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We consider the separation problem for sets X that are pre-images of a given set S by a linear mapping. Classical
examples occur in integer programming, as well as in other optimization problems such as complementarity. One
would like to generate valid inequalities that cut off some point not lying in X, without reference to the linear
mapping. To this aim, we introduce a concept: cut-generating functions (CGF) and we develop a formal theory
for them, largely based on convex analysis. They are intimately related to S-free sets and we study this relation,
disclosing several definitions for minimal CGF’s and maximal S-free sets. Our work unifies and puts in perspective
a number of existing works on S-free sets; in particular, we show how CGF’s recover the celebrated Gomory cuts.
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1. Introduction. In this paper, we consider sets of the form
X=X(R,S):={zeR}: ReeS}, (1a)

R=|r... is a real ¢ x atri
where { [r1...75] is a real ¢ X n matrix,

S C R? is a nonempty closed set with 0 ¢ S'. (1b)

In other words, our set X is the intersection of a closed convex cone with a pre-image by a linear mapping.
This model goes back to [18], where S was a finite set: constraints Rz = b were considered for several
righthand sides b. Here, we rather consider a general (possibly infinite) set S and a varying constraint
matrix R. The closed convex hull of X does not contain 0 (see Lemma [ZT] below) and we are then
interested in separating 0 from X: we want to generate cuts, i.e. inequalities that are valid for X, which
we write as

cle>1, forallzeX. (2)

1.1 Motivating examples. Our first motivation comes from (mixed) integer linear programming.

EXAMPLE 1.1 (AN INTEGER LINEAR PROGRAM) Let us first consider a pure integer program, which
consists in optimizing a linear function over the set defined by the constraints

Dz=deR™, zeZl. (3)

Set n := p—m, assume the matrix D to have full row-rank m and select m independent columns (a basis).
The corresponding decomposition z = (z,y) into non-basic and basic variables amounts to writing the
above feasible set as the intersection of Z™ x Z™ with the polyhedron

P:={(z,y) eR" xRT : Az +y=10b} (4)


mailto:conforti@math.unipd.it
mailto:conforti@math.unipd.it
mailto:gc0v@andrew.cmu.edu
mailto:gc0v@andrew.cmu.edu
mailto:arisd@dim.uchile.cl
mailto:arisd@dim.uchile.cl
mailto:claude.lemarechal@inria.fr
mailto:claude.lemarechal@inria.fr
mailto:jerome.malick@inria.fr
mailto:jerome.malick@inria.fr

9 Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick: Cut-generating functions
Mathematics of Operations Research xx(x), pp. xxx—xxx, ©200x INFORMS

for suitable m x n matrix A and m-vector b.

Relaxing the nonnegativity constraint on the basic variables y, we obtain the classical corner polyhedron
[14], namely the convex hull of

{(z,y) €Z} xZ™ : Az+y=0>b}.
This model has the form () if we set

g=n+m, R_[_;l, S=7"x (2" — (b)), 5)

where Z™ — {b} denotes the translation of Z™ by the vector —b. Assuming b ¢ Z™, the above S is a
closed set not containing the origin.

For m =1, ) has a single constraint
n
Zajxj—i-y:b, yeZ, zell;
j=1

the celebrated Gomory cut [13] is
> ﬁ%‘ + D 124 zj =1, (6)
, 0 4 1= fo
J:fi<fo J:fi>fo

where f; = a; — |a;j] and fo = b — [b]. Inequality () is valid for the corner polyhedron and cuts off
the basic solution (x = 0,y = b). In the z-space R™, this inequality is a cut as defined in [@)). We will
demonstrate in Example how to recover such a cut from our formalism.

Except for the translation by the basic solution (0,b), S is quasi instance-independent. This is actually
a crucial feature; it determines the approach developed in this paper, namely cut-generating functions to
be developed below. O

EXAMPLE 1.2 (A MIXED-INTEGER LINEAR PROGRAM) In our integer program (@), let us now relax not
only nonnegativity of the basic variables but also integrality of the non-basic variables: the corner poly-
hedron is further relaxed to the convex hull of

{(I,y)ERZXZ’” : Ax—l—y:b}_
We are still in the context of () with

this is the model considered in [I] for m = 2, and in [§] for general m. Other relevant references are

4 5], (12} 15] 18]
This type of relaxation can be used when (B]) becomes a mixed-integer linear program
Dz=deR™, 220, z€Z,jel,

where J is some subset of {1,...,p}. Extract a basis as before and choose a subset of basic variables
indexed in J; call m/ < m the number of rows in this restriction and " € R™' the resulting restriction of b
(in other words, ignore a number m — m/ of linear constraints). Relax nonnegativity of the m/ remaining
basic variables, as well as integrality of the non-basic variables indexed in J. This results in (), with

g=m', R=-A, S=7" —V.
Any cut for this set X is a fortiori a valid inequality for the original mixed-integer linear program.
When m’ = 1, a classical example of such inequalities is

aj aj
Z %Ij— Z 1_f017j>1. (7)

j:a; >0 j:a; <0

Actually, Gomory’s mixed-integer cuts [13] combine (@) for the integer non-basic variables with the above
formula for the continuous ones. O



Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick: Cut-generating functions 3
Mathematics of Operations Research xx(x), pp. xxx—xxx, ©200x INFORMS

Model () occurs in other areas than integer programming and we give another example.

EXAMPLE 1.3 (COMPLEMENTARITY PROBLEM) Still using P of (), let
Ec{1,2,....m}x{1,2,...,m} and C:={yeR":yy/ =0,(ij) € E}
(in this paper, C stands for inclusion and C for strict inclusion).

The set of interest is then P N (R™ x C'). It can be modeled by () where
g=m, R=-A, S=C-b.

Cuts have been used for complementarity problems of this type, for example in [19]. O

We will retain from these examples the dissymetry between S (a very particular and highly structured
set) and R (an arbitrary matrix). Keeping this in mind, we will consider that (g,.S) is given and fixed,
while (n, R) is instance-dependent data: our cutting problem can be viewed as parametrized by (n, R).
This point of view is natural for the last two examples; but some pre-processing (to be seen in Example[28])
is needed to apply it to Example [Tk by (@), S does depend on the data through its dimension ¢, which
depends on n.

1.2 Introducing cut-generating functions. To generate cuts in the present situation, it would
be convenient to have a mapping, taking instances of () as input, and producing cuts as output. What
we need for this is a function

RI5r—p(r)eR
which, applied to the columns r; of a ¢ x n matrix R (an arbitrary matrix, with an arbitrary number of
columns) will produce the n coefficients ¢; := p(r;) of a cut ([2l). We stress the fact that p must assign a
number p(r) to any r € R%: the function p is defined on the whole space.

Thus, we require from our p to satisfy

n
zeX = Y plrja; =1, (8)
j=1
for every instance X of (). Such a p can then justifiably be called a cut-generating function (CGF).
The notation p refers to representation, which will appear in Definition below. One of the most
well-known cut-generating functions in integer programming is the so-called Gomory function [13], which
we presented in Examples [[LT] and The corresponding cuts can be generated quickly, so they are a
powerful tool in computations; indeed, they drastically speed up integer-programming solvers [7].

So far, a CGF is a rather abstract object, as it lies in the (vast!) set of functions from R? to R; but the
following observation allows a drastic reduction of this set.

REMARK 1.4 (DOMINATING cUTS) Consider in ([2) a vector ¢’ with ¢; < ¢; for j = 1,...,n; then
dTe < ¢"x whenever z > 0. If ¢ is a cut, it is tighter than ¢ in the sense that it cuts a bigger
portion of R?. We can impose some “minimal” character to a CGF, in order to reach some “tightness” of

the resulting cuts. U

With this additional requirement, the decisive Theorem 2.3 below will show that a CGF can be imposed
to be convex positively homogeneous (and defined on the whole of R?; positive homogeneity means p(tr) =
tp(r) for all r € R? and ¢ > 0). This is a fairly narrow class of functions indeed, which is fundamental
in convex analysis. Such functions are in correspondence with closed convex sets and in our context, this
correspondence is based on the mapping p — V' defined by

V=V(p):={reR?: p(r) <1}, 9)

which turns out to be a cornerstone: via Theorem below, (@) establishes a correspondence between
the CGF’s and the so-called S-free sets. As a result, cut-generating functions can alternatively be studied
from a geometric point of view, involving sets V instead of functions p. This situation, common in convex
analysis, is often very fruitful. With regard to Remark [[4] observe that V(p) increases when p decreases:
small p’s give large V’s. However the converse is not true because the mapping in (@) is many-to-one and
therefore has no inverse. A first concern will therefore be to specify appropriate correspondences between
(cut-generating) functions and (S-free) sets.
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1.3 Scope of the paper. The aim of the paper is to present a formal theory of minimal cut-
generating functions and maximal S-free sets, valid independently of the particular S. Such a theory
would gather and synthetize a number of papers dealing with the above problem for various special forms
for S: [20L [l 8 12} 4 5] and references therein. For this, we use basic tools from convex analysis and
geometry. Readers not familiar with this field may use [I7] (especially its Chap.C) for an elementary
introduction, while [I6] 22] are more complete.

The paper is organized as follows.

— Section [2] states more accurately the concepts of CGF’s and S-free sets.

— Section Bl studies the mapping ([@). We show that the pre-images of a given V' (the representations of
V') have a unique largest element vy and a unique smallest element uy; in view of Remark [[L4] the
latter then appears as the relevant inverse of p — V(p).

— In Section @ we study the correspondence V <+ py. We show that different concepts of minimality
come into play for p in Remark [[L4Al Geometrically they correspond to different concepts of maximality
for V.

— We also show in Section [l that these minimality concepts coincide in a number of cases.
— Finally we have a conclusion section, with some suggestions for future research.

The ideas in Sections 2 and Bl extend in a natural way the earlier works mentioned above. However,
Sections M and [{] contain new results.

2. Cut-generating functions: definitions and first results. We begin with making sure that
our framework is consistent. We will use conv (X) [resp. ¢onv (X)] to denote the convex hull [resp. closed
convex hull] of a set X.

LEMMA 2.1 With X given as in (), 0 ¢ conv (X).

PRrROOF. Assume X # (), otherwise we have nothing to prove. Since 0 does not lie in the closed set
S, there is € > 0 such that s € S implies ||s||1 > ¢; and by continuity of the mapping x — Rz, there is
n > 0 such that ||z|; > 7 for all z € X C R”. This means

n n
(|1 :Z|$j| :Zﬂfg‘ >n, forallze X .
j=1

j=1
In other words, the hyperplane ;j =1 separates 0 from X, hence from éonv (X). ]
Remember that we are interested in functions p satisfying (8) for any (n, R) in (). There are too

many such functions, we now proceed to specify which exactly are relevant.

2.1 Sublinear cut-generating functions suffice. The following lemma, inspired from Claim 1 in
the proof of [4, Lem. 23], is instrumental for our purpose.

LEMMA 2.2 Let p be a CGF. For all sets of K wvectors ri, € R? and nonnegative coefficients oy, the
following relation holds:

K K
Zakm =0 = Zakp(rk) >0.
k=1 k=1

PrOOF. Call e € R? the vector of all ones and o € RE the vector of a’s; take ¢t > 0 and define the
vectors in RE+4

;I;;:|:O:|7 dZ:|:a:|, so that $+td:|:ta:|eRf+q
e 0 e

Then pick s € S; make an instance of () with n = K + ¢ and R := [r1 ... rx | D(s)], where the ¢ x ¢
matrix D(s) is the diagonal matrix whose diagonal is the vector s. Observing that

R(x +td) = tZakrk + D(s)e = s,
k
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x + td is feasible in the resulting instance of ([Ial): (8) becomes

K
£y orp(ri) =1 -z,
k=1

where z is a fixed number gathering the result of applying p to the columns of D(s). Letting t — +o0
proves the claim. O

Now we introduce some notation. The domain and epigraph of a function p : R? — R U {400} are
domp:={r eR?: p(r) <+oo} and epip:={(r,z) eRI : z>p(r)}.

If dom p is the whole of R? (i.e., p(r) is a finite real number for all r € RY), we say that p is finite-valued;
a convex finite-valued function is continuous on R%. A function is said to be sublinear if it is convex and
positively homogeneous; or equivalently if its epigraph is a convex cone. The conical hull cone (epip) of
epi p is the set of nonnegative combinations of points (r, z) € epi p:

K K
T:Zakrk, z:Zakzk, with zp > p(re), ap 20, k=1,... K,
k=1 k=1

where K is an arbitrary integer. This conical hull is itself the epigraph of a sublinear function p, called
the sublinear hull of p. Its value at r is the smallest possible of the above z’s:

K K
p(r) = inf{z app(rg) : Zakm =r ap > O}. (10)
k=1 k=1

Of course p < p; in the spirit of Remark [[.4] our next result establishes that a CGF can be improved by
taking its sublinear hull.

THEOREM 2.3 If p is a CGF, then p of [IQ) is nowhere —oo and is again a CGF.

PRrROOF. Express every r € R? as a nonnegative combination: ), axri —r = 0, hence (Lemma 2.2))
S arp(re) + p(—r) > 0 and p(r) > —p(—r) > —oo.

Then take an instance R = [r;]7_; of ([[L). If it produces X = () in (&), there is nothing to prove.
Otherwise fix ¢ € X.

Any positive decomposition r; = ", «; 7, of each column of R satisfies

where z, € R™™ denotes the vector with coordinates o ,Z; > 0 and R, the matrix whose nK columns
are rj ;. Then R, is a possible instance of ([1D) and R,z, = 5 € S, so the CGF p separates z, from 0:

n K

1<) o) (og.,2) = Z( aj,kﬂ(rj,k))fcj : (11)
g,k 1

j=1 k=

Apply the definition of an infimum: for each ¢ > 0 we can choose our decompositions (7, ;i) so
that

K
> ajrp(rix) <plry)+e, forj=1,....n
k=1

which yields with (I])

1<

-

(p(rj) +e)z; => plr))T;+e> 75,
J j=1 j=1

Since ¢ is arbitrarily small — while Z is fixed — we see that p does satisfy (g]). O

1

In view of Remark [[L4] Theorem allows us to restrict our attention to CGF’s that are sublinear;
and their domain is the whole space by definition. We are now in a position to explain the use of the
operation (@) in our context.
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2.2 Cut-generating functions as representations. From now on, a CGF p will always be under-
stood as a (finite-valued) sublinear function. By continuity and because p(0) =0, V(p) in (@) is a closed
convex neighborhood of 0 in R%. Besides, its interior and boundary are respectively

int(V(p)) ={reV:pr)<l}, bd(V(p)={reV : pr)=1}. (12)

This follows from the Slater property p(0) = 0 (see, e.g., [I7, Prop.D.1.3.3]); it can also be checked
directly:

— by continuity, p(7) < 1 implies p(r) < 1 for r close to 7;
— by positive homogeneity, p(7) = 1 implies p(r) = 1+ ¢ for r = (1 + &)7.

The relevant neighborhoods for our purpose are the following:

DEFINITION 2.4 (S-FREE SET) Given a closed set S C RY not containing the origin, a closed convex
neighborhood V' of 0 € RY is called S-free if its interior contains no point in S: int (V)N S = 0. O

Let us make clear the importance of this definition.

THEOREM 2.5 Let the sublinear function p : R? — R and the closed convex neighborhood V (of 0 € RY)
satisfy @)). Then p is a CGF for ) if and only if V is S-free.

PROOF. Let V be S-free; in view of ([I2)), p(r) > 1 for all » € S. In particular, take a ¢ X n matrix
R, x € X of ([a) and set r := Rz € S. Then, using sublinearity,

1< p(Re) = p( Y wyrs) < S wiplry)
j=1 J=1

p is a CGF.

Conversely, suppose V' is not S-free: again from ([I2)), there is some r; € S such that p(r1) < 1. Take
in (D) the instance (n, R) = (1,[r1]). Then 1 € X (r; € S), so ¢1 := p(r1) < 1 cannot be a cut. O

This allows a new definition of CGF’s, much more handy than the original one:
DEFINITION 2.6 (CGF AS REPRESENTATION) Let V C R? be a closed convex neighborhood of the origin.
A representation of V' is a finite-valued sublinear function p such that
V={reR?: p(r)<1}. (13)
We will say that p represents V.

A sublinear cut-generating function for (@) is a representation of an S-free set. O

A finite-valued sublinear function p represents a unique V' = V(p), well-defined by ([I3). One easily
checks monotonicity of the mapping V'(-):

p<p = Vip)DV(). (14)
Conversely, one may ask whether a given closed convex neighborhood of the origin V' always has a
representation. In fact, ([I3) fixes via (IZ) the value p(r) = 1 on the boundary of V'; whether this set of
prescribed values can be extended to make a sublinear function on the whole of R? is not obvious. This
will be the subject of Section Bl where we will see that this is indeed possible; there may even be infinitely

many extensions, and we are interested in the small ones. Now we illustrate the material introduced so
far with some examples.

2.3 Examples. We start with a simple 1-dimensional example supporting the claim that the map-
ping p — V of ([[3)) is many-to-one — or equivalently that a given V' may have several representations.

EXAMPLE 2.7 With ¢ = 1, consider V' =] — 00, 1]. In R!, the positively homegeneous functions have the

form
(r) = ar forr >0
PAr) = Br  forr<0;
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they are convex when o > .
Taking » =1 € V in ([3) imposes o < 1, while taking r =1+4+¢ ¢ V (¢ > 0) imposes a > 1/(1 + ¢).
Altogether @ = 1. On the other hand, letting » — —o0o, the property Sr < 1 imposes 8 > 0.

Conversely, we easily see that, for any § € [0, 1], the function

(r) = r forr>0
P = Br  forr <0

is sublinear and satisfies (I3]). Thus, the representations of V' are exactly the functions of the form
p(r) = max {r, Br}, for 8 € [0,1].

This example suggests — and Lemma will confirm — that nonuniqueness appears when V is un-
bounded. O

Example is quite suitable for illustration, Figure [Il visualizes it for ¢ = m = 2. The dots are the
set S = 7% — {b}. The stripe V of the left part, called a split set, is used in the framework of disjunctive
cuts. Other neighborhoods can be considered, for example triangles (right part of the picture) as in [I].

. . . . . . . . . .
S S
. . . .
14 \4
. . .
. . . . . . . . . .

Figure 1: Two S-free sets for ¢ = 2

With ¢ = 1, no need for a picture and the calculations in Example can be worked out. In this
case, X C R" is defined by a'z € Z — b, i.e. () with r = —a and S = Z — {b}. The only possible S-free
neighborhoods of the origin are the segments r € [—r_,r.]| with

—fo=[b] -b<-r <0<r, <[b]-b=1-fo.

For a representation p of this segment, the equations p(r,.) =1 and p(—r_) =1 fix in a unique way

I ifr>0,
PN=Y 2 der<o,

Choose the extreme values for r, and r_ to obtain

B B I;—g if a; < 0 N
G = p(_a’7) - —aj . >0
=

which is just ().

Finally, let us show how Gomory cuts (@) can be obtained as CGF’s.

ExaMPLE 2.8 Still in Example [[L2] take ¢ = m = 1; we want to separate the set defined by
Zajxj+y:b, yeL, velf
j=1
from the origin (remember that b ¢ Z). This set has the form () with
I n
g=n+1, R= [ 4T ], S=17"x (Z—{b}).

Introduce the vector 7 € R"*! defined by

. if f. <
Tnt1 =1 and, for j=1,...,n: m; ::{ }Zﬂ i;j;;g’
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and its scalar product 7" r = 3" mjz; +y with r = (z,y) € R"*'. Then define
Vi={r: |b)-b<na'r<[b]-b}. (15)

The assumption b ¢ Z implies that (0,0) € int (V'); therefore V is a closed convex neighborhood of the
origin. Furthermore, V is S-free: in fact, b+ 7 "7 is an integer for every r = (z,y) € S and therefore it
cannot be strictly between the two consecutive integers |b| and [b]. We claim that any representation of
V' produces Gomory cuts.

Call e; the jth unit vector of R", so that the n columns of R are

€.
T‘j=< J )
—aj

WTT_{LajJ—aj —fi it fi<fo,
P el —ay =1~ f; i fi>fo.

For each j = 1,...,n, consider three cases.

Direct calculations give

(i) If 7 "r; > 0 (which implies f; > fy), there is t > 0 such that ¢tz "r; = [b] — b > 0, namely
Bl—b_ bl-b _ 14

t= = .
mlry o Jajl—a;  1—f;
(ii) If 7 Tr; < 0 (which implies 0 < f; < fo), there exists likewise ¢t > 0 such that t7'r; = [b] —b < 0,
therefore
,_fo
fi

(iii) If 7 "r; = 0 (which implies a; € Z), tr; € V for any ¢ > 0.

In (i) and (ii), the computed value of ¢ puts ¢r; on the boundary of V. Let p represent V; then by (I2)
and positive homogeneity, p(r;) = $p(tr;) = } in cases (i), (i) and p(r;) = 0 in case (iii). Altogether,

fi eor
p(T): To lffjnga
! L i f > f
1—fo J 0

for j =1,...,n; we recognize Gomory’s formula (G).

As mentioned after Definition [Z6] the n values p(r;) can be extended to make a sublinear function
on the whole of R**!. This will be confirmed in the next section but can be accepted here, thanks to
the simple form ([T of V: a stripe orthogonal to 7. Indeed, the above calculations are designed so as to
construct p(r) = 1 for each r such that 7 'r = [b] —b > 0 as in (i) [resp. 77 = [b] —b < 0 as in (ii)].
Then p(r) is given by positive homogeneity for any r such that 7 "r # 0; and p =0 on 7. O

3. Largest and smallest representations. In this section, we study the representation operation
introduced in Definition The main result is that our closed convex neighborhood V has a largest
and a smallest representation. This result was already given in [9] [6] 23], with weaker assumptions in
the latter work (which came to our knowledge only after the present paper was completed). Here we
emphasize the geometric counterpart of the result, we put the proof of [6] in perspective, and we take
advantage of our stricter assumptions to develop finer results that will be useful in sequel.

3.1 Some elementary convex analysis. First recall some basic theory (see, e.g., [I7, Chap. C]),
which will be central in our development. In what follows, V' will always be a closed convex neighborhood
of 0 € RY.

A common object in convex analysis is the gauge
RIsr—=yy(r):=inf{A>0:reiV}, (16)

a (nonnegative) finite-valued sublinear function. Applying for example [I7, Thm. C.1.2.5] with the nota-
tion (z, C,r) replaced by (r,V, 1), we obtain the relation

V={reR?: y(r)<1}.
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Thus ~y represents V; this first confirms that Definition is consistent.
Another fundamental object is the support function of an arbitrary set G C RY, defined by

RY 5 7+ og(r) :=supd ' r. (17)

deG
This function is easily seen to be sublinear, to grow when G grows, and to remain unchanged if G is
replaced by its closed convex hull: 0¢ = oeory (o) Besides, it is finite-valued if (and only if) G is bounded.

Conversely, every (finite-valued) sublinear function o is the support function of a (bounded) closed
convex set, unambiguously defined by

G=G,:={deR?: d'r<o(r)forall r € R7} (18)

(note: G, is closed and convex because it is an intersection of half-spaces; actually, G, is just the
subdifferential of o at 0). We then say that o supports G,. The correspondence o <> G defines a one-
to-one mapping between finite-valued sublinear functions and bounded closed convex sets (the mapping
o +— G of ([I8) extends to sublinear functions in R U {400} but such an extension is not needed here).

REMARK 3.1 (PRIMAL-DUAL NOTATION) Equation () involves two variables, d and 7, both written as
column-vectors; nevertheless, they lie in two mutually dual spaces. In this paper, we keep going back
and forth between these two spaces; even though they are the same RY, we make a point to distinguish

between the two. The notation v, V... [resp. d, G,...] will generally be used for primal elements [resp.
for dual ones]. Most of the time, we will deal with support functions o (r) of dual sets; but we will also
consider the support function oy (d) of our primal neighborhood V. O

Being finite-valued sublinear, the gauge of V' supports a compact convex set, obtained by replacing o
by v in (I8). Since 1 > 0, we guess from positive homogeneity that this set is just the polar of V:

{deR?: d"r <yy(r)forallr e R} =

- 19
{deR?: dTr<1forallr eV} = Ve. (19)

Write (IJ) as V° = {d € R? : oy (d) < 1} to see that oy represents V°; thus, the support function of
V is the gauge of V°, so that the polar of V° is V itself: (V°)° = v. These various properties are rather
classical, see for example [I'7, Prop. C.3.2.4, Cor. C.3.2.5], with (d, C, s) replaced by (r,V, d).

Now remember ExampleZ't V may have several representations. Any such representation p supports
a set G, and we will see that the polar of G, is again V itself; G, is a pre-image of V' for the polarity
mapping. We thus obtain a new concept: a prepolar of V' is a set GG such that

G ={reR?:os(r)<1} =V,
or equivalently og represents V.

The property (V°)° = V means that the standard polar V° is itself a prepolar — which is somewhat
confusing; and it turns out to be the largest one (Corollary below); or equivalently, its support
function oye = 7y turns out to be the largest representation of V. The main result of this section states
that V' has also a smallest prepolar, or equivalently a smallest representation (Proposition below);
keeping Remark [[4] in mind, this is exactly what we want. This result is actually [6, Thm. 1]; here we
use elementary convex analysis and we insist more on the geometric aspect.

3.2 Largest representation. Introduce the recession cone V, of V. Using the property 0 € V, it
can be defined as
Vie={reR?: treV forallt >0} =)V,
A>0
and the second relation shows that V. is closed; taking in particular A = 1 shows that

Voo C V. (20)

One then easily sees from () that vy (r) = 0 if r € V. Yet, for any other representation p of V, ([I3))
just imposes p(r) < 0 at this 7 and we may a priori have p(r) < 0: the possible representations of V' may
differ on V. ; see Example 2.7 again. We make this more precise.
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LEMMA 3.2 (REPRESENTATIONS AND RECESSION CONE) For all representations p of the closed convex
neighborhood 'V,
p(r) <0 <= reVy and p(r)<0 = reint (V).

Besides, all representations coincide on the complement of int (Vo) in RY.

PROOF. By positive homogeneity, p(r) < 0 implies p(tr) < 0 < 1 (hence tr € V) for all ¢ > 0; this
implies r € V. Conversely, p(r) > 0 implies p(tr) > 1 for ¢ large enough: using 0 € V' again, r cannot
lie in V.

To prove the second implication, invoke continuity of p: if p(r) < 0, p is still negative in a neighborhood
of r, this neighborhood is contained in V.

Besides, take a half-line emanating from 0 but not contained in V,.; it certainly meets the boundary
of V, at a point 7 which is unique (see, e.g., [I7, Rem. A.2.1.7]). By ([[2), every representation p satisfies
p(7) = 1; and by positive homogeneity, the value of this representation is determined all along the half-
line. In other words, all possible representations of V' coincide on the complement W of V,; and by
continuity, they coincide also on the closure of W, which is the complement of int (V4 ). 0

T~
Voo KO

psyw =0

Figure 2: All representations coincide except in int (V)

Figure [ illustrates the difference between the recession cone (where the gauge is “maximal”) and
the rest of the space (where it is the representation). Altogether, the gauge appears as the largest
representation:

COROLLARY 3.3 (MAXIMALITY OF THE GAUGE) All representations p of V' satisfy p < v, with equality
on the complement of int (V).
Geometrically, all prepolars G are contained in the polar of V :
G°=V = GcVv°.

In particular, V has a unique representation p = vy (and a unique prepolar V°) whenever int (V) = 0.

PROOF. Just apply Lemma B2 observing from (I6) that the gauge is nonnegative.

Geometrically, the inequality between support functions becomes an inclusion: the set G supported
by p is included in the set V° supported by vy (see, e.g., [I7, Thm. C.3.3.1]). O

The next subsection will use the support function oy . It is positive on R?\{0}, and even more: for
some ¢ > 0, V contains the ball B(e) centered at 0 of radius ¢, hence
elld| = opey(d) < ov(d) forallde RY. (21)

Then V° is bounded since the relation oy (d) < 1 implies ||d|| < 1/e.

3.3 Smallest representation. The previous subsection dealt with polarity in the usual sense, view-
ing the gauge as a special representation. However, we are rather interested in small representations.
Geometrically, we are interested in small prepolars, and the following definitions are indeed relevant:

o . o . gl —
{V ={deV®:d'r=0y(d)=1for somer eV}, (22)

Ve .= {deVe:oy(d)=1}.

From (I2), Ve # 0 if V has a boundary, ie. if V # RY. Obviously, V° C V°. Besides, EI) implies
that the two sets are bounded. There is a slight difference between the two, suggested by Figure 2] and
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specified on Figure 8] where the dashed line represents them both. We see that d; lies in V° but not in
V°; and ds lies in both. On this example, V° is closed but Figure Bl will show that it need not be so.
Although quite similar, we introduce the two sets for technical reasons, when proving that they have the
same closed convex hull — which is our required smallest prepolar.

dy P~<

N

\
\
0 d>
Voo

Figure 3: Activity in V°

LEMMA 3.4 The sets in [22) satisfy Ve Ve cel ({N/O) It follows that Vo and V° have the same closed
convex hull. In particular, Ve # () whenever Ve #0.

PROOF. The first inclusion is clear. To prove the second inclusion, recall two properties:

— the domain dom doy of a subdifferential is dense in the domain dom oy of the function itself: see, e.g.,
[I7, Thm.E.1.4.2];

— the subdifferential doy (d) is the face of V' exposed by d: see, e.g., [I7, Prop.C.3.1.4].
Thus, d ¢ Ve implies doy (d) = 0; in other words, V° 5 dom doy . Taking closures,
1V D el (domdoy) D domoy ;
the required inclusion follows, since the last set obviously contains ve.
It follows from the second inclusion that
conv (V°) < conv (el (V) ) .

On the other hand, the first inclusion implies that conv (\70) (a closed set) contains the closure of ve:

cl (IN/O) C conv (170) This inclusion remains valid by taking the closed convex hulls:
oV (cl (I7°)) C comv (V°);
the two sets coincide. The last statement is clear since the closure of the empty set is the empty set. O
To help understand this construction, consider the polyhedral case, say V = conv {p;}; + cone {r; }.
Then the linear program defining oy (d)
~ has no finite solution if some d'r; is positive, i.e. if d ¢ (Vao)®,
— is solved at some extreme point p; otherwise.
In this situation, the two sets in ([22]) coincide and are closed; they are a union of hyperplanes of equation
d"p; = 1 (facets of V°), for p; describing the extreme points of V. Besides, the polar V° is defined by
dTpi <1, and d'r <0.

ExaMpPLE 3.5 For later use, we detail the calculation on a simple instance. Take for V' the polyhedron
of Figure @l defined by the three inequalities

o<1, <1, <2+ 9¢;

here (¢,1) denotes a primal point in R? we take row-vectors for typographical convenience). The two
extreme points p; = (1,1) and p2 = (—1,1) of V define the two segments (facets of V°) [A, B] and [B, C].

As for V°, it has first the two constraints d'p; < 1 (yielding the above two segments). Besides, the
two extreme rays r; = (0, —1) and ro = (=1, —1) of V., make two more constraints d' r; < 0, so that V°
is the convex hull of A, B, C"and 0. If V' had a fourth constraint, say ¢» > —1, then 0 would be moved
down to D = (0,—1) — and enter V° and V°. O
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Y

»/ B P1
7
/ v

g N
Figure 4: Constructing Ve or V°

C¥ N

The closed convex hull thus revealed deserves a notation, as well as its support function: we set

~ —~

Ve :=conv (V°) =conv (V°) and py :=oye =0y, = 0p. - (23)

For example in Figure @ V*® is the triangle conv{ A, B, C'}. In fact, the next result shows that py is the
small representation we are looking for. From now on, we assume V # RY, otherwise V*® = (), py = —oc;
a degenerate situation, which lacks interest anyway.

PROPOSITION 3.6 (SMALLEST REPRESENTATION) Any p representing V' # RY satisfies p > py .

Geometrically, V* is the smallest closed convex set whose support function represents V.

PrOOF. Our assumption implies that neither V° nor V° is empty (recall Lemma[34]). Then take an
arbitrary d in V°. We have to show that d"r < p(r) for all r € RY; this inequality will be transmitted to

the supremum over d, which is uy (7).
Case 1. First let r be such that p(r) > 0. Then 7 := r/p(r) lies in V, so that d'7 < oy(d) = 1. In
d'r

other words, d' 7 = o) < 1, which is the required inequality.

Case 2. Let now r be such that p(r) < 0, so that r € Vi, by Lemma B3 Since d € V°, we can take
rq € V such that d"ry = 1. Being exposed, r4 lies on the boundary of V: by [I2)), p(rq) = 1.

By definition of the recession cone, 14 + tr € V for all ¢ > 0 and, by continuity of p, p(rq +tr) > 0 for
t small enough. Apply Case 1:

dTrg+td"r=d" (rg+tr) < p(rg + tr) < p(ra) +tp(r),

where we have used sublinearity. This proves the required inequality since the first term is 1 +¢td " r and
the last one is 1 + tp(r).

The geometric counterpart is proved just as in Corollary 3.3 O
Thus, V' does have a smallest representation, which is the support function of V*. Piecing together

our results, we can now fully describe the polarity operation.

3.4 The set of prepolars. First of all, it is interesting to link the two extreme representa-
tions/prepolars introduced so far, and to confirm the intuition suggested by Figure [4

PRrROPOSITION 3.7 Appending O to V' gives the standard polar:
v =max {py,0} de V°=conv(V*U{0})=1[0,1]V".

PROOF. For r € Voo, yv(r) = 0, while uy () < 0 (Proposition B6l). For r ¢ V.., Lemma B2 gives
v (r) = py(r) > 0 because yy and py are two particular representations.

Altogether, the first equality holds. Its geometric counterpart is [I7, Thm. C.3.3.2]; and because V* is
convex compact, its closed convex hull with 0 is the sets of ad + (1 — )0 for o € [0, 1]. O

In summary, the set of representations — or of prepolars — is fully described as follows:
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THEOREM 3.8 The representations of V' (a closed convex neighborhood of the origin) are the finite-valued
sublinear functions p satisfying

ove = py < p <y =oye = max {0, uy}. (24)
Geometrically, the prepolars of V', i.e. the sets G whose support function represents V', are the sets
sandwiched between the two extreme prepolars of V :

G°=V <+ V*cdm(G)cCV®=conv(V*U{0})=[0,1]V".

Proor. In view of Corollary B3] and Propositions B.6 B.7] we just have to prove that a p satisfying
@4) does represent V. Indeed, if » € V then p(r) < yv(r) < 1;if r ¢ V, then 1 < py(r) < p(r). The
geometric counterpart is again standard calculus with support functions. O

We end this section with a deeper study of prepolars, which will be useful in the sequel. The next
result introduces the polar cone (V5)°. When G is a cone, positive homogeneity can be used to replace
the righthand side “1” in ([I9]) by any positive number, or even by “0”: in particular,

Ve =)’ ={reR?: oy _(r) <0}. (25)
The notation V2 is used for simplicity, although it is somewhat informal; (V. )° and (V°) differ, the
latter is {0} since V° is bounded.

LEMMA 3.9 (ADDITIONAL PROPERTIES OF PREPOLARS) With the notation 22)), (23), 5],

(i) V2 is the closure of domoy,
(ii) R,V° =R, V* =R, V° = dom oy .

PROOF. First of all, let d ¢ V2: thereis r € Voo (Ryr € V) and d"r > 0; then d' (tr) — +oo for
t — 400 and oy (d) cannot be finite, i.e. d ¢ domoy. Thus, domoy C V2; hence cl(domoy) C V2
because V2 is closed.

To prove the converse inclusion, take r ¢ (dom oy )°: there is d such that oy (d) < +o00 and d'r > 0.
Then d' (tr) — +oo when t — +oo; if 7 were in V., then tr would lie in V and oy (d) would be +oc,
a contradiction. Thus we have proved Vo, C (domoy)°. Taking polars and knowing that domoy is a
cone, V2 O (domoy)°° = cl(domoy) (see [I7, Prop. A.4.2.6]). This proves (i).

To prove (ii), observe first that Ve CcV®CVecCdom oy; and because dom oy is a cone,

R, V° CR,V* CR,V° C domoy . (26)
On the other hand, take 0 # d € dom oy, so that oy (d) > 0 by (ZI)) and #@i)d € Ve de R, V°. Since

0 also lies in Rﬂ/}", we do have domoy C Rﬂ/}c’; ([28) is actually a chain of equalities. To complete the

proof, observe from Proposition B that R, V° =R, V*°. O
v
¥ 1
v d .7 DN
. 7/ N PO — PO

.‘:" 1 \

N ¢ l i

\ 1

/ \ 7@ . /

V=P o /, u

' N

Figure 5: Trouble appears if the neighborhood has no asymptote

Beware that really pathological prepolars can exist, Figure [ illustrates a well-known situation. Its left
part displays the parabolic neighborhood V' = P C R? defined by the constraint ¢ < 1 — %ng. A direction
d = (u,v) with v > 0 exposes the point r(d). When v | 0, the component of r(d) along d (namely ¢)
goes to +00, which does bring trouble. Computing r(d) is an exercise resulting in

0 ifd=0,
op(d) =op(u,v) = v—i—;—z ifo>0, (27)
+o00 ifo<0;

two phenomena are then revealed.
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— First, Ve is defined by the equation
u? . 2 2
v—l—% =1, ie 20w —v)+u =0.
This is an ellipse pass/i\ng through the origin (right part of Figure [); yet 0 cannot lie in 170, since
op(0) =0 # 1. Thus, P° is not closed and, more importantly, 0 € P°.
— The second phenomenon is a violent discontinuity of op at 0. In fact, fix a > 0 and let dy = (%, k%),
then dj, — 0, while op(d;) — 0‘72, an arbitrary positive number.

Both phenomena are due to (local) unboundedness of op on its domain, which is thus not closed; if
(ug,v) € domop tends to any (u,0) with u # 0, then op(ug, vi) — +00. Ruling out such a behaviour
brings additional useful properties:

COROLLARY 3.10 (SAFE PREPOLARS) If 0 ¢ V', then
R,V° =R,V*=R,V° =domoy = V2, (28)
and int Voo # () (the polar V2 is a so-called pointed cone).

PrROOF. When 0 ¢ V°®, R, V* is closed ([I7, Prop. A.1.4.7]). Then apply Lemma B0t by (ii) dom oy
is closed and (28] follows from (i).

Now we separate 0 from V*: there is some r such that oye(r) < 0. By continuity of the finite-valued
convex function oye, this inequality is still valid in a neighborhood of r: oy« < 0 over some nonzero ball
B around r. By Lemma B9(ii),

ove (d) = og, ve(d) = sup sup td'r = suptoye(d),
> t>0 deVe t>0
so that oyo enjoys the same property: by ([25), B is contained in (V3 )°. Proposition A.4.2.6 of [17]
finishes the proof. O

Property ([28) means closedness of domoy and is rather instrumental. We mention another simple
assumption implying it:

ProprosITION 3.11 If V = U + V., where U is bounded, then domoy = V.

PrROOF. The support function of a sum is easily seen to be the sum of support functions: oy =
oy + ov,,. Every d € V2 then satisfies oy (d) = op(d), a finite number when U is bounded. O

Let us put this section in perspective. The traditional gauge theory defines via (I6), (I9) the polarity
correspondence V < V° for compact convex neighborhoods of the origin. We generalize it to unbounded
neighborhoods, whose standard gauge is replaced via Definition by their family of representations.
Each representation p, which may assume negative values, gives rise to dp(0) — which we call a prepolar
of V. Theorem establishes the existence of a largest element (the usual polar V°) and of a smallest
element (V'°) in the family of (closed convex) prepolars of V. Gauge theory is further generalized in [23],
in which 0 may lie on the boundary of V. Our stricter framework allows a finer analysis of the smallest
prepolar; in particular, the property 0 ¢ V* helps avoiding nasty phenomena.

4. Minimal cGF’s, maximal S-free sets. Remembering Remark[[.4] our goal in this section is to
study the concept of minimality for CGF’s. Geometrically, we study the concept of maximality for S-free
sets. In fact, the two concepts are in correpondence via ([I4]); but a difficulty arises because the reverse
inclusion does not hold in ([I4]). As a result, several definitions of minimality and maximality are needed.

4.1 Minimality, maximality. In our quest for small CGF’s, the following definition is natural.

DEFINITION 4.1 (MINIMALITY) A CGF p is called minimal if the only possible CGF p' < p is p itself. O

Knowing that a CGF p represents V' (p) and that py(,) < p represents the same set, a minimal CGF is
certainly a smallest representation:

pis a minimal CGF = p = py () = Oy (y)s - (29)
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In addition, V(p) must of course be a special S-free set when p is minimal. Take for example S = {1} C R,
V = [-1,41]; then p(r) := |r| is the smallest (because unique) representation of V' but is not minimal:
p'(r) := max {0, r} is also a CGF, representing V' =] — oo, +1].

From (I4)), a smaller p describes a larger V; so Definition 1] has its geometrical counterpart:

DEFINITION 4.2 (MAXIMALITY) An S-free set V is called maximal if the only possible S-free set V' DV
is V itself. 0

The two objects are indeed related:

PROPOSITION 4.3 IfV is a maximal S-free set, then its smallest representation py is a minimal CGF.

ProOOF. Take a CGF p/, representing the S-free set V' =V (p'). If p’ < py, then V' D V; and if V is
maximal, V' = V. Then p’ > uy = py+ by Proposition B.6l O

Besides, these objects do exist:

THEOREM 4.4 FEvery S-free set is contained in a maximal S-free set. It follows that there exists a mazimal
S-free set and a minimal CGF.

PrOOF. Let V be an S-free set. In the partially ordered family (F,C) of all S-free sets contain-
ing V, let {W,;};er be a totally ordered subfamily (a chain) and define W := U;c;W;. Clearly, W is a
neighborhood of the origin; its convexity is easily established, let us show that its closure is S-free.

Remember from [I7, Thm. C.3.3.2(iii)] that the support function of a union is the (closure of the)
supremum of the support functions:

Tint (w) = ow =cl (Sup Uwi) =dl (SUP Uint(Wi)) = Oy, int (W;) -
i€l il

Having the same support function, the two open convex sets int (W) and U; int (W;) coincide: r € int (W)

means r € int (W;) for some i; because W; is S-free, ¢ S and our claim is proved. Thus, the chain {W;}

has an upper bound in F; in view of Zorn’s lemma, F has a maximal element.

Now (D) implies that a ball centered at 0 with a small enough radius is S-free; and there exists a
maximal S-free set containing it. Proposition .3 finishes the proof. O

The maximal S-free sets can be explicitly described for some special S’s: Z? [20], the intersection of Z4
with an affine subspace [4], with a rational polyhedron [5], or with an arbitrary closed convex set |21} 2].
Unfortunately, the “duality” between minimal CGF’s and maximal S-free sets is deceiving, as the two
definitions do not match: the set represented by a minimal CGF need not be maximal. In fact, when p is
linear, the property introduced in Definition ] holds vacuously: no sublinear function can properly lie
below a linear function. Thus, a linear CGF p is always minimal; yet, a linear p represents a neighborhood
V(p) (a half-space) which is S-free but has no reason to be maximal. See Figure[Gl with n = 1, the set
V =] — 00, 1] (represented by p(x) = x) is {2}-free but is obviously not maximal.

01 S={2}

v
Figure 6: A linear CGF is always maximal

A more elaborate example reveals the profound reason underlying the trouble: for an S-free set W
containing V', uy need not be comparable to py .

ExXAMPLE 4.5 In Example 3.5 take for S the union of the three lines with respective equations

¢:17 wzla w:2+¢7

so that V' is clearly maximal S-free.
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Figure 7: The mapping V' +— V'*® is not monotonic

Now shrink V to V; (left part of Figure[ll) by moving its right vertical boundary to ¢ < 1 —¢. Then A
is moved to A; = (%, O); there is no inclusion between the new V,* = conv{A;, B,C} and the original
V* = conv{A, B, C}; this is the key to our example.

Let us show that py, is minimal, even though V; is not maximal. Take for this a CGF p < py,, which
represents an S-free set W; by ([Id), W D V,. We therefore have

owe = pw < p< py, =0y, e, W*CVS
and we proceed to show that equality does hold, i.e. the three extreme points of V,* do lie in W*.

—If A; ¢ W, the right part of Figure[[lshows that W* is included in the open upper half-space. Knowing
that
W=W*"={r:dr<lforallde W*},

this implies that W has a vector of the form r4 = (¢, —1) (¢ > 0); W cannot be S-free.

—If C ¢ W*, there is 7¢ € R? such that CTr¢ > owe(rc) = pw(re) (we denote also by C' the 2-vector
representing C'). For example rc = (—2,0) € bd (V) (see the right part of Figure[7)), so that

CTre =1>owe(—2,0) = puw(—2,0).

By continuity, uw (=2 —¢,0) < 1 for € > 0 small enough. Since py represents W, this implies that
(=2 —¢,0) € W; W (which contains V}) is not S-free.
— By the same token, we prove that B € W* (the separator rg = (0,1) € bd (V) does the job).

We have therefore proved that W* = V,*, i.e uw = py,, i.e. py, is minimal. O

The next section makes a first step toward a theory relating small CGF’s and large S-free sets.

4.2 Strong minimality, asymptotic maximality. First, let us give a name to those minimal
CGF’s corresponding to maximal S-free sets.

DEFINITION 4.6 (STRONGLY MINIMAL CGF) A CGF p is called strongly minimal if it is the smallest rep-
resentation of a maximal S-free set.

The strongly minimal CGF’s can be characterized without any reference to the geometric space.

PROPOSITION 4.7 A CGF p is strongly minimal if and only if, for every CGF p/,

p' <max{0,p} [= () =ovie] = o =p. (30)

Proor. Take first a maximal V. Every CGF p’ <~y represents an S-free set V’, which contains V' —
see ([I3) — so that V/ = V by maximality, i.e. p’ represents V as well; hence p’ > uy by Proposition B.6

Thus, p(= py) satisfies (30).

Let now p satisfy ([B0), we have to show that V' := V(p) is maximal. Taking in particular p’ = uy in
B0) shows that p must equal py. Let V! DV be S-free; we have (V')° C V°, ie.

Vv = owne < ove =y =max{0,p}.

Now p' := vy is a CGF, so p’ > p = py by B0); by Theorem B8 p’ represents not only V' but also V,
ie. V! =V: V is maximal. O
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In Section Bl we have systematically developed the geometric counterpart of representations; this ex-
ercise can be continued here. In fact, the concept of minimality involves two properties from a sublinear
function:

— it must be the smallest representation of some neighborhood V' — remember (23],
— this neighborhood must enjoy some maximality property.

In view of the first property, a CGF can be imposed to be not only sublinear but also to support a set that
is a smallest prepolar. Then Definition 1] has a geometric counterpart: minimality of p = py = oy

means
G'cVve  and (G')°is S-free = G =V ie (G)°=V

o' =0c < pl [p is a caF] o' = pl
Likewise for Definition strong minimality of p = vy = oy means
G cve and (G')° is S-free = G DV*, ie (G)CV.
o' =0c <] [p is a caF] [0 = p]

These observations allow some more insight into the (-)® operation:

PROPOSITION 4.8 Let p = py = oye be a minimal CGF. If an S-free set W satisfies W*® C V®, then
wW=V.

ProOOF. The smallest representation p’ := pwy = owe of the S-free set W is a CGF; and from
monotonicity of the support operation, p’ < p. Then minimality of p implies p’ = p, i.e. W® = V*®, an
equality transmitted to the polars: W = (W*®)° = (V*)° =V. O

This result confirms that non-equivalence between minimal CGF’s and maximal S-free sets comes from
non-monotonicity of the mapping V' +— V*® — or of V + uy. To construct Example L5 we do need a
W D V such that W* ¢ V*°.

Then comes a natural question: how maximal are the S-free sets represented by minimal CGF’s? For
this, we introduce one more concept:

DEFINITION 4.9 An S-free set V is called asymptotically maximal if every S-free set V' OV satisfies
VL=V

It allows a partial answer to the question.

THEOREM 4.10 (MINIMAL = ASYMPTOTICALLY MAXIMAL) The S-free set represented by a minimal
CGF 1s asymptotically maximal.

PROOF. Let uy be a minimal CGF and take an S-free set V/ D V. Introduce the set G := V*N (VO’O)O.
Inclusions translate to inequalities between support functions:
oG < Oye = [y (31)

and we proceed to prove that this is actually an equality. Let us compute the set W := G° represented
by 0. The support function of an intersection is obtained via an inf-convolution (formula (3.3.1) in [I7]
Chap. C)] for example): o¢(+) is the closure of the function

r = inf{ove(r1) + o ye(r2) : 1+ =7}

In this formula, oye = py and the support function of the closed convex cone (Vo’o)O is the indicator of
its polar V. : the above function is

rinf{py(r1) : m+re=r,rs € VL}.
Now use ([I2): because o¢ represents W, to say that r € int (W) is to say that the above infimum is
strictly smaller than 1, i.e. that there are r1, ro such that

r+re=r 1 eV, pyirn) <l i.e. ritre=r, eV, reintV.
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In a word:
int (W) =V, +int (V) Dint(V)>30,

where we have used the property 0 € V.. Remembering the inclusion V' C V’ and the definition of a
recession cone, we also have

int (W) =V, +int (V) Cc VL +int (V') Cc Vi +V' CcV’.

Altogether, 0 € int (W) C int (V'). As a result, W(= G°) is an S-free closed convex neighborhood of the
origin: its representation o¢ is a CGF and minimality of uy = oye implies with 1) that og = oye.

By closed convexity of both sets V® and G = V*n (VO’O)O, this just means G = V*°, i.e. (VO'O)O D Ve.
By polarity, V., C (V')O =V (invoke Theorem B.8). The cone V., contained in the neighborhood V,
is also contained in its recession cone: V., C V. Since the converse inclusion is clear from V' O V', we

have proved VI, = Vi: V is asymptotically maximal. O

5. Favourable cases Despite Example L8] a number of papers have established the equivalence
between maximal S-free sets and minimal CGF’s, for various forms of S. This equivalence is indeed
known to hold in a number of situations:

(a) when S is a finite set of points in Z? — b; see [I8] and more recently [12];
(b) when S is the intersection of Z™ with an affine space; this was considered in [8] and [4];
(¢) when S = PN (Z? — b) for some rational polyhedron P; this was considered in [12] [5].

Accordingly, we investigate in this section the question: when does minimality imply strong minimal-
ity? So we consider an S-free set V', whose smallest representation gy = oye is minimal, hence V is
asymptoticaly maximal (Theorem LI0); we want to exhibit conditions under which V' is maximal. We
denote by L = (—Vx) N Va the lineality space of V' (the largest subspace contained in the closed convex
cone V) and our result is the following.

THEOREM 5.1 Suppose 0 € S := conv (S). A minimal uy is strongly minimal whenever one of the
following two properties (i) and (ii) holds:

(1) Voo N Se = {0} (in particular S bounded),
(ii (ii); S =U+ Soo with U bounded, and
(i1)2 Voo NS = LN Seo.

This theorem generalizes the above-mentioned results: (i) is a weakening of (a) and (i) weakens (b)
or (c). Note that (ii)2 generalizes (i) (to an unbounded Vo N S); the price to pay is assumption (ii)1,
whose role is to exclude an asymptotic behaviour of S similar to that of P in Figure [ (see Proposition

EID).

However, the interesting point does not lie in the above assumptions (a) — (i7). Recalling that the
whole issue lies in unboundedness of V', our proof of Theorem .1l uses Theorem .10 as follows. Starting
from an S-free set V' which is asymptotically maximal but not maximal, we construct a sequence of
neighborhoods V* satisfying VX 2 V... Then V¥ is not S-free: there is some r* € S N int (VF); see
Figure

Besides, our construction is organized in such a way that V* “tends to” V and, by non-maximality of
V, r¥ is unbounded but “tends to” V. More precisely,

the cluster points of the normalized sequence {r*} lie in S, N Vao.

Decomposing 7% = ¢ + u* along L and L+, we also prove that «* is unbounded but “tends to” SN L+,
more precisely

the cluster points of the normalized sequence {u*} lie in S, N L.

We believe that these are key properties of non-maximal S-free sets. Having established them, the
whole business is to find appropriate assumptions under which existence of our unbounded sequences is
impossible; (a) — (ii) above are such ad hoc assumptions.
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Figure 8: Constructing in S an unbounded sequence “tending to” V

Obtaining r* and u* is a fairly complicate operation, which we divide into a series of lemmas. For a
reason that will appear in (33) below, we may assume 0 ¢ V*. Then we enlarge V to V* by chopping off
a bit of V* as follows. Take an extreme ray R, dy of V2. By ([28)), its intersection with V'® is a nonempty
segment [dy, tydy], with 1 < ty < 400. Given a positive integer k, we introduce the open neighborhood
of [dv, tvdv]l

1 1
k. _
N = [dy, tydy] +B(0, E) - B(tdv, E) , (32)
1<t<ty
where B(d, §) is the open ball of center d and radius §. We remove N* from V'*, thus obtaining a set C,
closed hence compact; its convex hull

GF = convC, with C:=V*\N*= {d eV®: |ld—tdy| > - forallt e [1,tv]} (33)

> =

is convex compact. Figure [9illustrates our construction.

R, G

dv tvdy
Nk:
Figure 9: Chopping off V® near an extreme ray

Note for future use that the distance from every d € [dy,tydy] to C' does not exceed 1/k; and the
same holds for G* > C. Formally:

Vd € [dy,tydy], 3dp € GF such that ||dy —d|| < —. (34)

x| =

REMARK 5.2 The above construction would become substantially simpler and N* would reduce to the
open ball B(dv, %) if V* N R_dy reduced to a singleton, i.e. if tyy = 1; but this property need not hold
when oy is not continuous.

To make a counterexample, start from the parabola of Figure Bl We already know that op(dy) can
tend to any nonnegative value when di — 0. However 0 € P°®, the example needs modification to meet
our assumption. To this aim, we first bound op (on its domain near 0) by defining

Up(d) lfUp(d)<1 y
+00 otherwise .

fuy_1+{

Although no longer positively homogeneous, this function is still convex, its domain is the compact convex
set P®, on which 1 < f < 2; when dj, € P*® tends to 0, f(dy) can tend to any value in [1,2]. To complete
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the construction, we take the so-called perspective of f:

wf(g) ifw>0,
R? xR 3 (d,w) = o(d,w) :={ ¢ if (d,w) = (0,0) ,
+00 otherwise

whose positive homogeneity is clear. Actually, o is known to be convex and to support a closed convex
set V' see [I7, § B.2.2] (in particular Remark 2.2.3), where our (d, w) is called (z,u). Besides, the property
f = 1 implies that V' is a neighborhood of the origin; remember (Z).

Now take (d,w) € V° C domo, so that d’ := (%) € dom f and w > 0. Then use positive homogeneity:

l=0(d,w) = %:U(d’,l):f(d’)é[l,?] = w}%.

Thus, Ve is separated from the origin (by the hyperplane w > %) and this property is transmitted to its
closed convex hull V*. On the other hand, ¢ inherits the discontinuities of f. In fact, choose a € [1, 2]
and construct a sequence {dj} in dom f tending to 0, such that f(dy) — «. Since o(dy,1) = f(dy) > 0,

positive homogeneity gives

a(%,%‘m)_l, hence (fgl;k), L )6‘70.

dp, 1 ) ( 1 ~

o~ ) = (0= ) eaVe c Ve,
(f (dr)" f(dk) a

Since a was arbitrary in [1,2], the intersection of V'® with the ray {0} x,R, contains the whole segment

{0} x [5,1]. O

Pass to the limit:

Viewing G* of [33) as a prepolar, we set
vk .= (GF)°.
Of course, V* O G 5 GF and V ¢ V¥ € V*. The closed convex neighborhood V* enjoys all of the

properties listed in Section [3 in particular those coming from 0 ¢ G*.

LEMMA 5.3 (ENLARGING V) Assume 0 ¢ V*; let R.dy be an extreme ray of V2 and assume that
R dy C V2 (R.dy is properly contained in V2)). Given an integer k > 0, construct N*, G¥, V¥ as
above. Then G* # 0 for k large enough (say k > ko) and

(i) Voo € VE for k > ko,

(ii) ﬂkgkovk =V.

Proor. If G¥ were empty for all k, we would have V* C NF for all k, hence V* would reduce to
[dv,tydy]. In view of ([28]), this would imply R dy = V2, which our assumption rules out.

Every d € G* is a convex combination ZZ a;d; with each d; in V*\N k V2. None of these d;’s can
lie in [dy,tydy] C N k_and none of their convex combinations either because of extremality of R, dy .
We conclude that

GFn [dv, tvdv] =0. (35)

Now, we see from Theorem that

R, (VF)* cR.GF c R (VF)°;

but from Proposition 3.7 this is actually a chain of equalities:

R, (VF)* =R,.G*. (36)
Besides, (VF)* € G* C V*, hence 0 ¢ (V¥)* and we can apply 28) to V*. Then we write
(VE)" = R (VF)* (@3]
= R,GF [(s56)
c R, V* [consequence of ([B5))]
= ]

Ve [(28) again
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Thus, (VO’g)O C V2, which implies (i) since polarity is an involution between closed convex cones.

To prove (ii), take 7 in N V*; we have to prove that # € V (the other inclusion being obvious). If

)

7 ¢ V there is a separating hyperplane d: oy (d) < d' 7. Normalizing d via ([28)), we have altogether

feﬂV’“, deVe, d'F>1; (37)
k

but o represents VF, so ([B7) gives
oce(F) <1< d'7, henced¢ GF.

Then d € V* N N for all k (large enough), i.e. d € [dv,tydy]. Introduce di € G* from (B4):
- 1
ldy —d] < - and dl 7 <oge(F) < 1.

Passing to the limit, d" 7 < 1; a contradiction to (7). Therefore 7 € V. O

Now we assume the existence of an S-free set W containing V'; it satisfies in particular
WecCcwecve=l0,1]v°. (38)

If We C V*, this W is of no use to disprove maximality of V' (Proposition L]). We are therefore in the
situation

We ¢ V*®, which implies from @B8): 0¢ V*°. (39)
Thus, W* contains some points out of V'*. The key argument for our analysis is that one of these points
lies on an extreme ray of V.2 — which will be the dy of Lemma [5:3] crucial to construct the unbounded
sequence {r*} of Figure

LEMMA 5.4 (CONSTRUCTING AN APPROPRIATE EXTREME RAY) Let W DV satisfy 89). There is an
extreme ray R, dy of V.S such that the set N* defined by B2) satisfies W° N N¥ = for k large enough.

Proor. From (B9), we are in the framework of Corollary B.I0 Figure is helpful to follow the
proof. If W° C V* then W*® = conv (WO) C V*, contradiction. So there is e € W° (hence ow(e) = 1)
which does not lie in V®; because V. C W, i.e. oy < ow, this e satisfies oy (e) < 1 (otherwise oy (e) = 1,
hence e € V° C V*).

Figure 10: The extreme ray R, b;, contains some point in V*\W*

Then construct d, = #(e)e € V° (remember @I): oy (e) > 0). For every ¢ € [0,¢], the segment
[€/,d.] contains e. Being a convex set, V*® cannot contain such an e’ (otherwise it would contain e as
well). As a result, the compact convex sets V® and [0, e] can be separated: there is £ € R? (appropriately

scaled) such that

T 1 ind' (. 4
max{0,e' (} < <;I€1%/n. l (40)
Observe that
1>el=oy(e)d >0. (41)

Now introduce the closed convex set

B:={beVZ :b't=1}.
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Clearly, R, B C V2. Conversely, apply [28): every nonzero d € V2 can be scaled to some ¢td € V*. By
@Q), td" ¢ > 1, then d can be scaled again to td/(td'¢), which lies in B. We have shown

R.B=VZ. (42)

By (ER), every b € B can be obtained by scaling some d € V°: b= td; and t = -+ €]0,1[ by @0). This
means that

BcCl0,1[V° cV°; (43)
B is therefore bounded (and closed because V2 is closed), hence compact.
Using (@), scale e to b := ﬁe € B and express b = >_jajbj as a convex combination of extreme
points b; of B (Minkowski’s Theorem). Then
- 1 1
ow(b) = maw(e) =5 1.

By convexity of oy, there is some jo such that ow (bj,) > 1 (we may have ow (bj,) = +00). Altogether,
we have exhibited

bj, extreme in B and satisfying 1 < ow (bj,) -
Extremality of b;, in B implies extremality of the ray R, b;, in R, B, i.e. in V2 because of [@2)). The
intersection of W° with this extreme ray is some [0, dw| (dw may be 0) which, by definition of a polar,
does not contain bj,. Since b] ¢ = 1 (because bj, € B), d'¢ < 1for all d € [0,dw]. Then, Q) shows that
[0,dw] and [dy, ty dy] are separated.

As a result, the two compact sets W° and [dy, ty-dy]| are disjoint. If there were d¥ € W° N N* for all
k, then the bounded sequence {d*} would have some cluster point d*; but W is closed: d* would lie in
Wen|[dy,tydy], contradiction. O

The set B constructed in the above proof is a so-called basis of the pointed cone V. The case
ow (bj,) = +00, dw = 0 corresponds to a W as in Figure[B} it occurs in Figure [0l This latter picture is
still helpful to follow the next proof. Recall that L is the lineality space of V.

PROPOSITION 5.5 Assume 0 € S = conv (S). If a minimal CGF p represents the S-free set V.= V(p)
which is not mazimal, then V¥ exists as described by Lemma[Z3. There is v* € V¥ N S, decomposed as
r* = 0F +uF with (¢ € L and u* € LY, such that

for some K C N, lim Hrkﬂ =400 and lim HukH =+400.
kEK keK

Proor. If all of the S-free sets W containing V' satisfy W* C V*, then V is maximal (Proposition
[438). Thus, there is an S-free set W D V satisfying ([B9) and we can construct dy as in Lemma [5.41

IfR,dy = V2, then V° = V* = {dy} and V° = [0, dy/] (PropositionBZ): the S-free set V', represented
by ove, is the half-space {r : d{,r < 1}, which separates 0 from S; this is ruled out by assumption.

Otherwise, R, dy C V: we can apply Lemma and construct the sequence of S-free sets V*. By
minimality of uy, V¥ cannot be S-free (Lemma [5.3(i) and Theorem EI0): there exists r* lying

—in int V¥, hence from (I2)

1> o (rF), (44)
—and in S, hence r* ¢ int W: oy (rF) > 1; since W* is compact,
Jer € W* such that ef r¥ > 1. (45)

Now we claim that there is § > 0 such that
trer € VENN*,  for some t; > 146 and all k large enough . (46)

Using (28)), scale e (nonzero from its definition) to tyer € V*®; and note from (B8]) that ¢, > 1. Then
[@H) implies that trex ¢ GF: otherwise

1<elr? <tref vk < ogn(rF)

by definition of a support function; this contradicts {@4)). It follows that txex € V® N N*  which is far
from W* (Lemma [B.4]); (6] is proved.



Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick: Cut-generating functions 23
Mathematics of Operations Research xx(x), pp. xxx—xxx, ©200x INFORMS

Now we can conclude. First, let d € [dy,tydy] be a cluster point of the bounded sequence {txex}.
Next, use @@), (@), (@) to write for all d € G*

146 < tp <tpegr* = (trex —d) "% +d 0" < (tper —d) ' r¥ +1.
This holds in particular for d = dj, stated in (34):
0 < (tger — dk)TT‘k . (47)

Then we obtain with the Cauchy-Schwarz inequality
- - 1
6 < litner —d-+d—dull I < (Iltner = dll + ) Ir*]l-

Furthermore, decompose 78 = ¢* + v in [@7) and observe that both e} ¥ and d; ¢¥ are 0 (¢* € L while
ek and d* lie in V2 C L*). So [ T) gives also

- 1
d < (tger — dk)TUk < (”tkek —d|| + E) HukH )

Both statements are proved since there is K C N such that limyecx |trer — d|| = 0. O

As suggested in the beginning of this section, proving Theorem [5.] is now easy. An S-free set repre-
sented by a minimal CGF will be automatically maximal under any assumption contradicting the existence
of our unbounded sequences.

ProOF OF THEOREM [5.Il  Construct the sequences {r*} and {u*} of Proposition (.5

Case (i): Extract a cluster point # of the normalized subsequence {r*}cx: for some K’ C K,

T‘k

lim —— =7,

rers Ik "
Then take an arbitrary M > 0. We know that M/||*|| < 1if k is large enough in K’ so, because both 0
and 7* lie in V¥ NS,

M _
er eVFNS, for large enough k € K'.
”

By closedness, this implies M7 € S, hence # € S, because M is arbitrary. The same argument using
Lemma [B3[ii) gives 7 € V.

Let us sum up. If V is not maximal, then V4, NS4 contains a vector 7 of norm 1; this contradicts (7).

Case (ii): Write u? =7k — ¢k ¢ V¥ — L = V* + . c V¥ +V,, € V¥. Then proceed as in Case (i): extract
a cluster point @ of {ﬁ}K and argue that ”u—l‘{”uk € VEN Lt to exhibit

W€ VN Lt and ol =1. (48)

Besides, u* is the projection onto Lt (a linear operator) of 7¥ € S C U + S.; hence
u* € Proj; .U + Proj; . Se -
By (ii)1, Proj; . U is a bounded set, so our cluster direction @ lies in Proj; . Seo:
ﬁzé—f, for some § € Soo and £/ € L.

Use (48):

Swd8=td+0eV+L="Vy:

then use (i7)2: B B
§5€VeeNSeo=LNS.

As a result, @ = § — / lies in L; use [@R) again: @ € L N L+ cannot have norm 1.
Thus, in this case also, V' has to be maximal. O

Let us insist once more: the core of our proof is Proposition 55l Then (i) and (i) appear as ad hoc
assumptions to contradict the existence of the stated unbounded sequences; other similar assumptions
might be designed.
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6. Conclusion and perspectives. In this paper, we have laid down some basic theory toward
studying the cutting paradigm for sets of the form (). We have introduced for this the concept of cut-
generating functions, which allowed us to put in perspective an abundant literature devoted to S-free
sets. We have revealed the discrepancy between minimality and maximal S-freeness; and we have recov-
ered existing theorems [I8] [8 [ [12] 5], dealing with mere minimality, exhibiting the intrinsic arguments
allowing their proofs. Our theory necessitated a generalization of the polarity correspondence to cer-
tain unbounded sets; we have conducted it via a systematic exploitation of the correspondence between
sublinear functions and closed convex sets.

A number of questions arise from this theoretical work. Some are suggested by Section

Question 1. Given a convex compact set GG, can we detect whether it is the minimal prepolar of V := G°?
and if not, can we compute (GO).?

Question 2. Knowing that our generalization of polarity goes along with that of [23], linking the two
works should certainly be instructive. For example, we define the prepolar by (23)), which looks quite
different from the set @ in [23] Prop.5.1]. Yet the two sets have to coincide, at least when 0 € int V;
can this be clarified? and can we explain what happens when when 0 becomes a boundary point of
V? Also: does this other definition help answering Question 17

These are limited to pure convex analysis; concerning the CGF theory itself, some other questions have a
concrete interest:

Question 3. Is it possible to characterize exactly the S-free sets represented by minimal CGF’s? a converse
form of Theorem should be desirable.

Question 4. One might want to consider more general models. For example, it should not be too difficult
to replace the “ground set” R” of ([a) by some other closed convex cone; say the cone of positive semi-
definite matrices, which would open the way toward cutting SDP relaxations. Another generalization
would be inspired by the approach of [14] of Example [Tt there, X has the form

{xGZZ : —AZEEZm—b};
S = Z™ — b lies in a smaller space but the ground set Z7 is no longer convex, so sublinear CGF’s are
now ruled out. Instead, CGF’s in this context are subadditive, periodic, and satisfy a certain symmetry
condition [T5].
Question 5. Perhaps the most crucial question is whether CGF’s do generate all possible cuts, i.e., whether
[@®) is able to produce all possible ¢’s satisfying (2). This turns out to be a tough nut to crack, we
conclude the paper with some considerations for future research concerning it.

The following counter-example shows that the answer to Question 5 is no in general.

EXAMPLE 6.1 (CGF’S NEED NOT GENERATE ALL CUTS) In R?, take S = (0,1) U {(Z,—1)}. The left
part of Figure [Tl drawn in the S-space, clearly shows that, if the unit-vector (1,0) lies in the recession
cone of an S-free set V', then it lies on the boundary of this cone.

Figure 11: Not all cuts are obtained from a CGF

Now take the identity matrix for R: in the x = (£,n)-space, X reduces to the singleton (0, 1) in R?
(right part of Figure [[Il). It can be separated from the origin by the cut > £ + 1, obtained with
c=(—1,1)"T. Knowing that the first column of Ris r; = (1,0)", a CGF p producing this ¢ must therefore
have p(r1) = —1. In view of Lemma B2} (1,0) lies in the interior of Vi; but we have seen that no V' can
satisfy this. 0

Negative c;’s are therefore troublesome, a general sufficiency theorem is out of reach. To eliminate
c¢; < 0, we can restrict the class of instances:
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PROPOSITION 6.2 If the recession cone of conv (X) is the whole of R, then every cut c lies in R.

PROOF. Each basis vector e; of R" lies in [conv (X)] .} picking some z € X,
CT($+t€j)=CT$+th>1 forallt > 0;
let ¢ — 400 to see that c¢; > 0. O

This result might suggest that the trouble in Example[61lis due to the difference between the recession
cones of conv (X) and of the ground set R” in (Ia). However, the assumption introduced in Proposition
does not suffice, as even ¢; = 0 brings trouble. In fact, make a “more nonlinear” variant of Example
instead of the horizontal line ¢ = —1, take for S the curve p = —1/|¢| (¢ # 0). This leaves
X = {(0,1)} unchanged; ¢ = (0,1) " is a cut and a CGF p generating it has p(r;) = 0; this p represents
a set V(p) which has (R,,0) in its recession cone. Being a neighborhood of the origin, V(p) contains
A := (0, —¢) for small enough & > 0; also, B := (r,0) € V(p)e C V(p) for all » > 0 (see Figure [[2); by
convexity, the whole segment [A, B] lies in V(p), which therefore cannot be S-free.

L

+

Figure 12: Trouble appears when V,, is an asymptote of .S

In these two examples, the conical hull of the r;’s does not cover the whole of S. In fact, S contains
points that can be reached by no z € R”; these points have nothing to do with the problem, so forcing
V not to contain them is unduly demanding. Then one may ask whether CGF’s are able to describe
all possible cuts, for all possible instances such that S C cone(rq,...,7,). This is an open question.
Here we limit ourselves to a reasonably simple sufficiency result, proved with the help of a “comfortable”
assumption; it motivated the generalization obtained recently in [T1].

THEOREM 6.3 Let an instance of ([{l) be as described by Proposition and assume
n
cone (ry,...,ry) = {Z)\jrj A 20,7= 1,...,n} =R?.
j=1
Then every cut can be obtained from a CGF.

Proor. Let c € R} and set
Jy={jef{l,....,n} : ¢; >0}, Jo:={je{l,...,n}:¢; =0}.

Then introduce in R? the vectors .

rii=-L forjeJ,

Cj

and the polyhedron

G:=conv{r; :jeJ.},

V=G+K, Wlth{K;:cone{Tj3j€J0}'

Claim 1: 'V is a neighborhood of the origin. In fact, our assumption means that R? = cone (G) + K:
every d € R™ has the form

d=tg+k, with t>0,5€G,keK.
Then compute oy (J) for nonzero d.
— Case 1: £ = 0. Fixing g € G so that g+ tk € V for all t > 0, we have
ov(d) =ov(k) > k" (g+tk) =k g+t[|k|*, forallt>0;
let t — +00 to see that oy (d) = +o00.
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~ Case 2: £ > 0. Scale d to t-'d € G+ K =V to obtain oy (d) > £~(|d||*> > 0.
Altogether, we have proved that oy (d) > 0 for all d # 0, i.e. 0 € int (V).

Claim 2: V is S-free. Take 7 € int (V). For ¢ > 0 small enough, 7+ 7 € V:

(I1+e)F= Zﬁj?”;--l—zujf‘j, with Bj,ﬂj}O,ZBjZl.

j€Ts j€Jo jET+

Divide by 1+ ¢ and set a; = 8;/(1 4+ ¢), \j = u; /(1 +¢) to get

n
F:Zajr;-—i—Z)\jrj,, for aj,)\jko,Zaj<1.
JjeEJ+ j€Jo j=1

Introduce the vector & € R™ whose coordinates are

{ Y fjed,,
Cj

/\j if 5 € Jo,.
Observe that z > 0 and that

n
o
Rz = E ZTr; = E C‘TJ+ E Ajrj =17
j=1 J

jeJ 4 Jj€Jo

If 7 € S then z € X by definition (Ial); but

'z = ch%: Zajgiaj<l
j=1

jedy 7 jedy
and z cannot lie in X if ¢ is a cut. We have proved that int (V) NS = (), i.e. that V is S-free.

Conclusion: We have proved that the gauge vy is a CGF; besides

— for j € Jy, r; is a direction of recession of V: vy (r;) = 0 = ¢;;
— for j € J,, the property r;- €V gives
1

1>y (r)) = —wv(rs), hence w(rj) <¢.
J

In summary, vy is a CGF dominating the cut c. ]

To make Question 5 less ambitious, one may ask whether CGF’s can reproduce the set of cuts “globally”.
In fact, the set of ¢’s satisfying (@) is a closed convex set: the opposite of the reverse polar X, in the
terminology of [3} I0]. Then consider the set Rg of all representations of a given S-free set. Given
(n, R), form the set C of ¢ € R™ whose coordinates are p(r;), where p describes Rg. Is it true that
conv (C) = —X 7 This question is open. If the answer is yes, one more question occurs: Example
tells us that Rg cannot be reduced to the maximal S-free sets; then, what sort of maximality can be
imposed while preserving “completeness” of Rg? An answer should need answering Question 3 first.
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