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A SIMULATION AND DESIGN MODEL FOR CAPILLARY TUBE-SUCTION LINE HEAT EXCHANGERS 

* lnstituto de Pesquisas Tecnol6gicas 
Thermal Engineering Group 
Sao Paulo-SP-05508 - Brazil 

R. A. Peixoto*, C. W. Bullard** 

ABSTRACT 

** Air Conditioning and Refrigeration Center 
University of Illinois at Urbana-Champaign 
Urbana- IL- 61801- USA 

This paper describes a model for capillary tube-suction line heat exchangers that can be used for either simulation or 
design. This model can also be integrated into a refrigeration system simulation and is valid for alternative refrigerants. The 
model permits, for a specific refrigerant, the choice of three dependent variables. For a given set of operational and 
geometric conditions the model calculates mass flow rate, capillary tube exit quality and suction line temperature at heat 
exchanger outlet. Alternatively in design mode, the model can determine the lengths and tube diameters required for a given 
now rate and operational conditions. Results are presented for CFC-12 and HFC-134a. 

A =cross sectional area (m2), (ft2) 
c = sound velocity (m/s), (ft/s) 
cd =condenser 
Cp =canst. pressure heat capacity 

(J/kg 0 C), {Btu/lb 0 F) 
D = internal diameter (m), (ft) 
DJ:\·ub = subcooling (°C), (0F) 
DTsup =superheating (0 C), COF) 
ev = evaporator 
f = friction factor 
G = mass flux (kg/s m2), (lb/h ft2) 
h =convective heat transfer coef. 

(W/m2 °C), (Btu/h.ft2 °F) 
h = specific enthalpy (J/kg), 

(Btu/lb) 
hx = heat exchanger 

NOMENCLATURE 

k =thermal conductivity 
(W/m 0 C), (Btu/h ft 0 F) 

K = entrance loss factor 
L = length (m), (ft) 
m = mass flow rate (kg/s), (lb/h) 
Nu = Nusselt number 
OD = external diameter (m), (ft) 
p =pressure (kPa), (psi) 
Pr = Prandtl number 
Re =Reynolds number 
s =specific entropy (J/kg 0 C), 

(Btu/lb 0 F) 
T = temperature CCC), (0 F) 
v =specific volume (m3/kg), 

(ft3/lb) 
V:: velocity (m/s), (ft/s) 
x= quality 

INTRODUCTION 

z = distance (m), (ft) 
J1 =viscosity (Pa.s), (lbf s/ft2) 

p = density {kg/ m3), (lb/ ft3) 

Subscripts 

ct = capillary tube 
l = liquid phase 
v = vapor phase 
i =inner 
in= inlet 
out= outlet 
sl = suction line 
w =tube wall 

Because of their simplicity and low cost, capillary tubes are used as the expansion device in most small refrigeration and 
air conditioning systems. Their lack of controllability is partially offset by the fact that charge remains relatively constant in 
hermetically-sealed systems, as does the temperature lift in many applications. Another advantage is that capillary tubes 
allow high and low side pressures to equalize during the off-cycle, thereby reducing the starting torque required by the 
compressor. However the resulting charge migration during the off-cycle can contribute to cycling losses. 

For some refrigerants including CFC-12 and HFC-134a, system capacity can be increased by using the cold suction line 
to lower the enthalpy of the fluid entering the evaporator, with only a modest increase in compressor power. Using a 
simplified theoretical analysis Domanski et al (1992) demonstrated that suction line-liquid line heat exchange could improve 
COP for these two refrigerants, but not for HCFC-22. For this reason capillary tube-suction line heat exchangers are used in 
household refrigerators, while adiabatic capillary tubes are used in room air conditioners. Figures I and 2 illustrate the kinds 
counterflow capillary tube-suction line heat exchangers (ct-sl hx) used in almost all household refrigerators. It may be 
formed either soldering the capillary tube on the outside of the suction line or placing the capillary tube inside the suction 
line (called concentric tubes ct-sl hx, regardless of the relative location of the tubes). 
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Figure L Vapor compression cycle with ct-slhx Figure 2. Capillary tube-suction line heat exchanger 

Despite its simplicity, the capillary tube-suction line heat exchanger is one of the most difficult components of the system 
to design. Historically the approach has been almost completely empiricaL The ASHRAE Equipment Handbook, for 
example, presents a chart defining the pressure drop-mass flow relationship for the adiabatic case as a function of inlet 
conditions. With suction line heat exchange, however, this relationship is altered and the charts yield only approximate 
values based on the assumption that the refrigerant remains subcooled liquid along the entire length of the heat exchanger. 
Much laboratory time is required to test the system under a variety of conditions to adjust the dimensions of the ct-slhx. The 
design problem has been further complicated by the need to phase out CFCs and HCFCs, which has diminished the value of 
vast empirical databases and design experience. Although it is likely that HFC-134a will be used in most new refrigerators, 
there is at present no experimental and theoretical data available in the open literature for describing the performance of non­
adiabatic capillary tube using HFC-134a as a working fluid. 

DESCRIPTION OF THE PROCESS 

The capillary tube connects the condenser and the evaporator, and the refrigerant can be either liquid subcooled or two­
phase at its inlet. The flow through a capillary tube can generally be divided into a liquid region, where the pressure 
decreases linearly until the flash point; and a two-phase region characterized by increasing refrigerant velocity and pressure 
drop per unit length as the exit is approached. The following characteristics account for the complexity of the process: 

(i) Flashing two-phase flow differs somewhat from the classical two-phase boiling. In a capillary tube-suction line heat 
exchanger, the flow is still more complex because of the refrigerant being simultaneously cooled. 

(ii) When the refrigerant enters as a subcooled liquid, the pressure decreases steadily to the saturation pressure where the 
vaporization should begin. During the last 30 years, several authors have observed experimentally the existence of a delay in 
the refrigerant vaporization, called "metastable region," in adiabatic capillary tubes. It was verified that the temperature 
remains constant for some distance past the saturation point The existence of this phenomenon for non-adiabatic capillary 
tube is much more difficult to detect experimentally. The unique work that was concerned about this problem, (Pate and Tree 
1984), was not conclusive about the existence of the phenomenon of "metastability." 

(iii) The refrigerant vaporization increases specific volume and therefore velocity, and it is common to reach the critical 
(choked) flow condition at the tube exit. At a fixed condenser pressure, further reductions of the evaporator pressure below 
this point will not increase the mass flow rate. 

PROPOSED MODEL 

In almost all the applications just the intermediate part of the capillary tube is placed in contact with suction line. This is 
simulated in the model by dividing the capillary tube into three regions, two adiabatic and one non adiabatic. For adiabatic 
llow it is assumed that: 

a) negligible heat exchange with the ambient; b) steady state, pure refrigerant one-dimensional flow; c) fully 
developed turbulent flow; d) homogeneous equilibrium two-phase flow; e) critical conditions reached when Mach 
number of the homogeneous liquid and vapor mixture at the exit section is equal 1.0. 

The homogeneous two-phase model assumes a thermal and hydrodynamic equilibrium between the phases (equal 
temperature and velocities; no delay of vaporization) and provides good results when there is sufficient time for the two 
phases to reach equilibrium as might occur in long tubes (Dobran, 1987). The additional assumptions for the heat exchanger 
region are: 
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f) fully developed turbulent flow in suction line; g) negligible axial heat conduction in the capillary tube and suction 
line walls; h) negligible thermal resistance in the capillary tube and suction line walls, i) negligible thermal 
resistance in the soldered joint; j) radially and axisymetrically isothermal capillary tube and suction line walls 
(lateral ct-sl hx); k) capillary tube and suction line placed in a concentric way (concentric ct-sl hx). 

Figure 3 defines the vaiiables used in the model for the capillary tube-suction line heat exchanger composed of lateral 
tubes. The variables for the concentric tubes capillary tube-suction line heat exchanger are the same, with the addition of the 
capillary tube external diameter. The flashing point in Figure 3 lies in the adiabatic inlet region, but it can be located also in 
the heat exchange and in the adiabatic outlet region. 

liquid two-phase 
region region 

DTsub Pout 
Or 

Condenser X In Dct ct X out Evaporator - -Pcd/Tcd Pev/Tev 
ritr - sl -Tsl out Dsl Tsl in=Tev+DTsup mr 

Lin Lhx 1 Lout 1 
DTsup 

Figure 3. Variables used in the capillary tube-suction line heat exchanger model 

The governing equations are the mass, momentum and energy conservation equations, presented bellow: 

For adiabatic region: 

m 
-=Get= canst 
Act 

(I) (2) 

For the heat exchanger region, considering the lateral design: Equations (1) and (2) above plus: 

m 
-= G 1 =canst. 
A s 

sl 

(4) 

dh c?r d( v
2

) dTs1 -+---=c --
dz 2 dz Psi dz 

(5) 

For the heat exchanger region. considering concentric tubes: Equations (1), (2) and (5) above plus: 

m 
------ = Gs1 = canst. 
1r 2 2 
-(Dst- ODe,) 
4 

(8) 

dT 
me -------sl=-h nOD (T - T ) 

Psi dz sli ct w sl 
(9) 

The constitutive equations are: 

dh G~1 d( v
2

) 
-=---
dz 2 dz 

(3) 

vz 
s = (1- x)s1 + xs. (13) 

v = (1- x)v1 + xv. (14) 

1\ = (1- x)l\1 + xl\. (15) 

(xv.J.L. + (1 - x) V 1J.L1) 
J.L = (17) 

Dp =(I+ K)-"' (11) 
2v;~ 

h = (1- x)h1 + xh. (12) 

v 

cP=(1-x)cP
1

+xcP. (16) 

where Dp is pressure drop between the condenser pressure and the inlet pressure due to the joining of the capillary tube with 

the liquid line. 
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The thermodynamic and the transport properties for the liquid and vapor phases are calculated using Martin-Hou equation 
of state and the transport property equations presented by Shankland et al. (1989) and Jung and Radermacher (1991). The 
two-phase viscosity is determined through the correlation proposed by Dukler (1964). The friction factors for the liquid and 
two-phase regions are calculated either using Colebrook equation for turbulent flow in rough tubes (if roughness is known), 
or using an experimental correlation obtained by Pale (1982): 

f = 3.49 Re --{).4? {19) 
(18) 

Heat transfer coefficients are calculated through Sleicher and Rouse (1975) correlation: 

Nu = 5 + 0.015Rea Prb (20) a= 0.88-0.24 I (4 + Pr) (21) b = 0. 333 + 0. 5e --{). 6 
Pr (22) 

The concentric ct-sl hx involves heat transfer in a concentric tube annulus , and for fully developed turbulent flow, the 
inner convection coefficient ( h81 ) may be evaluated by using the hydraulic diameter (D s[-OD ct) with the Sleicher an Rouse 
equation (Incropera and De Witt, 1990). The refrigerant velocity and the sonic velocity are calculated by the relations: 

23) (24) 

VALIDATION 

The model was validated by comparing with published data. The finite difference method was used to solve the governing 
differential equations, continuity, momentum and energy, in conjunction with the constitutive equations. The resulting 
system of algebraic equations are solved by the Newton-Raphson method. The mass flow rate is calculated for a set of 
operational conditions (inlet pressure, inlet subcooling or quality, etc.) and geometry (lengths and internal diameters). For the 
simulation problem in which mass flow is unknown, the equations must be solved simultaneously. On the other hand for the 
design problem in which the mass flow rate is fixed, the solution for length is nearly sequential. The solution also yields 
quality, pressure, temperature and enthalpy distributions. 

Very liLLie experimental data have been published for diabatic case of a capillary tube-suction line heat exchanger. 
Figures 4 and 5 show good agreement between the mass flow rate calculated by the model and the data presented by 
Christensen and Jorgensen (1967) for CFC-12. However it must be noted that these data are for a high degree of subcooling 
at the capillary tube inlet. In this condition, the liquid region is large and the liquid flow is well predicted by the theory. The 
predicted flashing point was located near the end of the heat exchange region or in the adiabatic outlet region, far 
downstream of its usual position. More theoretical and experimental work is needed to validate the model in the two-phase 
now region. This research is currently underway and the results will be reported in the future. 

SIMULATION AND DESIGN RESULTS 

Figures 6 and 7 illustrate the use of the capillary tube-suction line heat exchanger model for simulation. Figure 6 suggests 
that HFC-134a will respond similarly to CFC-12 as condensing temperature changes. Figure 7 shows that the mass flow rate 
of HFC-134a is expected to be more sensitive to the modest amounts of subcooling typical of refrigerator operating 
conditions. The differences in thermodynamic and transport properties of CFC-12 and HFC-134a are reflected in this plot. 

The model can also be used for designing suction line heat exchangers and examining tradeoffs between the various tube 
lengths, diameters, and the way they are assembled. Figure 8 shows the capillary tube diameter calculation. for different 
condensing temperatures. The length of the heat exchanger is taken as the independent variable in Figure 9 to demonstrate its 
linear dependence on, and sensitivity to, the design condensing temperature. Both figures show results for a specified 
refrigerant mass flow rate, which is a logical starting point for designing a ct-sl heat exchanger that will exactly match a 
given compressor capacity at the design condition. 
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Figure 6 Effect of the condenser pressure on mass flow 
rate calculation (lateral ct-sl hx) 
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Figure 7 Effect of the inlet subcooling on mass flow 
simulation (lateral ct-sl hx) 

Another important design consideration is the potential for recondensation in the heat exchanger portion of the capillary 
tube, as illustrated by the nonlinear quality profile in Figure 10. The ASHRAE handbook cautions that heat exchanger region 
location can cause instabilities in refrigerator operation and this fact can be related to refrigerant recondensation. A voiding 
this condition may place a practical upper limit on t~e effectiveness of the heat exchanger. This simulation result shows 
clearly that a linear quality profile as assumed by Pate and Tree (1984a) is unlikely to exist in most cases. 

Finally Figure 11 illustrate difference between lateral and concentric designs. The calculations suggest that the superior 
performance of the lateral design results from the capillary tube's ability to reject heat via conduction to the larger suction 
line, instead of presenting its small outside surface area to the suction gas. 

CONCLUSIONS 

The finite difference model presented here shows reasonably good agreement with published data for diabatic capillary 
tubes. This model can be used to predict the performance of alternative refrigerants. Much work needs to be done in order to 
validate the two-phase flow equations and to analyze the problem of refrigerant re-condensation in the capillary tube near the 
end of the heat exchange region. To help develop a test matrix for the required validation experiments, the model was run in 
both design and simulation mode for a wide range of operating conditions. Important trends are summarized here. 

The mass flow rate of HFC-134a is expected to be about 5% lower than CFC-12 in an adiabatic capillary tube. For a 
given mass flow rate the calculations suggest that HFC-134a will require a smaller capillary tube diameter and larger heat 
exchange length. Finally the model illustrates how the mass flow rate of a capillary tube-suction line heat exchanger is higher 
for the case of lateral tubes than for concentric tubes, because of the larger heat transfer area presented by isothermal 
capillary tube and suction line walls. 
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