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An Evaluation of the Strategic Highway Research Project Packing Handbook

Implementation Report

This report summarizes the testing done at Purdue University to evaluate the

"Packing Handbook - A Guide to Determine the Optimal Gradation of Concrete

Aggregates." Included are the results of laboratory mixes designed with the aid of the

Packing Handbook. These mixes were compared to mixes that were successfully used in

recent paving projects.

Based on the results of this work, the following guidelines were developed for the

implementation of the Packing Handbook.

1

.

The Packing Handbook can be successfully used to proportion aggregates. The
Packing Handbook can be used with a variety of aggregates commonly used in the state

of Indiana. The mixes with aggregate proportioned with the Packing Handbook were
somewhat harsh and are best suited to applications where harsh mixes can be
tolerated.

2. The Packing Handbook gives gradations higher in coarse aggregate content than
current field mixes. In locations where coarse aggregate is less expensive than fine

aggregate there may be an economic incentive to use the Packing Handbook.

3. Higher admixture dosages may be necessary to entrain the proper amount of air if

the Packing Handbook is used to proportion aggregates.
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1. INTRODUCTION

The purpose of this research was to evaluate the Packing Handbook developed as

a product of the Strategic Highway Research Project (SHRP). This research was funded

by the Federal Highway Administration's Office of Technology Applications (FHWA-OTA)

in Washington, D.C. through and in cooperation with the Indiana Department of

Transportation (INDOT). The evaluation of the Packing Handbook was conducted in an

effort to determine what steps the Federal Highway Administration and the Indiana

Department of Transportation should take in implementation of the Packing Handbook.

The November 8, 1991 SHRP report "Packing Handbook - A Guide to Determine the

Optimum Gradation of Concrete Aggregates" uses particle packing models to determine

the maximum packing of the concrete mixture. This research and report is primarily

focused on determining the benefits of using the Packing Handbook over conventional

aggregate proportioning procedures currently in use.

The viability of the Packing Handbook was determined by comparing mixtures

prepared using the Packing Handbook with mixtures that have been used on projects

conducted for the Indiana Department of Transportation. Five projects were chosen .

These projects were chosen on the basis of the type of coarse aggregate used. Three of

the projects used a crushed stone as the coarse aggregate. This is by far the most

common type of coarse aggregate type used on recent INDOT paving projects. A project

using gravel as a coarse aggregate and one using slag were also chosen. The project

using slag as a coarse aggregate was a South Bend city project and not an INDOT



Table 1.1 Projects Used in Study

INDOT

Project No.

Project Coarse

Aggregate

Construction Date

R- 17986 Washington Crushed Stone 1991-1992

R- 19794 Elkhart Crushed Stone 1992

R- 19394 Greenfield Crushed Stone 1992

R- 195 15 Indianapolis Gravel 1992

South Bend

City Project

South Bend Slag 1992

Location of Projects

• Washington - relocation of U. S. 50. from S. R 57 to existing U. S. 50 east of

Washington, IN

• Elkhart - U. S. 20 from Pleasant Plains Road to 0.4 of a mile northeast of County

Road 18 South Bend By-pass

• Greenfield - interchange of 1-465 and 1-65 on the south side of Indianapolis

• Indianapolis - reconstruction of 1-70 from Post Road to 0.8 of a mile east of Mohawk

Road east of Indianapolis

• South Bend -extension of Mayflower and Cleveland road northwest of the South

Bend airport near U. S. 20 N.



project. Table 1.1 summarizes the project numbers, location, coarse aggregate type,

and construction dates.

In this research the Packing Handbook was used to proportion the aggregates

from each project. The aggregate proportions were determined for each project and then

used to produce concrete mixes. The concrete mixes produced with the aid of the

Packing Handbook were then compared to mixes with field proportions. Other mix

preparation factors that might influence concrete properties were kept as constant as

possible. This includes cement content, w/c, mixing, compaction, and finishing

procedures.

1 . 1 Introduction to Packing Handbook

The Packing Handbook is meant to be used as an aid to standard mix design

methods. Specifically, it is intended to serve as an extension of ACI 211.1 "Standard

Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete [1]. The

Packing Handbook is used to estimate the optimal combination of a sand and up to 3

different coarse aggregates [2].

The Packing Handbook outlines procedures for finding the optimum combination

of aggregates. The Packing Handbook is based on principles of particle packing. The

authors of the Packing handbook have studied various particle packing models and

have published their findings [3]. Based on their experience they found that the

position parameter of the Rosin-Rammler distribution representative of the particle size

distribution, together with the experimentally determined packing density of the

component can be used to predict the maximum packing density. The Rosin-Rammler

distribution is described by the equation

R(D) = exp Hd/d')
n

}



where: d is the particle diameter

R(D) is the cumulative probability that the diameter is less than d

d' is the position parameter for which R(D) = 0.368

Their results indicated that the best workability of a concrete mixture is

obtained with the densest packing of sand and coarse aggregate. From the results of

tests by Johansen and Andersen, "it was found that the minimum porosity, the

ininimum permeability, the maximum slump, and the maximum compressive strength

were achieved for mixtures with the maximum packing density" [3]. Therefore the

combination of aggregates that gives the maximum density should theoretically be the

best for concrete.

The method described in the Packing Handbook uses two input parameters for

each aggregate. The first parameter is the characteristic diameter. This characteristic

diameter is defined as the diameter corresponding to 63 weight percent passing on a

best fit line of sieve analysis plotted on a Rosin-Rammler graph paper. The second

parameter is the packing density of each aggregate. The packing density (PHI) is

calculated by the following equation:

PHI = 1 - ( % Voids / 100 )

where the percent voids is calculated in accordance with ASTM C29 "Standard Test

Method for Unit Weight and Voids in Aggregate" [4].

Once these parameters are obtained for each aggregate the volumetric

composition of the materials is found from tables in the Packing Handbook. The

volumetric composition is found by matching the characteristic diameters for each

aggregate with values in the table, and moving down in the table until the combination

of input parameters is located. Absolute volume mix design procedures are used to

select water content, cement content and air content. The volume of these constituents

is then subtracted from the total volume to get the volume of aggregates required.



Using the volumetric ratio of aggregates found in the table and their specific gravities,

the weight of each material can be calculated. To illustrate the use of the Packing

Handbook the following example is provided.

1.1.1 Packing Handbook Example Mix Design

Step 1

The first step in using the Packing Handbook is to plot the sieve analysis of each

aggregate on Rosin-Rammler graph paper. The results of sieve analyses for both a

natural siliceous sand and a crushed limestone are shown in Table 1.2. A Rosin-

Rammler plot of these sieve analyses is shown in Figure 1.1 and Figure 1.2.

Step 2

Once the sieve analysis is plotted a best fit line is drawn visually through the

points. The characteristic diameters corresponding to 63 weight percent passing can

then be determined. From Figures 1 and 2 the characteristic diameters of 0.054 inches

for the sand and 0.59 inches (two decimal points because of log scale limitation) for the

stone were found.

Step 3

After the characteristic diameters are determined the void content of each

aggregate should be found according to ASTM C29. The results ofASTM C29 tests gave

void contents of 34 percent for the sand, and 42 percent for the stone.

Step 4

The dry weight packing density (PHI) is then found from the void content. The

calculation of packing densities gives the following: for the sand PHI= 1 - (34/100) =

0.66, and for the crushed limestone PHI= 1 - (42/100) = 0.58.



Step 5

The four input values (characteristic diameters of 0.054 and 0.59 and packing

densities of 0.58 and 0.66) are then used with the tables in the Packing Handbook to

determine the volume percent of coarse aggregate . A portion of this table showing the

input parameters is shown in Table 1.3. In this example the crushed limestone content

recommended by the Packing Handbook is 72% of the total aggregate.

Step 6

The standard mix design procedures, ofACI 211.1, are then used to determine

the cement and water contents. Once these quantities are determined the remaining

volume of the concrete is occupied by the aggregate in the relative proportions

recommended by the Packing Handbook. In this example the cement content and

water-to-cementious materials ratio were held constant with values used in field

mixtures. This gave the mix design shown in Table 1.4:



Table 1.2 Sieve Analysis for Packing Handbook Example

Sieve

Size

Percent Passing
j

Stone Sand

1" 100.0

3/4" 91.7

1/2" 41.8

3/8" 20.6 100.0

#4 3.4 99.4

#8 1.0 91.0

#16 77.9

#30 58.1

#50 18.0

.#100 1.3

#200 0.3



c
"35

Figure 1.1 Rosin-Rammler Plot of Sieve Analysis for the Fine Aggregate



Particle size

Figure 1.2 Rosin-Rammler Plot of Sieve Analysis for the Coarse Aggregate
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Table 1.3 Portion ofTable from Packing Handbook Giving Volume Composition

SAND COARSE AGGREGATE VOLUME%
Dl PHI,1 02 PHI ,2 COARSE AGGREGATE

0.06 0.50 0.51 0.65 82
0.06 0.55 0.51 0.65 80
0.06 0.60 0.51 0.65 78
0.06 0.65 0.51 0.65 78
0.06 0.70 0.51 0.65 76

0.06 0.50 0.51 0.70 86
0.06 0.55 0.51 0.70 84
0.06 0.60 0.51 0.70 84
0.06 0.65 0.51 0.70 82
0.06 0.70 0.51 0.70 80

0.06 0.50 0.51 0.75 90
0.06 0.55 0.51 0.75 88
0.06 0.60 0.51 0.75 88
0.06 0.65 0.51 0.75 86
0.06 0.70 0.51 0.75 86

0.06 0.50 0.59 0.55 74
0.06 0.55 0.59 0.55 72
0.06 0.60 0.59 0.55 70
"0.06 0.65 0.59 0.55 68
0.06 0.70 0.59 0.55 66

0.06 0.50 0.59 0.60 78
0.06 0.55 0.59 0.60 76
0.06 0.60 0.59 0.60 74
0.06 0.65 0.59 0.60 C3>
0.06 0.70 0.59 0.60 70
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Table 1.4 Packing Handbook Example Mix Design

Cement = 451 (lbs/yd3)

Fly Ash = 141 (lbs/yd3 )

Water = 237 (lbs/yd3)

Sand = 855 (lbs/yd3)

Stone = 2193 Qbs/yd3)

AEA = 15 (oz/yd3 )

Total = 3877 Qbs/yd3)
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2. LITERATURE REVIEW

This chapter will present the literature reviewed in an effort to analyze and

evaluate the results of testing. The Packing Handbook is compared to other mix design

methods. The effect of varying aggregate gradations was reviewed. Also reviewed was

the effect of air content on both the plastic and hardened concrete.

2. 1 Concrete Mix Design

The objective of all mix design methods is to produce the desired quality concrete

at the niinimum cost- In the usual case rmnirnuni requirements are set for strength ,

durability, and workability. The mix design method then attempts to combine cement,

water, fine aggregate, coarse aggregate, and possibly mineral and/or chemical

admixtures in the proportions that will meet the requirements with the least cost

Inadequate mix designs will result in either inefficient use of materials, or

unsatisfactory performance of the fresh or hardened concrete.

Since cement is the most expensive material in concrete, costing roughly ten

times as much as aggregate, the amount of cement should be kept as low as possible for

a cost effective mix design. The proportions of fine and coarse aggregate are adjusted

provide to adequate workability with the least amount of water. The most important

factor affecting the strength of concrete is the w/c. With other variables constant the

lower the w/c the greater the strength of concrete. For this reason the water content

should be kept as low as feasible.
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2.1.1 History of Mix Proportioning

A number of procedures have been developed to proportion the components of

concrete mixes. Early methods were based on arbitrary assignment of quantities. The

ratio of cement, fine, and coarse aggregates were set without regard to the properties of

the individual components.

One of the first major attempts to apply science to the proportioning of concrete

was done by Fuller and Thompson [5]. They found that for the same percentage of

cement the densest mixture will be the strongest. A number of "laws" of proportioning

were proposed. One of theses laws is aggregate of the largest possible size gives the

densest and strongest concrete. Sand quantities should be kept at a minimum.

According the Fuller and Thompson, "The average improvement in strength by artificial

grading under the conditions of the test was about 14 %" [51.

Other early mix design methods also were based on the principle of least voids.

Talbot proposed a mix design method based on finding the mortar with the least voids

[6]. The coarse aggregate was then combined with the mortar. The amount of coarse

aggregate added depended on workability requirements.

Young and Edwards both presented mix designs based on the surface area of

aggregates [7,8]. The aggregate combination having the least surface area will require

the least water in excess of that required for the paste. A ininimum amount of surface

area to be coated by paste also meant that paste content could be kept at a minimum.

In 1918 Duff Abrams asserted that the most important component in concrete

was the water content [91 . Water is the most important ingredient because small

variations in the water content will produce large variations in strength and durability.

It is the water content that determines strength as long as the mix is of workable

plasticity. The strength of concrete is a function of the w/c. The workability

requirements will dictate the quantity of water. The quantity of water for a given
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workability is influenced by the quantity and quality of cement and the size, grading,

adsorption and moisture of the aggregates.

Abrams stated that maximum strength of concrete does not depend on the either

an aggregate of maximum density or a concrete of maximum density. The aggregate

grading that gives the maximum density is not the grading that gives the greatest

strength. The size and grading do not affect the strength of concrete except as these

factors influence the quantity of water necessary to produce a workable mix. Abrams

proposed a fineness modulus as a method to proportion the aggregates.

ACI mix design is the most common mix design procedure in the United States

today. ACI attempted to formulate a standard method for mix design. The first

successful attempt to produce an ACI standard was completed by Committee 613 in

1944 [10]. In 1954 the report was revised to include air entrainment and the b/b

concept for estimating coarse aggregate content. The b/b ratio is the amount of coarse

aggregate in a unit volume of concrete to the amount of the same coarse aggregate

compacted by rodding into a mold of the same unit volume. The basic concepts ofACI

613-54 are still the basis of the ACI procedure today.

2. 1.2 Current Mix Design Methods

As previously mentioned ACI 211.1 is the most common mix design procedure

today. ACI 211.1 outlines a number of steps to arrive at the proportions for a concrete

mix design [1]. The first step in proportioning concrete in ACI 211.1 is to determine the

raw material properties. The necessary properties are sieve analysis of both fine and

coarse aggregates, unit weight of the coarse aggregate, bulk specific gravities, and

absorption capacities of the aggregates. The next step requires selection of the desired

slump for the concrete. Using the desired slump and the maximum aggregate size the

estimate of mixing water is read from a table. The w/c necessary to fulfill strength and
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durability requirements is determined. The cement content is then calculated. The

coarse aggregate content is estimated based on the fineness modulus of the sand and

the dry rodded unit weight of the coarse aggregate. The fine aggregate content is then

proportioned to fill the remaining volume. Finally the water content is adjusted to

account for moisture in the aggregates.

British design methods take a slightly different approach [11]. The British

design methods begin with the determination of a mean target strength. From this

target strength the w/c is determined. The free water is then estimated from a table

and the water and cement content calculated. The total aggregate content is the

calculated by subtracting the water and cement contents from the estimated wet

density. The fine aggregate is then proportioned based on graphs of percent of fine

aggregate vs. w/c for different maximum sizes, workabilities, and grading zones of the

fine aggregate. The coarse aggregate content is then calculated by subtracting the fine

aggregate from the total aggregate.

2.2 Workability

Workability is the collective term used to describe the properties of concrete in

the plastic, or fresh state. Workability describes compactability, mobility, stability, and

finishability of the concrete [12]. All of these properties must be satisfactory for quality

concrete. Compactibiltiy is the ease with which the concrete is consolidated and the

entrapped air removed. Mobility is the ability of the concrete to flow around

reinforcement and into the comers of formwork. Stability is the resistance of the

concrete to segregate. Concrete should remain as uniform as possible. Concrete must

have adequate finishability for a uniform durable surface to be produced.

Workability is a difficult property to quantify. Nearly 60 methods using slump,

flow, penetration, drop, mixer, deformation, compaction, and other techniques have
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been developed to measure workability [13]. These methods have succeeded only in

correlating some aspect of workability or consistency with an easily determined physical

measurement The vast majority of these methods have found only limited application.

The ones commonly used today are the slump, consistometer. and compaction methods.

The slump method is the one most commonly used in the United States. The slump

test is not used to measure workability but assure uniformity between mixes. Results

of the slump test will indicate changes in water content, or grading of a mix with given

materials and proportions. In the evaluation of the Packing Handbook slump was

measured and the workability was observed. The workability of each mix was visually

appraised.

The workability of concrete depends upon; 1) the time since mixing, 2) the

properties of the aggregate, 3) the properties of the cement 4) the relative proportions of

constituents, and 5) the use of admixtures [11]. The influence of the relative mix

proportions and of the aggregates are of most interest in the assessment of the Packing

Handbook. Increasing the cement content increases the workability, but due to

economic as well as other considerations increasing the cement content is undesirable.

The workability increases as the water content rises until the point where segregation

and bleeding occur. The properties of the aggregate that affect workability are particle

shape, particle size distribution, porosity and surface texture. The more spherical the

particles the more workable the concrete. Particle shape of both the fine and coarse

aggregate affect workability, but the shape of the fine aggregate has more influence than

that of the coarse aggregate [13, 14]. Spherical particles act as ball bearings and have

the smallest surface area per volume. The water demand for this particle shape is

lower. The particle size distribution is often referred to as the gradation. The gradation

is primarily controlled through the relative proportions of fine and coarse aggregate.

The maximum workability is obtained at a specific ratio of coarse and fine aggregate
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[1 1, 14, 15, 16]. The gradation and the relative proportions of aggregates will be

discussed in more detail later.

2.3 Strength

Concrete must meet minimum strength requirements in most applications. The

primary factor controlling the strength of concrete with a given cement content is the

water content. For a given cement content the lower the water content, and therefore

the w/c, the higher the strength. Economical mix designs use the lowest possible

cement contents

Provided that aggregates are not structurally deficient and are clean they have

little impact on the strength of concrete. The basis for approval of aggregate sources is

to ensure that the aggregates are clean, and have adequate strength and durability.

The relative proportion of fine and coarse aggregate influence the strength only in the

amount of water demanded for a given workability. It is therefore desirable to have the

gradation of aggregates with the least water demand [17]. A few authors maintain that

the aggregate gradation giving the greatest density will also give the greatest strength

[3,5,18].

2.4 Effect of Gradation

Gradation is the size distribution of particles. The gradation is usually found

with a set of standard sieves. Aggregates for use in concrete must meet certain

gradation requirements [19,20]. Gradation of concrete mixes are primarily controlled by

the ratio of fine and coarse aggregate. As stated earlier the main impact of gradation is

on the workability of concrete. The goal of mix designs are to find gradations that are

easily obtained, economical to produce and produce concrete of the best possible quality

possible with the materials given.
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The better the gradation the more total aggregate content possible. There are a

number of incentives to use as much aggregate as possible. Perhaps the most

important of these is to obtain minimum cost Thermal cracking , shrinkage, and creep

are also at a minimum when the cement content is as low as possible for a given

strength [21].

Mix proportioning methods have long sought to find the optimum coarse

aggregate to total aggregate ratio. Many authors disagree however as to what is

optimum. Some authors assert that the optimum gradation is the one that gives the

maximum density of aggregates [3,5, 12.22,23]. Other state that the optimum is the

gradation with the lowest surface are possible [7,8]. The gradation that gives the best

workability is the optimum according to another author [16]. All of these are related but

not necessarily equal. Gradations with low surface area should have low water demand

as should gradations based on workability or maximum density. Further complicating

matters is the fact that the optimum of most or all concrete properties may not be

achieved simultaneously [24]. In other words their may be numerous optimal gradings.

Gradings which are optimal for strength may not be optimal for another concrete

property such as impermeability.

A number of problems will develop if the aggregate grading is not satisfactory. If

the percentage of sand is too high than the surface area of the aggregate will be high.

This will decrease workability [13, 17], The concrete will have a drier consistency due to

the increased water demand [16]. If more water is added to increase the slump to the

level of a well graded mix more bleeding will take place and strength will be reduced.

The porosity will increase rapidly if the voids in the fine aggregate can not be filled by

the cement paste [17].

When the coarse aggregate content is excessive other problems develop. The

concrete becomes harsh and difficult to consolidate. If the coarse aggregate content
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exceeds an optimum value interference becomes the dominant factor affecting

workability [13, 16, 17]. Particle interference occurs when the distance between the

larger particles is not sufficient to allow free passage of smaller particles [13]. The

lubrication effect is thus hindered reducing workability. The voids ratio will increase

and the strength will be reduced. The addition of more cement and/or fine aggregate

forces the larger particles apart thus increasing the lubrication effect but this addition

creates a need for more water to wet the increased surface area and strength will again

be reduced [13]. Honeycombing may arise if the fine aggregate particles are unable to

filter into the voids between the coarse aggregate. Sufficient sand must also be

available in order to properly finish the surface. The optimum condition is for as much

coarse aggregate as possible to be used while avoiding interference and maintaining

adequate fine aggregate for finishing and cohesion.

Numerous methods have been proposed to arrive at the gradation for a concrete

mix. Fuller and Thompson suggested the gradation should meet as closely as possible

an ideal grading curve [5]. The equation to this curve is:

Pn =100*(Dn/Dmax)

where: Pn = % passing sieve size n

Dmax - maximum particle size

The theoretical basis for this empirical formula was later developed by Fumas [22].

Methods of detennining gradation based on surface area were also proposed [7,8].

Hughes has suggested aggregate be proportioned strictly on the basis of its effect

on workability [15,16,17,21]. The optimum content of coarse aggregate is influenced by

the ratio of the mean size of the fine aggregate to the mean size of the coarse aggregate

and the loose bulk density of the coarse aggregate. This optimum content is completely

independent of cement and water contents and needs to be determined only once for a

given coarse and fine aggregate.
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ACI mix design proportions aggregates based on the fineness modulus of the

sand, the maximum size of the coarse aggregate, and the dry rodded unit weight of the

concrete. Using the dry rodded unit weight and the fineness modulus the coarse

aggregate content of the mix is determined. The maximum size determines the mix

water estimations. After the cement, water, and coarse aggregate are determined the

remaining volume is filled with fine aggregate.

The problem of particle interference has been reduced in one method of

aggregate proportioning. Interference can be reduced by eliminating the intermediate

sizes in a procedure called gap grading [25,26]. The theory behind gap grading states

that it is the intermediate particle sizes which wedge the larger aggregate sizes apart

and increase the mortar required to fill the voids created. By eliminating these

intermediate particles the fine aggregate can move freely into the voids between coarse

aggregate particles. This results in the most efficient method of void reduction. Higher

total aggregate contents can be used than conventional continuous grading.

Shilstone argues that it is the intermediate sizes that are often deficient and

should be increased not reduced [27]. According to Shilstone, there are 3 factors which

should be used to determine the optimum combination of aggregates. These factors are

the mortar factor, the coarseness factor and the workability factor. The mortar factor is

the amount of mortar, sand and paste, required for a particular construction

classification. The coarseness factor is the percent of plus no. 8 material retained on

the 3/8 sieve, and the workability factor is the percent passing the no 8 sieve.

Finally, particle packing models have been advocated for use in concrete mix

proportioning. It is particle packing models which are the basis for the Packing

Handbook. Particle packing methods select appropriate sizes and proportions of

particulate materials to fill larger voids with smaller particles. The density of the

packed particles are influenced by the particle size distribution, the wall effect, and the
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method of compaction [3,23]. With a given container size and method of compaction or

consolidation particle packing models, based on theoretical considerations, can be used

to find the best particle size distribution. These particle packing models have not

worked well in the past. The reason for the lack of success for these models is the

actual internal structure of concrete does not resemble at all the actual picture that is

proposed by the advocates of the maximum denseness principle [24]. The structure

does not consist of symmetrically arranged contacting circles of identical diameters

representing the coarse aggregate, where the remaining holes are filled first with circles

of identical diameters and then with subsequent smaller circles. Thus it is little wonder

the none of the ideal gradings derived mathematically from this unrealistic picture of

maximum denseness in the aggregates has prove optimum for the standpoint of

concrete technology [24].

2.5 Effect of Air Content

All concrete which will be subject to a freeze-thaw environment should be air

entrained. Air entrainment is defined by ACI as, "the occlusion of air in the form of

minute bubbles during the mixing of concrete or mortar" [52]. Chemical admixtures

stabilize air bubbles trapped in the concrete during the mixing process. The main

benefit of air entrainment of concrete is to increase the freeze-thaw durability.

The pore distribution of hardened portland cement is normally divided into two

size classes. Capillary pores are usually defined as those larger than 0.01 (j.m. Pores

smaller than this are referred to as gel pores [28]. Water will not freeze in gel pores due

to there small size [29]. Water will freeze in capillary pores and as it freezes it expands.

The growing crystals of ice in the capillary pores act as pumps that force the water

through the gel pores towards the nearest air void boundary. This creates a

hydrostatic pressure in the gel pores. If the distance between air voids is to great, the



22

pressure increases to the point were it dilates the gel pores and ruptures the structure

of the paste.

Therefore in order to adequately protect the paste the air voids must not be far

apart. A spacing factor was developed by Powers [30] as a means of determining if the

bubble distribution is adequate. The spacing factor is half the distance between

bubbles on the cube diagonal, or the maximum distance from a air void boundary for

any point in the paste. For properly air entrained concrete the spacing factor will be at

minimum between 0.004 and 0.008. Experience has shown that for air contents of 9 to

10 % in the mortar generally give adequate bubble spacing and protection from freeze

thaw damage [31.32].

2.5. 1 Influence ofAir Content on Fresh Concrete

The addition of air entrainment improves not only the durability of hardened

concrete but also the properties of fresh concrete. The entrainment of air in concrete

has a significant effect on the workability of concrete. The air bubbles improve

workability by acting as small ball bearings aiding the flow of the concrete. The air

bubbles are kept spherical by surface tension. The spherical bubbles have low surface

friction and good elasticity. The addition of 5 % air increases the slump by 0.5 to 2.0

inches [28,33,34]. Lower w/c can be used without lowering the slump.

The entrainment of air in concrete also reduces the segregation and bleeding of

concrete. The precise mechanism by which air entrainment reduces bleeding and

segregation is not well understood. The air bubbles make the concrete more cohesive

and homogeneous. They develop a structure with the solids to which they become

attached [35]. The air bubbles also buoy up the solids and reduce the tendency of the

solids to settle.
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2.5.2 Influence of Air Content on Hardened Concrete

The primary reason for entraining air in concrete is the improvement of freeze

thaw durability. The reasons for this improvement were discussed earlier. The other

major effect that air entrainment has on hardened portland cement concrete is to

reduce the strength. The strength of concrete is related to the concentration of solid

products of hydration of the cement to the space available for these products. The

concentration is often referred to as the gel/space ratio. As the amount of air in

concrete increases the gel/space ratio and strength decreases. The general rule of

thumb is an approximate 5 percent decrease in compressive strength for every 1 percent

of entrained air. The flexural strength seems to be reduced to about the same degree

[35]. The strength reduction effect of air entrainment will be partially compensated for

in a well designed mix by taking advantage of the increase in workability brought on by

air entrainment. The water demand is lower for the same workability, so the water

content can be lowered and the w/c will decrease.

2.5.3 Factors Affecting Air Entrainment

A number of factors can influence the amount of air entrained in concrete. The

addition of a finely divided admixture or an excessive amount of fines in the aggregate

will reduce the quantity of air entrained. Some water reducing and retarding

admixtures have air entraining capabilities. The use of these admixtures without

reducing the dosage of air entraining agents will result in more air being entrained. If

the dosage is held constant a more workable mix will entrain more air than a less

workable mix [34,35]. Other factors that influence the amount of air entrained include;

time of mixing, size of batch, revolving speed of the drum, and the condition of the

mixing blades. Finally the proportioning of aggregate especially in lean mixes affects the

air content.
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Probably the most important single factor in promoting or inhibiting air

entrainment is the sand, or fine aggregate, because it has the greatest effect of any one

variable and it is subject to variation [32]. As the amount of sand increases the amount

of air entrained increases[29.32,34,35]. An increase in sand of 5 % will lead to an

increase in air content of 1 to 1.5 % [34]. It is generally thought that the sand between

600 |im. (No. 30) and 150 \an. (No. 100) are the most efficient at entraining air bubbles.

It is a change in this size group that has the greatest effect on air content.

The addition of an air entraining admixture stabilizes bubbles formed during

mixing. The air bubbles are generated by two processes [35]. The first of these

processes is the infolding of air by a vortex action. This process is seen in the stirring of

any liquid. The second process involves the aggregate. The aggregate acts as a three

dimensional screen which entraps and holds air bubbles as the particles fall and tumble

on each other during mixing. The fine aggregate and in particular the aggregate

between 150 |im and 600 (im is the portion to the aggregate that makes up this screen.



25

3. MATERIALS

This chapter will describe the materials used in this study. The chemical

compositions of the cement and fly ash used in laboratory mixes will be given. Detailed

characteristics of the aggregates used in this study will be presented.

3.1 Cement

All the mixes prepared both in the field and laboratory used ASTM Type I

Portland cement with one exception. The cement used for field mixes on the

Washington project was a Type IA cement. The cement used for all laboratory mixes

was provided by Lone Star Industries, Inc. from their Greenfield, Indiana plant. The

mill analysis for this cement is given in Table 3. 1 [36].

Cements used on field projects came from a variety of sources. These sources

are representative of cements used on paving projects throughout the state of Indiana.

The sources of the cements is provided in Table 3.2 [37,38,39,40,41]. Mill analyses of

these cements were not available.

3.2 FIvAsh

An ASTM Class C fly ash was used for many of the laboratory and field mixes.

Field mix designs for the Elkhart, Indianapolis, and South Bend projects included fly

ash. The suppliers of fly ash for these projects is shown in Table 3.3.

Fly ash for laboratory mixes was supplied by American Fly Ash Company,

Naperville, IL. This fly ash was obtained from Unit I of the Rockport Power Station in
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Table 3.1. Mill Analysis of Laboratory Cement

Chemical Composition Percent

Si09 20.72

ALjOfl 5.42

Fe9Os 2.08

CaO 65.21

MgO 1.39

SO3 2.66

Na9 0.12

K9 0.52

T. A. as Na^O 0.46

Ignition Loss 1.78

Potential Compound

Composition

Percent

C3S 60.95

C9S 13.51

Cr^A 10.85

C4AF 6.32
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Table 3.2 Cement Sources for Field Mixes.

Project Manufacturer Plant

Washington Lehigh Mitchell. IN

Elkhart Lafarge Alpena, MI

Greenfield Lonestar Greencastle. IN

Indianapolis Lonestar Greencastle, IN

South Bend Lafarge Alpena, MI

Table 3.3. Fly Ash Suppliers for Field Mixes.

Project Fly Ash Supplier

Elkhart National Mineral Corp.

Indianapolis American Fly Ash Co.

South Bend National Mineral Corp.
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Southern Indiana. The physical and chemical data for this fly ash is furnished in Table

3.4 [42].

3.3 Chemical Admixtures

An air entraining admixture and a water reducing admixture were used in some

mixes. The air entrainment admixture used for all laboratory mixes was a neutralized

vinsol resin. An ASTM Type A water reducing admixture was used in laboratory mixes

when a water reducing admixture was used-in the field.

3.4 Aggregate Properties

In conjunction with the Indiana Department of Transportation, Division of

Materials and Tests, an effort was made to select concrete construction projects with

different aggregate sources. The projects selected represent materials commonly used

in different regions of the state. All aggregates used in laboratory mixes were obtained

from stockpiles at the site of each project.

Three projects using limestone aggregate were selected. The limestones were

common aggregate sources for projects in the northern, central, and southern regions of

the state. The fine aggregate sources used for these projects was also used in the

laboratory mixtures. A project which used gravel , from central Indiana, as the coarse

aggregate was selected. Finally, a slag coarse aggregate and sand used on a paving

project in northern Indiana was sampled.

All of the aggregates used in this research were approved by Indiana Department

of Transportation Standard Specifications Section 903.01 for fine aggregates, and

Section 903.02 for coarse aggregates [20]. The coarse aggregates met the sieve analysis
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Table 3.4 Physical and Chemical Data for Laboratory Fly Ash

Si02 (%) 35.8

A12 3 (%) 19.6

Fe2°3 (
%) 6.36

Si02+Al203+Fe20ci (%) 61.8

CaO (%) 26.8

MgO {%) 3.3

Loss on Ignition 0.34

Pozzolanic Activity Index with

Cement (%)

116

Specific Gravity 2.61

Mean Size (nm) 14

% > 45 ^m 21
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requirements for a number 8 coarse aggregate. All fine aggregates met the

requirements for a number 23 fine aggregate. The gradation requirements for these

specifications is presented in Table 3.5 and Table 3.6.

3.4.1 Washington

The aggregates used on the Washington project were a crushed limestone coarse

aggregate and a natural sand fine aggregate [37]. The source of the coarse aggregate

was Mitchell Crushed Stone in Mitchell, IN. This limestone had a specific gravity (SSD)

of 2.67 an absorption of 0.90 percent. The samples obtained had a moisture content of

0.48 percent. The source of the fine aggregate was Knox County Sand and Gravel in

Vincennes, IN. The sand gathered from stockpiles used on this project had a specific

gravity of 2.67 and an absorption of 1.65 percent. The moisture content of this sand

was 2. 10 percent.

3.4.2 Elkhart

A limestone crushed coarse aggregate and a natural sand fine aggregate were

used on the Elkhart project [38]. The limestone came from Vulcan Materials in

Kankakee, IL. The fine aggregate was also supplied by Vulcan Materials but came from

Middlebury, IN. The specific gravity and absorption for the coarse aggregate are 2.67

and 2.1 percent respectively. The moisture content of this stone was 1.6 percent The

fine aggregate had an absorption of 2.5 percent and specific gravity of 2.67. The

moisture content was 3.2 percent
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3.4.3 Greenfield

The Greenfield project was the last of the three limestone projects. The

limestone came from Martin-Marietta in Indianapolis, IN [39]. The specific gravity of

this limestone is 2.63 and absorption is 1.2 percent. The moisture content on the

sample brought to the laboratory was 1.1 percent. The sand used on this project was

from O K Sand in Belmont. IN. Its specific gravity was 2.61 and its absorption was 1.2

percent. The moisture content was 2.5 percent.

3.4.4 Indianapolis

The Indianapolis project used natural sand and gravel as its coarse and fine

aggregates [40]. The gravel was supplied by Martin-Marietta Noblesville, IN. The gravel

had a specific gravity of 2.63 and an absorption of 1.5 percent. The aggregate used in

the laboratory mixes had a moisture content of 2.6 percent. The sand was also supplied

by Martin-Marietta in Noblesville. Its specific gravity was 2.62 and absorption 1.8

percent The moisture content of the material gathered was 2.6 percent

3.4.5 South Bend

The coarse aggregate for the South Bend project was slag [41]. The slag was

supplied by Levy Materials in Gary, EN and had a specific gravity of 2.39. The

absorption of the slag was 4. 1 percent and the moisture content was 0.4 percent. The

sand was also supplied by Levy and came from South Bend. The specific gravity of the

sand was 2.59 and the absorption was 1.3 percent The moisture content of the sample

obtained was 2.5 percent.
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Table 3.5 Gradation Requirements for INDOT No. 8 Coarse Aggregate.

Sieve Size % Passing

1" 100

3/4" 75-95

1/2" 40-70

3/8" 20-50

#4 0-15

#8 0-10

#30

#200

Decant Cone. 0-3.0

Table 3.6 Gradation Requirements for INDOT No. 23 Fine Aggregate.

Sieve Size % Passing

3/8" 100

#4 95-100

#8 80-100

#16 50-85

#30 25-60

#50 5-30

#100 0-10

#200 0-3
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4. EXPERIMENTAL PROCEDURES

The experimental procedures used in this study are described in this chapter.

Included is the experimental procedure for mix designs as well as batching concrete

mixes. The procedures and tests used to evaluate the fresh and hardened concrete are

also presented.

4.1 Aggregate Tests

To utilize mix design procedures, described later in this chapter, a number of

aggregate properties are needed. The Packing Handbook requires that the void content,

specific gravity, and sieve analysis data be obtained. The void content and unit weight

ofboth the coarse and fine aggregates was found using the procedure specified in ASTM

C29 [4]. The specific gravity and absorption values were determined according to ASTM

C127 for coarse aggregates [43], and ASTM CI28 for fine aggregates [44]. Sieve analysis

results were gathered from each project Laboratory sieve analysis was performed on all

samples according to procedures specified in ASTM CI36 [45]. The results of the lab

tests were checked against field gradations to ensure that a representative sample was

obtained. The results of field sieve analysis were averaged and these values used for

mix design procedures.

4.2 Mix Design

In this study mix designs used in the field were compared to mix designs created

with the Packing Handbook. Mix designs obtained from field data were used to
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proportion trial batches in the laboratory. The properties of these trial batches were

then compared the those of the Packing Handbook mixes.

Mixes designed with the aid of the Packing Handbook had identical cement

contents, water-to-cement ratios, and admixture dosages as the designs used in the

field. The only variable that changed between the Packing Handbook and field mix

designs was the relative proportions of fine and coarse aggregates.

The relative proportions of aggregates was arrived at by using the procedures

outlined in the Packing Handbook [2]. The characteristic diameter for each aggregate

was found by plotting the sieve analysis on Rosin-Rammler graph paper. The

characteristic diameter is the diameter corresponding to 63 weight percent passing .

The packing density of each aggregate was also determined. The packing density (PHI)

is calculated according to the following equation: PHI = 1 - (% voids / 100) , where the

% voids is determined according to ASTM C29M-90 [4]. Once these two parameters

were calculated for both the fine and coarse aggregates the volumetric composition was

determined using tables found in the Packing Handbook. Weight - volume

relationships were then used to determine the weights of aggregate for mix design.

4.3 Mixing Procedure

The ASTM C 192-81 procedure was used in the preparation of all laboratory

concrete batches [461. A Lancaster pan mixer of 4.0 cu. ft. nominal capacity was used

for lab mixes. Approximately 2.0 cu. ft. of concrete was mixed at a time.

Coarse aggregate and about 1 /3 of the mix water was added prior to starting the

mixer. The mixer was then started and the sand, cement, fly ash and water were added

sequentially. The air entraining admixture was mixed with the sand before the sand

was placed in the mixer. Water reducing admixture were dissolved in the mix water

when they were used. After all the constituents were added the concrete was mixed for
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3 minutes. After a 3 minute rest period the concrete was mixed an additional 2

minutes.

4.4 Tests on Fresh Concrete

Immediately after mixing a slump test was conducted according to ASTM C 143-

78 [47]. The unit weight of the concrete was found using the procedure give in ASTM C

138-81 [48]. The air content of the concrete was determined using the standard

pressure method ASTM C 231-82 [49]. An aggregate correction factor of 0.3 % was used

for all projects, except for the South Bend project The aggregate correction factor for

the South Bend project which used slag as its coarse aggregate was 2.4 %. Because of

the high correction factor the Indiana Department of Transportation requires that the

air content be found using the volumetric method. For the mixes produced in the

laboratory the air content was determined with the pressure method and the correction

factor applied. A rninimum of two 6x6x21 inch beams were cast from each mix. The

concrete was placed in steel molds and compacted with a 1.5 inch spud vibrator. The

amount of effort required to compact both the Packing Handbook mixes and the field

mixes was noted. The top of the mold was struck off and the concrete was trowel

finished. The difficulty in striking off and trowel finishing the top surface of the beams

was also noted. After casting the beams were covered with plastic and kept in the

molds for 24 hours. The beams were then demolded and stored in a fog room until the

time of testing.

4.5 Tests on Hardened Concrete

The flexural strength of concrete was determined using 6x6x21 in. beams and

the procedure given in ASTM C 78-84 (third-point loading) [50]. The beams were taken

from the fog room and tested after a period of 7 days. The beams were tested with the



36

top surface at time of casting placed on the front or back face of the beam. The beams

were tested in a Baldwin hydraulic universal testing machine at a loading rate of 1800

lbs/min. This corresponds to a increase in extreme fiber stress of 150 psi/min.

Testing was also done on 2 samples to determine the characteristics of the air

void system. The testing was done in accordance with the modified point count method

as specified in ASTM C457-82 [51]. The purpose of this testing was to determine the

adequacy of the air void system for a Packing Handbook mix with a low air content, 3.0

percent, and determine the air void system characteristics of a field mix with a high air

content, 9.5 percent

4.6 W/C Study

A number of mixes were prepared in an effort to determine the effect of various

w/c on the properties of mixes designed with the aid of the Packing Handbook. The

aggregates used on the Elkhart project were selected for these mixes. Relative

proportions of aggregates were calculated according to the Packing Handbook for

Packing Handbook mixes. Aggregate relative proportions for field mixes were identical

to the proportions used on the Elkhart project. The cement content was held constant

at 600 lbs/yd3 . The water content was then adjusted to give w/c of 0.35, 0.40, 0.45,

and 0.50.

The trial batches for the w/c testing were mixed at the facilities of Rieth-Riley

Construction, Goshen, IN. The mixing procedure for the w/c testing was as previously

specified for other laboratory mixes with the following exceptions. A tilting drum mixer

was used instead of a pan mixer. Admixture dosages were not kept constant with field

proportions but adjusted in an effort to maintain constant slump and air contents

between Packing Handbook and field mixes. Flexural strength specimens were cast and

tested following the same procedure previously specified for other laboratory mixes.
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5. EXPERIMENTAL RESULTS

This chapter will present the findings of experimental mix design and aggregate

properties obtained to develop the mix designs. The properties of trial batches made

with each mix design will also given. The differences between the Packing Handbook

mix designs and the field mix designs will be shown.

5. 1 Mix Designs

Mix designs were prepared using the Packing Handbook for each project. As

discussed before the Packing Handbook mix designs were identical to the field mix

designs except for the relative aggregate proportions. For each project the results of

tests done to determine this relative proportion for each aggregate source is provided in

this section. The field mix designs and Packing Handbook mix designs are given and

aggregate proportions compared.

5.1.1 Washington

The first step in determining the aggregate proportions for mix design using the

Packing Handbook is to obtain sieve analysis data. The sieve analysis data for the

Washington project is shown in Table 5. 1 . This sieve analysis was then plotted on

Rosin-Rammler graph paper. The sieve analysis is plotted in Figure 5. 1 for the coarse

aggregate and Figure 5.2 for the fine aggregate. The characteristic diameter can then be

determined from this graph. The characteristic diameter is the diameter corresponding

to 63 weight percent passing. The characteristic diameter for the coarse
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aggregate was 0.68 inches and the characteristic diameter of the fine aggregate was

0.054 inches.

The next property needed is the packing density. The packing density is a

function of the void content ( % voids) as calculated by ASTM C29 [41 . The packing

density for the coarse aggregate is 0.57 and 0.66 for the fine aggregate. Once the

packing density and characteristic diameter for each aggregate is found the tables in the

Packing Handbook are used to determine the volume percent of coarse aggregate. The

ratio of coarse aggregate to total aggregate for this project is 0.66 %. Using weight

volume relationships the mix design weights can then be determined. The Packing

Handbook and field mix designs for the Washington project are shown in Table 5.2. A

graphical comparison of the aggregate proportions is given in Figure 5.3.

5.1.2 Elkhart

The sieve analysis for the fine and coarse aggregate used on the Elkhart project

is furnished in Table 5.3. The fine aggregate sieve analysis is plotted in Figure 5.4 and

the coarse aggregate sieve analysis is plotted in Figure 5.5. The characteristic

diameters from these plots is 0.59 for the coarse aggregate and 0.054 for the fine

aggregate.

The packing density of the coarse aggregate used on the Elkhart project is 0.58.

The packing density of the fine aggregate is 0.66. When these packing density and

characteristic diameters are used as input values for the tables in the Packing

Handbook the volume percent of coarse aggregate obtained is 72 %. When this volume

percent of coarse aggregate is used the mix design shown in Table 5.4 is calculated.

Also shown in this table is the field mix design. The relative proportions of coarse and

fine aggregate are shown in Figure 5.6. This shows both the fine and coarse aggregate

content for the field and Packing Handbook mix designs.
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Table 5. 1 Sieve Analysis Used for Washington Mix Design

Coarse Aggregate

Sieve Size Percent Passing

1 in. 100

3/4 in. 90.4

1/2 in. 45.4

3/8 in. 25.6

#4 6.8

#8 2.7

Fine Aggregate

Sieve Size Percent Passing

3/8 in. 100

#4 99.6

#8 88.2

#16 70.2

#30 44.5

#50 12.8

#100 1.45

#200 0.7
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Figure 5. 1 Plot of Coarse Aggregate Sieve Analysis for Washington Project
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Figure 5.2 Plot of Fine Aggregate Sieve Analysis for Washington Project
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Table 5.2 Mix Designs for Washington Project

Field mix design

lbs/yd3

Cement 475

Fly Ash

Water 209

Fine Aggregate 1379

Coarse Aggregate 1887

AEA (oz/yd3) 10

WRA (oz/yd3)

Packing Handbook mix design

lbs/yd3 1

Cement 475 1

Fly Ash

Water 209 |

Fine Aggregate 1112

Coarse Aggregate 2153

AEA (oz/yd3) 10

WRA (oz/yd3)
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Washington Mix Design
Field vs. Packing Handbook
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Figure 5.3 Aggregate Contents for Washington Project
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Table 5.3 Sieve Analysis Used for Elkhart Mix Design

Coarse Aggregate

Sieve Size Percent Passing

lin. 100

3/4 in. 89.0

1/2 in. 47.4

3/8 in. 27.7

#4 6.4

#8 3.2

Fine Aggregate

Sieve Size Percent Passing

3/8 in. 100

#4 99.2

#8 90.3

#16 73.2

#30 45.4

#50 11.3

#100 1.2

#200 0.6
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Figure 5.4 Plot of Coarse Aggregate Sieve Analysis for Elkhart Project
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Figure 5.5 Plot of Fine Aggregate Sieve Analysis for Elkhart Project
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Table 5.4 Mix Designs for Elkhart Project

Field mix design

lbs/yd3

Cement 451

FlvAsh 141

Water 237

Fine Aggregate 1182

Coarse Aggregate 1865

AEA (oz/yd3) 15

WRA (oz/yd3)

Packing Handbook mdx design

lbs/yd3

Cement 451

Fly Ash 141

Water 237

Fine Aggregate 855

Coarse Aggregate 2193

AEA (oz/yd3) 15

WRA (oz/yd3)
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Elkhart Mix Design
Field vs. Packing Handbook

Coarse Aggregate Fine Aggregate

Figure 5.6 Aggregate Contents for Elkhart Project
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5.1.3 Greenfield

Sieve analysis of the aggregates used on the Greenfield project were obtained.

The average of these sieve analyses used on the Greenfield project is provided in Table

5.5. The sieve analysis for the coarse aggregate was plotted on Rosin-Rammler graph

paper in Figure 5.7. Figure 5.8 shows the fine aggregate plot of sieve analysis. From

these plots the characteristic diameters of 0.58 inches for the coarse aggregate and

0.044 inches for the fine aggregate were determined.

The packing density for both aggregates used on the project was then calculated.

The packing density for the coarse aggregate is 0.57, and 0.69 for the fine aggregate.

These four values for characteristic diameter and packing density yielded a coarse

aggregate content of 64 % from the tables in the Packing Handbook. This value was

used to proportion the Packing Handbook mix. Both the field mix and the Packing

Handbook mixes are shown in Table 5.6. The aggregate proportions are also shown in

Figure 5.9.

5.1.4 Indianapolis

The sieve analyses used for determining proportions on the Indianapolis project

are given in Table 5.7. Figure 5. 10 and Figure 5. 1 1 show the plots of these analyses on

Rosin-Rammler graph paper for coarse and fine aggregates respectively. The

characteristic diameters form these plots are 0.56 inches for the coarse aggregate and

0.06 inches for the fine aggregate.

The packing densities for each of these aggregates was also determined. The

packing density of the coarse aggregate was 0.66. The packing density of the fine

aggregate was 0.65. The volumetric composition found from the tables was 76 % coarse

aggregate. The Packing Handbook and field mix designs are given in Table 5.8. A graph

of the aggregate contents of both mix designs is presented in Figure 5. 12.
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5. 1.5 South Bend

The final project studied was South Bend. The sieve analyses used for mix

design on this project are shown in Table 5.9. The plot of these sieve analyses is

presented in Figure 5. 13 for the coarse aggregate and Figure 5. 14 for the fine aggregate.

The characteristic diameter for the coarse aggregate is 0.50 inches. The characteristic

diameter for the fine aggregate is 0.04 inches.

The packing density of each aggregate was determined. The packing density of

the coarse aggregate was 0.54. The packing density of the fine aggregate was 0.67. A

volumetric composition of 66 % coarse aggregate was obtained through the use of the

Packing Handbook with these input variables. The resulting Packing Handbook mix

design and the field mix design are a given in Table 5. 10. The graphical representation

of the aggregate contents is provided in Figure 5. 15.
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Table 5.5 Sieve Analysis Used for Greenfield Mix Design

Coarse Aggregate

Sieve Size Percent Passing

1 in. 100

3/4 in. 89.7

1/2 in. 48.8

3/8 in. 28.1

#4 5.6

#8 2.1

Fine Aggregate

Sieve Size Percent Passing

3/8 in. 100

#4 100

#8 93.2

#16 48.71

#30 18.2

#50 2.91

#100 2.9

#200 1.3
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Figure 5.7 Plot of Coarse Aggregate Sieve Analysis for Greenfield Project
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c

Figure 5.8 Plot of Fine Aggregate Sieve Analysis for Greenfield Project
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Table 5.6 Mix Designs for Greeenfield Project

Field mix design

lbs/yd3

Cement 564

Fly Ash

Water 233

Fine Aggregate 1394

Coarse Aggregate 1798

AEA (oz/yd3) 5

WRA (oz/yd3) 30

Packing Handbook mix design

lbs/yd3

Cement 564

Fly Ash

Water 233

Fine Aggregate 1158

Coarse Aggregate 2044

AEA (oz/yd3) 5 !

WRA (oz/yd3) 30
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Figure 5.9 Aggregate Contents for Greenfield Project
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Table 5.7 Sieve Analysis Used for Indianapolis Mix Design

Coarse Aggregate

Sieve Size Percent Passing

1 in. 100

3/4 in. 91.1

1/2 in. 56.7

3/8 in. 33.3

#4 7.4

#8 1.3

Fine Aggregate

Sieve Size Percent Passing

3/8 in. 100

#4 99.8

#8 94.2

#16 72.4

#30 44.6

#50 10.3

#100 1.9

#200 0.8
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Figure 5. 10 Plot of Coarse Aggregate Sieve Analysis for Indianapolis Project
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Figure 5. 1 1 Plot of Fine Aggregate Sieve Analysis for Indianapolis Project
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Table 5.8 Mix Designs for Indianapolis Project

Field mix design

lbs/yd3

Cement 440

Fly Ash 90

Water 210

Fine Aggregate 1280

Coarse Aggregate 1845

AEA (oz/yd3 ) 14

WRA (oz/yd3) 18 i

Packing Handbook mdx design

lbs/yd3 !

Cement 440

Fly Ash 90

Water 210

Fine Aggregate 750

Coarse Aggregate 2380

AEA (oz/yd3) 14

WRA (oz/yd3) 18
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Indianapolis Mix Design
Field vs. Packing Handbook

Coarse Aggregate Fine Aggregate

Figure 5.12 Aggregate Contents for Indianapolis Project
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Table 5.9 Sieve Analysis Used for South Bend Mix Design

Coarse Aggregate

Sieve Size Percent Passing

1 in. 100

3/4 in. 98.7

1/2 in. 74.5

3/8 in. 45.4

#4 5.4

#8 1.2

Fine Aggregate

Sieve Size Percent Passing

" 3/8 in. 100

#4 99.0

#8 92.1

#16 78.9

#30 56.6

#50 2.4

#100 0.8

#200 0.3
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Figure 5. 13 Plot of Coarse Aggregate Sieve Analysis for South Bend Project
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Figure 5. 14 Plot of Fine Aggregate Sieve Analysis for South Bend Project
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Table 5. 10 Mix Designs for South Bend Project

Field mix design

lbs/yd3

Cement 508

Fly Ash 56

Water 232

Fine Aggregate 1265

Coarse Aggregate 1745

AEA (oz/yd3) 5

WRA (oz/yd3) 15

Packing Handbook mix design

lbs/yd3

Cement 508

Fly Ash 56 \

Water 232

Fine Aggregate 1113

Coarse Aggregate 1993

AEA (oz/yd3) 5

WRA (oz/yd3) 15
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South Bend Mix Design
Field vs. Packing Handbook
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Figure 5. 15 Aggregate Contents for South Bend Project
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5.2 Concrete Properties

In order to evaluate the Packing Handbook trial batches were prepared. For

each project a minimum of three trial batches were conducted for both the Packing

Handbook and field mix designs. For each trial batch a number of concrete properties

were determined. The slump, air content, and unit weight of each trial batch was

recorded. For each project the workability was visually appraised and noted for both

the Packing Handbook and field proportioned mixes. Finally after curing for 7 days the

specimens cast at mixing were tested and the flexural strengths recorded.

The results of the tests performed on the laboratory produced field and Packing

Handbook mixes were compared to each other and Tesults from the field. The field

values were obtained from concrete quality assurance records and contractor records

for each project [37,38,39,40,41]. The results of the slump test for both mixes in each

project were averaged and plotted in Figure 5.16. The results of the air content tests

were also averaged and are plotted in Figure 5. 17. The average of the unit weight tests

for the laboratory and field mixes are plotted in Figure 5. 18. Finally, Figure 5. 19 plots

the results of flexural strength tests.

5.2.1 Washington

The results of trial batches for the Washington project are shown in Table 5.11.

The field proportioned mix was easily placed and consolidated in the beam forms. The

mixes proportioned with the Packing Handbook were harsh and were noticeably stiffer

than field proportioned mixes. The placement and consolidation of the Packing

Handbook mixes was possible, but required more effort than field mixes. Finishing was

also more difficult with the Packing Handbook mixes. More effort was necessary to

provide a smooth surface due to lower mortar contents.
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The slump of the Packing Handbook mix was on average more than an inch less

the laboratory field mix. Air contents and unit weights were also lower for the Packing

Handbook mix. The average fiexural strength for the Packing Handbook mix was 5

percent higher than the average fiexural strength of the field mixes.

5.2.2 Elkhart

Table 5.12 gives the results of the trial batches with aggregates used on the

Elkhart project The field proportioned mix exhibited excellent workability. The mix

was easily placed and finished. The Packing Handbook proportioned mixes were also

placed without difficulty. The Packing Handbook proportioned mixes were more harsh

and stiff than the field proportioned mixes. Packing Handbook mixes were also more

difficult to finish and more time was necessary to achieve a smooth uniform surface.

The slump of the field mix averaged an inch more than that of the Packing

Handbook mix. The air content of the Packing Handbook mix was 1 . 1 percent higher

than the mean field air content This contributed to higher unit weight of the Packing

Handbook mix. Finally, an average increase of 13 percent in strength was shown for

the mix proportioned with the Packing Handbook.

5.2.3 Greenfield

The results from the mixes with aggregate from the Greenfield project were

similar to the other projects using crushed limestone as the coarse aggregate. The

results of the trial batches are given in Table 5. 13. The water reducing admixture was

accidentally omitted in batch 1 for the field proportioned mixes. Additionally water was

required to get a reasonable slump and the w/c exceeded the field value of 0.37. Batch

2 of the field proportioned mix and batch 1 of the Packing Handbook mix contained both

the additional water and water reducing admixture. The slumps for these trial batches
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were therefore higher than expected. The situation was corrected. The proper water

content and admixture dosages were used for the final two trial batches of both the field

and Packing Handbook proportioned mixes

The workability of field mix was excellent and no problems with placement

consolidation or finishing were encountered. The mix proportioned with the aid of the

Packing Handbook was also placed and fininshed but again with more difficulty than

the field proportioned mix.

The Packing Handbook mix designed with the Greenfield project aggregates had

slumps only 1/4 inch less than the field mix. The average air content was almost 2

percent less than the field proportioned mix. The unit weight of the Packing Handbook

mix was also higher. Flexural Strengths were increased by 10 percent with the Packing

Handbook mix.

5.2.4 Indianapolis

The results of the trial batches of both the field proportioned and Packing

Handbook proportioned mixes is shown in Table 5. 14. The workability of the field

proportioned mixes was very good. The rounded shape of the gravel coarse aggregate

made this mix easier to place and finish than the field mixes from other projects with

angular coarse aggregate. Some problems developed with the placement and

consolidation of the Packing Handbook proportioned mix. The low slump and dry

consistency of the mixes resulted in mild segregation in some of the specimens. The

Packing Handbook mix was also difficult to finish despite the favorable particle shape.

A difference of over 1.5 inches in the average slump was recorded for the Packing

Handbook and field mixes. Average air content dropped by over 2 percent for the

Packing Handbook mix. Consequently the unit weight of the Packing Handbook mix
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was higher. And increase of 3 percent was achieved in the average flexural strength of

the Packing Handbook mix over the field mix.

5.2.5 South Bend

The South Bend project used slag as a coarse aggregate. The results of the trial

batches are given in Table 5. 15. The field proportioned mix was easily placed and

consolidated. Some difficulty was encountered in finishing the mix. The slag had a

tendency to rise to the top of the specimen due to its low specific gravity. The problem

was partially solved with the saturation of the coarse aggregate prior to mixing. The

finishing improved but more effort was required than had previously been necessary for

other coarse aggregate types. The mix proportioned with the Packing Handbook had

lower workability than the field proportioned mix. The Packing Handbook mix was more

difficult to consolidate. The finishing problems encountered with the field mix were

even worse with the Packing Handbook mixes. This was due to the combination of less

mortar and a higher percentage of aggregate that tended to rise to the top of the

specimen.

The average slump for the Packing Handbook mix was only 1/2 an inch. The

slump of the laboratory produced field mix averaged slightly more than 13/4 inches.

Air content was only 0.5 percent lower for the Packing Handbook mix. The average unit

weights were nearly identical. A 6 percent increase in flexural strength average was

obtained with the Packing Handbook mix.
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Field vs. Packing Handbook
Slump

| Lab "Field" mix I I Packing ffarHh^ir

Elkhart Washington Greenfield Indianapolis South Bend

(US-20) (US-50) (1-465/1-65) (1-70) (Cleveland Rd.)

Note No Slump Data from Reld for Washington. Indianapolis, and South Ffoyi

Figure 5.16 Slump of Packing Handbook and Field Proportioned Mixes
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Field vs Packing Handbook
Air Content

ssa^-- | Lab "Flfiid" mTT
| | Packing Handbook

Elkhart Washington Greenfield Indianapolis South Bend

(US-20) (US-50) (I-465/I-65) (1-70) (Cleveland Ri)

Figure 5. 17 Air Content of Packing Handbook and Field Proportioned Mixes
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Field vs. Packing Handbook
Unit Weight

BBB Field I Lab "Field" mil I I Peking Haaibook

Elkhart Washington Greenfield Indianapolis South Bend

(US-20) (US-50) (I-465/I-65) (1-70) (Cleveland Rd.)

Figure 5. 18 Unit Weight of Packing Handbook and Field Proportioned Mixes
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Flexural Strength

I Lab "Heidi' mil I I
Par inn; Handbook

73

Elkhart Washington Greenfield Indianapolis South Bend

(US-20) (US-50) (1-465/1-65) (1-70) (Cleveland Rd.)

Figure 5.19 Flexural Strength of Packing Handbook and Field Proportioned Mixes
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Table 5. 1 1 Concrete Properties for Trial Batches with Aggregates from Washington
Project

Laboratory "field" batch results

Batch 1 Batch 2 Batch 3

Date 10/07/92 10/27/92 11/13/92

W/C 0.43 0.43 0.43

Slump (in) 2 2 6.5

Air content (%) 7.0 5.6 5.7

Unit wt (lbs/ft3) 145 145.6 144

Yield (ft
3

) 27.3 27.1 27.4

Ave. F'h (psi) 580 620 515

Laboratory Packing Handbook batch results

Batch 1 Batch 2 Batch 3

Date 10/07/92 10/27/92 11/13/92 1

W/C 0.43 0.43 0.39

Slump (in) 0.75 0.75 1.5

Air content (%) 4.5 5.0 5.3

Unit wt (lbs/ft3) 148 147.2 146.4

Yield (ft
3

) 26.7 26.8 27

Ave. F'h (psi) 615 615 565
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Table 5. 12 Concrete Properties for Trial Batches with Aggregates from Elkhart Project

Laboratory "field" batch results

Batch 1 Batch 2 Batch 3

Date 10/16/92 10/28/92 11/12/92

W/C 0.36 0.33 0.4

Slump (in) 2.25 2.5 4

Air content (%) 7.4 7.8 6.4

Unit wt (lbs/ft3) 144.8 144.0 144

Yield (ft
3

) 26.8 26.9 26.9

Ave. F'h (psi) 600 595 625

Laboratory Packing Handbook batch results

Batch 1 Batch 2 Batch 3

Date 10/8 10/28/92 11/12/92

W/C 0.31 0.33 0.34

Slump (in) 1 1.75 3

Air content (%) 5.4 6.2 6.6

Unit wt (lbs/ft3) 147.2 147.2 143.2

Yield (ft
3

) 26.3 26.3 27.1

Ave. F'h (psi) 810 610 580
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Table 5. 13 Concrete Properties for Trial Batches with Aggregates from Greenfield

Project

Laboratory "field" batch results

Batch 1 Batch 2 Batch 3 Batch 4

Date 10/6/92 11/3/92 11/4/92 11/5/92

W/C 0.41 0.41 0.36 0.37

Slump (in) 1.25 7.5 1.5 3

Air content (%) 2.3 8 4.9 5.7

Unit wt (lbs/ft3) 151.6 141.2 147.6 145.6

Yield (ft
3

) 26.3 28.2 26.9 27.2

Ave. F'h (psi) 750 550 730 650

Laboratory Packing Handbook batch results

Batch 1 Batch 2 Batch 3

Date 10/6/92 11/3/92 11/5/92

W/C 0.41 0.35 0.37

Slump (in) 2.75 1 1.5

Air content (%) 3.3 3.0 4.2

Unit wt (lbs/ft3 ) 149.60 151.2 148.4

Yield (ft
3

) 26.7 26.1 26.8 !

Ave. F'h (psi) 745 780 715
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Table 5. 14 Concrete Properties for Trial Batches with Aggregates from Indianapolis

Project

Laboratory "field" batch results

Batch 1 Batch 2 Batch 3 Batch 4

Date 1/22/93 1/26/93 1/28/93 2/9/93

W/C 0.47 0.39 0.39 0.39

Slump (in) 6.5 1.75 1.75 3.25

Air content (%} 8.0 9.5 6.4 7.4

Unit wt fibs/ft3) 141.6 140 145.2 142.4

Yield (ft
3

) 27.3 27.6 26.6 27.1

Ave. F'h (psi) 485 530 685 600

Laboratory Packing Handbook batch results

Batch 1 Batch 2 Batch 3 Batch 4

Date 1/22/93 1/26/93 1/28/93 2/9/93

W/C 0.32 0.39 0.39 0.39

Slump (in) 1 0.5 1

Air content (%) 2.8 6.8 3.9 5.5

Unit wt (lbs/ft3) 151.6 145.6 149.6 147.2

Yield (ft
3

) 25.5 26.6 25.9 26.3

Ave. F'h (psi) 775 540 705 630
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Table 5. 15 Concrete Properties for Trial Batches with Aggregates from South Bend
Project

Laboratory "field" batch results

Batch 1 Batch 2 Batch 3

Date 6/10/93 6/17/93 6/24/93

W/C 0.41 0.41 0.41

Slump (in) 1.5 2 2

Air content (%) 6.0 6.0 6.4

Unit wt (lbs/ft3) 140.8 140.8 139.2

Yield (ft
3

) 27.0 27.0 27.3

Ave. F'h (psi) 753.5 662 650

Laboratory Packing Handbook batch results

Batch 1 Batch 2 Batch 3

Date 6/10/93 6/17/93 6/24/93

W/C 0.41 0.41 0.41

Slump (in) 0.25 0.75 0.5

Air content (%) 5.0 5.6 6.0

Unit wt (lbs/ft3) 142.4 140.8 139.6

Yield (ft
3

) 27.4 27.7 27.9

Ave. F'h (psi) 776 709 712
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5.3 W/C Study

In addition to the testing on different aggregate types, testing was done to

determine how the Packing Handbook aggregate proportioning method responded to

different w/c. Previously the w/c had been held constant with values used on field

projects. An interest was expressed to find out how the Packing Handbook aggregate

proportioned mixes compared to mixes with field aggregate proportions at other w/c.

For this study the w/c varied and the cement content was held constant at 600

lbs/yd^. The water content was then varied to give w/c of 0.35, 0.40. 0.45, and 0.50.

For w/c of 0.35, and 0.40 the water reducing admixture dosages were adjusted to give

slumps that were judged to be pavable. For w/c of 0.45 and 0.50 the dosage was

adjusted so that both the field and Packing Handbook mixes had approximately the

same slump. Aggregate relative proportions were established from the Packing

Handbook and field mixes using the same aggregates. The ratio of coarse aggregate to

total aggregate was .72 for the Packing Handbook Mixes and .61 for the field mixes. The

total quantity of aggregate used was adjusted to occupy the remaining unit volume not

occupied by the paste. Air entraining admixture dosages were adjusted to the achieve a

satisfactory air content and slump. The mix designs prepared are shown in Table 5. 16.

The trial batches were prepared and flexural beams were cast from each mix at

the facilities of Rieth-Riley Construction in Goshen, IN. Table 5.17 shows the results of

tests performed on the trial batches. The results of these trial batches indicate that the

strength of mixes proportioned using the Packing Handbook were actually lower than

the field mixes at a given w/c. This is the opposite of the trend observed in the

laboratory at Purdue. Their are two possible explanations for this discrepancy. First,

these batches were mixed with a different mixer than the laboratory mixes at Purdue.

More importantly the slump and air contents were controlled to levels suitable for

paving by varying the dosages of admixtures. The slump and air content for the
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Packing Handbook and field proportioned mixes was held as constant as possible. In

the lab the admixture dosages were held constant and the slump and air content

differences noted. It appears that at a constant w/c, slump, and air content use of the

Packing Handbook does not result in higher strengths. It should also be noted that

Packing Handbook mixes were more difficult to finish even when the slump was the

same as field mixes.



Table 5.16 Mix Designs for W/C Study

Mix No. w/c CA/TA

(%)

Cement

(lbs/yd3 )

Water

(lbs/vd3)

FA (ssd)

(lbs/vd3 )

CA (ssd)

(lbs/yd3 )

WRA

(oz/vd3 )

1 0.35 0.61 600 210 1209 1918 18

2 0.35 0.72 600 210 868 2265 18

4 0.40 0.72 600 240 845 2207 18

5 0.35 0.61 600 210 1209 1919 34.2

6 0.35 0.72 600 210 868 2265 34.2

7 0.40 0.61 600 240 1178 1869 10.44

8 0.40 0.72 600 240 845 2207 16.2

9 0.45 0.61 600 270 1157 1821 10.5

10 0.45 0.72 600 270 831 2149

11 0.50 0.61 600 300 1126 1772

12 0.50 0.72 600 300 809 2091



Table 5. 17 Results of Trial Batches for W/C Study

82

Mix No. Slump UnitWt Yield Air Flexural Strength (psi)

(in) (lbs /ft3) (ft
3

) (%) Beam 1 Beam 2 Ave.

1 1 149.12 26.41 4.7 816 816 816

2 1 151.32 26.06 3.6 800 825 812

4 2 144.60 26.93 5.9 637 641 639

5 1.5 147.50 26.71 5.7 766 875 820

6 1.5 146.12 26.99 6.0 743 767 755

7 1.5 145.48 26.78 6.2 685 719 702

8 1.5 144.40 26.96 6.5 657 615 636

9 7.25 139.20 26.64 9.2 549 549

10 8 140.80 27.34 7.7 561 561

11 10 140.00 27.13 8.2 536 536

12 10 141.60 26.84 6.2 491 491
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Figure 5.20 W/C vs. Strength for Water Cement Study
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5.4 Air Void Tests

Air void analysis of 2 specimens was conducted. The purpose of the air void

analysis was to determine if the air void system in a Packing Handbook mix with low air

content was adequate. Air void analysis was also done on a laboratory field

proportioned mix to determine if the air content was excessive. An air void specimen

was removed from a beam cast during trial batch 2 for the Packing Handbook

proportioned mix on the Greenfield project. The measured air content for the fresh

concrete from this trial batch was 3.0 percent. The field proportioned mix specimen

was removed from a beam cast during trial batch 2 on the Greenfield project. The air

content of the fresh concrete for this batch was recorded at 8.0 percent.

The results of the air void analysis are given in Table 5. 18. The air content of

the hardened concrete for the Packing Handbook specimen was 3.06 percent. This is in

close agreement with the value recorded for the fresh paste. The Powers spacing factor

for this specimen was 0.008 in.. This spacing is marginally adequate protection for

frost protection. The air content of the hardened field proportioned specimen was 9.49

percent This is nearly 1.5 percent higher than the value calculated when the beam was

cast. The Powers spacing factor for this specimen is 0.0030 in. The spacing factor for

properly air entrained concrete is usually in the range of 0.008 to 0.004 in.
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Table 5. 18 Air Void Analysis of a Packing Handbook and Field Trial Batch

Specimen Packing Handbook

mix

Field mix

Air content 3.06 9.49

Length of traverse (in.) 310.9 329.4

Number of stops 3165 3325

Number of voids/in 5.35 16.61

Powers spacing factor 0.008 in. (200|im) 0.003 in. (70nm)
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6. SUMMARY AND CONCLUSIONS

The goal of this research was to determine what benefits result with the use of

the Packing Handbook. The research was the subject of a previously published paper

[52] and a internal interim reports. For the Packing Handbook to be implemented it

should be easy to use and apply to a variety of materials. Implementation also would

depend on the properties of fresh and hardened concrete produced with the aid of the

Packing Handbook. Finally, there must be an economic incentive to use the Packing

Handbook.

The procedure outlined in the Packing Handbook is easy to learn but a few

problems were encountered. The plotting of sieve analysis points on Rosin-Rammler

graph paper is tedious. Unfortunately automating the plotting with conventional

spreadsheet software is difficult or impossible due to the log log scale on the y-axis. The

sieve analysis points do not always fit a linear distribution on the Rosin-Rammler graph

paper. Regression analysis would be very difficult again due to the nature of the axis

scale. For this research the sieve analyses were plotted manually and the lines fitted

through the points visually. Since the sieve analysis data are not always linear some

subjectivity is involved in obtaining characteristic diameters. Fortunately the Packing

Handbook tables are not highly sensitive to slight differences in the characteristic

diameter. The other parameter needed for each aggregate is the packing density. This

parameter is easily found by determining the percent voids for the dry rodded

aggregates.
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Mixes proportioned with the aid of the Packing Handbook had some workability

problems. The mixes were all more harsh than mixes with field proportions. Packing

Handbook mixes required more effort to consolidate in the beam forms. Adequate

consolidation was achieved for all mixes in the laboratory. If the Packing Handbook

mixes were used in the field consolidation problems may be experienced. Packing

Handbook mixes used for paving may be able placed, but proper consolidation may be

extremely difficult if not impossible for concrete which is highly reinforced concrete, or

areas where vibration can not be applied. Finishing of mixes proportioned with the

Packing Handbook was difficult due to the lower mortar contents. Additional effort and

time for finishing may be required if Packing Handbook mixes were used in the field..

Some surface textures may be especially difficult to achieve. Entraining air in Packing

Handbook mixes was difficult. These mixes had lower sand contents and since sand is

instrumental in acquiring air entrainment bubbles in concrete the dosage of air

entraining admixtures had to be increased. Even with additional air entraining

admixture, air contents were lower than field proportioned mixes.

The properties of the hardened concrete were also different for Packing

Handbook and field mixes. Strengths were higher for Packing handbook mixes. This is

in part due to the fact that these mixes had lower air contents. When the strength of

laboratory produced field mixes is corrected by five percent for every 1 percent of higher

air content the difference in flexural strength is minimal. When field proportioned

mixes are corrected the strength of the Packing Handbook mixes is only 2.5 percent

greater than the field mixes for the Washington and South Bend projects. The average

flexural strength of the Packing Handbook mixes is still 7 percent higher for the trial

batches using Elkhart project aggregates. However, when the same aggregates that

were used on this project were used in the water to cement study the mixes with field

proportions of aggregates had higher strengths. The average corrected strengths for the
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Greenfield project were nearly identical. The corrected strength of the Indianapolis

project field proportioned mix was 7 percent higher than the average strength of the

Packing Handbook mix. The difficulty in achieving air content in Packing Handbook

mixes may lead to durability problems. Many of the trail batches had air contents less

than 5.5 percent

The most common way to reduce the cost of concrete is to reduce the cement

content. For mixes designed with the aid of the Packing Handbook the strength

increases were not consistent or large enough to result in any reduction of cement

content at a given strength. Cement contents may have to be increased to solve the

workability problems associated with the Packing Handbook mixes. Since the Packing

Handbook mixes consistently use more coarse aggregate they will be more expensive

where the unit cost of coarse aggregate is higher than the unit cost of fine aggregate. If

the fine aggregate is more expensive Packing Handbook mixes may be cheaper.

6.1 Conclusions

1. The procedure outlined in the Packing Handbook to proportion aggregate for

concrete is easy to learn. Plotting the sieve analysis on Rosin- Rammler graph

paper is tedious and the determination of the characteristic diameter may not be

entirely objective.

2. Packing Handbook mixes have lower workability than mixes currently being

used in the field.

3. Air entrainment is difficult for some mixes produced with the Packing Handbook.

This is a result of low sand contents for these mixes.

4. Strength increase with mixes proportioned with the Packing Handbook is

minimal or non existent at constant air contents.
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5. Packing Handbook mixes may be difficult to handle and finish with present

concrete pavers.

6. Little or no cost savings will be realized with the use of the Packing Handbook.

Cost savings may be realized if the relative cost of fine aggregate is less than the

cost of coarse aggregate.
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