction. The positions of the edges after such
an expansion might slightly differ from the corresponding
generalized one.

Node colors
A different color is assigned to each generalized
metabolite/reaction; and is propagated to the cor-
responding metabolites/reactions of the full model.
Minor metabolites are colored grey. Mimoza’s interface
includes a checkbox that permits to hide/show minor
metabolites .

Node sizes
The size of the nodes depends on their nature: minor
metabolites are smaller than the other ones; a radius of a
generalized metabolite/reaction is calculated as a sum of
radiuses of the elements that it groups; compartment sizes
are defined by the layouts of the elements inside them, so
that the compartments are represented asminimal rectan-
gles containing all the corresponding elements. All major
specific (i.e., not generalized) metabolites are of the same
size; as well as all specific reactions.

Relative positions of compartments
Metabolic models may include several compartments,
nested into each other. For example, the peroxisome com-
partment is surrounded by its membrane, and contained
in cytoplasm; the cytoplasm is part of the cell, which is
surrounded by the cell envelope.
SBML allows to represent relative positions of the com-

partments in the model with an optional outside tag.
However, it is not available in all SBML levels, nor is widely
used.
To be able to visualize the compartments correctly even

for the SBML models lacking this information, we infer
their relative positions from the Gene Ontology (GO) [65].
We associate each compartment with a term from the cel-
lular component branch of GO by using annotations in
the model if they are present, or matching the compart-
ments’ names otherwise. We then use the part_of and
is_a relationships between the terms in GO to infer rela-
tive compartment positions. If no term for a compartment
could be found, it is placed on the outer-most level.

SBML layout
To store the calculated layout of the model elements we
use the layout extension [66] of SBML. It allows to store
the coordinates and sizes of themetabolites, reactions and
compartments in the model. The TLP-to-SBML layout
converter is implemented in python and is available as a
part of Mimoza software. If the SBML model submitted
by the user contains the layout information, our software
uses it for nodes’ positions. Therefore, it is possible to
visualize a model with Mimoza, download the resulting
SBML with layout annotations, edit it manually or with
another software and then revisualize the updated version
with Mimoza.

ZUI
The zoomable interactive representation is achieved using
Leaflet [67], a JavaScript library for interactive maps.
We export elements of the network graph (compart-

ments, metabolites and reactions) as map features in
GeoJSON format [68] in order to store their coordinates
and metadata (e.g., ChEBI annotations for metabolites).
Figure 4 shows an example of a reaction represented
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Figure 4 GeoJSON representation of a reaction. An SBML reaction
is stored as a GeoJSON Point feature, with its layout coordinates
encoded in the geometry section. The identifiers, labels and
annotations, as well as the information on the reactant and product
metabolites are stored as properties. The “type” property value
specifies that this GeoJSON feature is a reaction.

in GeoJSON format. The TLP-to-GeoJSON converter
is implemented in python and is available as a part of
Mimoza software.
The GeoJSON objects are then added as layers to the

map and rendered by Leaflet into clickable elements
at corresponding zoom levels. We follow SBGN Pro-
cess Description language convention [69] to choose the
glyphs for model elements’ representation: Metabolites
are drawn as circles linked by edges to the reactions where
they participate; reactions are represented as squares;
compartments are drawn as rectangles. On the semantic
zoom levels that show compartments, the correspond-
ing transport reactions are connected to compartments.
On the more detailed zoom levels, where the metabolites
inside those compartments are shown, these reactions
are connected to the corresponding metabolites. When
a user clicks on a map element a pop-up appears (see
Figure 5) showing its name, identifier and additional infor-
mation, e.g., gene associations and formulas for reactions.
Two overlays allow user to show or hide minor metabo-
lites (e.g., water, oxygen, hydrogen, etc.), and transport
reactions.

Embedding
After the visualization with Mimoza is done, we provide a
link for embedding the view in another web page.

Download and distribution
One can use Mimoza in three different ways:

1. As a standalone application. All Mimoza code is
open-source and can be downloaded from the
project web page [71] and installed on a local server.

2. On the Mimoza web server. Mimoza web server [71]
lets one test visualization for smaller SBML models,
with the possibility to download the result as a
COMBINE archive [72], including the SBML file
with groups (to store the metabolite and reaction
groupings) and layout (to store the element
coordinates) extensions, GeoJSON files with the
coordinates of model elements, and the HTML, CSS
and JavaScript files that are needed to view the
visualization in a browser.

3. As a Galaxy [73] project tool, so that generation of
Mimoza views can be included in a Galaxy workflow.
The Galaxy wrapper for Mimoza is available for
download from the project web page.

Pipeline
The overall Mimoza pipeline contains 5 steps:

1. The user submits a model in SBML format (level 2
or 3, any version) via a web form.

2. If the model does not yet contain groups, it is
generalized using the model generalization method,
and the resulting SBML file (level 3 version 1 with
groups extension) is made available to the user.

3. The SBML file with groups of similar metabolites and
reactions is converted into a Tulip graph: metabolite
nodes are connected by edges to the nodes of the
reactions in which they participate. The generalized
metabolites and reactions form quotient nodes. The
Tulip graph is split into sub-graphs corresponding to
different compartments, and layout algorithms are
applied to them.

4. The compartment sub-graphs are exported in
GeoJSON format and rendered by the Leaflet library
into an interactive map that is represented to the user.

5. The result can either be browsed on the Mimoza web
page directly, or downloaded as a COMBINE archive
and embedded into a different website.

Results and discussion
To illustrate the use of Mimoza and compare it with
other available ZUI tools, we visualized the yeast con-
sensus genome-scale metabolic network model [52]. The
result can be found at http://mimoza.bordeaux.inria.fr/
yeast4. Mimoza automatically split the network into com-
partments and created a 3-level visualization for each of
them.
We visualized the same model using MetDraw with no

manual adjustments. The resulting SVG filea has only one

http://mimoza.bordeaux.inria.fr/yeast4
http://mimoza.bordeaux.inria.fr/yeast4
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Figure 5 A reaction pop-up. (Right part) An example of a pop-up that opens when a user clicks on a reaction: It contains the information on the
reaction name, identifier, reactant and product metabolites and their stoichiometries, as well as gene associations. (left part) Gene names are
hyperlinks redirecting to the NCBI Gene database [70].

zoom level with lots of clutter, that does not allow one to
see the structure of the network.
Cellular Overview does not allow one to visualize a

model provided by a user, but has a map of metabolism of
Saccharomyces cerevisiae.b It has a clear non-overlapping
representation of various pathways present in the model,
but does not show the compartmentalization. It is not
automatic and is pathway-oriented, thus is not suitable for
models having no pathway metadata. The zoom-in shows
additional labels but all the metabolites and reactions are
present at all the levels, making the elements at the most
general level very small and hard to analyze.
NaviCell does not allow to visualize an SBML model

automatically. Genome Projector only contains maps for
bacterial genomes and does not permit user’smodel input.
Neither Reactome allows users to visualize their own

models, but it contains a pathway map for Saccharomyces
cerevisiae.c It has two semantic zoom levels: a visual-
ization of a list of pathways present in the model, and
submaps corresponding to each of them. The represen-
tation of each pathways is very clear, and has several
geometric zoom levels. However, it is not always space-
efficient as it contains gaps due to reactions present in
other organisms but absent in S. cerevisiae. Another par-
ticularity is that while the positions of elements common
to different organisms are conserved within a pathway,
their positions might differ between different pathways
of the same organism. In Mimoza, on the contrary, the
positions of the reactions and metabolites are conserved
between the compartments of the same organisms; but
the layout of common processes (e.g., pathways) in differ-
ent organisms’ visualizations might differ in the current
implementation.
Table 1 summarizes the comparison of Mimoza to

other ZUI tools. Mimoza especially targets draft mod-
els during curation, allowing one to visualize them fully

automatically and helps to analyze them in a top-down
manner, starting from the general structure and going
down to the details. The generalized level differentiates
it from other tools, since it shows both the overall net-
work structure and fine-grain visualization in the most
detailed level, automatically placing semantically similar
metabolites next to each other. Mimoza does not depend
on pathway information, automatically infers the relative
compartment placement (e.g., places organelles inside the
cytoplasm) and exploits a model in SBML format with
ChEBI annotations for metabolites (if no annotations are
present, it tries to infer them automatically based on
metabolites’ names).
Using generalization to compare two metabolic net-

works makes most sense if they have equivalent general-
ized nodes that can be placed in corresponding positions
in the two layouts. Mimoza currently handles this cor-
respondence between zoom levels of the same network,
but does not guarantee such correspondence when two
networks are laid out independently. To meet this chal-
lenge, three strategies can be explored. The first is to use
constrained layout [74], to impose the positions of key
features in one network on the corresponding features
of the second network. The second is also to use con-
strained layout, with a catalog of standard positions for
common motifs in generalized maps; for example, always
lay out the generalized β-oxidation of fatty acids as a 4-
step cycle, with standard positions for the generalized
metabolites common for all the networks that incorporate
β-oxidation. The third strategy, which we are in the pro-
cess of testing, is to learn a common layout by generalizing
the union of the two networks. The idea is to combine the
reactions into one set, run the generalization procedure
on the union to fix the positions of the common features,
then to build each of the layouts using only its own set of
nodes. Each network layout only contains its own nodes,
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Table 1 Comparison of ZUIs formetabolic models

Semantic User’s Automatic
Tool name Imposed layout Zoom Model Layout Modules

Genome projector yes no no - no

NaviCell no if created yes no yes

by user

Cellular overview yes no no - no

Reactome yes (same pathw. diff. org.) / yes no - yes

no (diff. pathw. same organism)

Mimoza no yes yes yes yes

but the common nodes of the two networks will be in
common positions.
Finally, the API of the Leaflet framework used for the

interactive navigation can be used to integrate the maps
with other web-based tools, such as annotation editors or
simulation software.
Mimoza is currently targeted to metabolic networks.

While it can provide a geometric zooming visualization
of a generic SBML model (e.g., a signaling network), the
knowledge-based generalization, and therefore semantic
zooming, depends on the ChEBI ontology and is intended
for metabolic models. A domain-specific adaptation of
the generalization method (e.g., use of a domain-specific
ontology instead of ChEBI, that is targeted to metabolism)
might allow Mimoza to assist in modeling of other kinds
of biological networks.

Conclusions
We have implemented Mimoza, a novel software tool
for automatically constructing zooming user interfaces
for genome-scale metabolic models. By exploiting model
generalization, Mimoza reduces the dimension of the
model’s network at outer zoom levels, and intelligently
co-localizes equivalent reactions and molecular species
at inner zoom levels. Consequently the biological user
may efficiently navigate the high-level structure of the
model; whether the goal is to understand the model or to
search for errors, Mimoza exposes the important features
at out zoom levels and and hides the specific details in
the inner ones. We provide an efficient, useful tool that
is easy to adopt and, through the use of standards such
as SBML and the ChEBI ontology, is easy to integrate
into existing expert-centered modeling pipelines. By care-
fully combiningmodel generalization with adaptive layout
and open-source cartographic software, the Mimoza web
server requires just a browser with Javascript. Mimoza is
open source and can also be installed locally, as described
on the web page, and depends on libSBML, Tulip, and
Python.

Availability and requirements
Project name:Mimoza
Project home page: http://mimoza.bordeaux.inria.fr
Operating system(s): Platform independent
Programming language: Python, JavaScript
Other requirements: JavaScript should be enabled in
the web browser. The standalone Mimoza application
requires Python 2.7; libSBML-experimental ≥ 5.9 for
Python with groups and layout extensions; Leaflet 0.7.3;
jQuery 2.1.1 and jQuery-ui 1.10.4; Tulip ≥ 4.0 for python;
and model generalization libraryd.
License: CeCILL (GPL compatible)
Any restrictions to use by non-academics: no
restrictions

Endnotes
aMetDraw – http://www.metdraw.com/metdraw/

bc7df60221ba314c383b1bf6e7dad4c3056f92bb.
bCellular Overview – http://biocyc.org/overviewsWeb/

celOv.shtml.
cReactome – http://www.reactome.org/

PathwayBrowser/#SPECIES=68322&DIAGRAM=
5686439.

dModel Generalization – http://metamogen.gforge.
inria.fr.
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