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IMPLEMENTATION REPORT

The product from this research is a decision-making system for integrated freeway traffic

incident detection and response. This system employs sequential hypothesis testing techniques to

dynamically optimize incident response decisions by systematically considering the tradeoffs

between the possible costs of a delayed incident response decision and the improved decision-

making capabilities which result from delaying action until additional measurements are taken.

The input components to this system include traffic parameters, their distributions under different

conditions, traffic delay costs due to incidents, the costs of implementing response measures,

incident frequencies in time and space, and the distribution of incident durations. The outputs are

optimal incident response policies for each time period. In real-time operations, the derived

optimal policies can be used to select incident response decisions, given various traffic

conditions.

The incident response decision-making models will be incorporated in the Advanced

Traffic Management System planned for the Borman Expressway, a 16-mile segment of 180 in

Northwest Indiana. The decision-making system can be used by traffic control personnel to assist

in responding to various freeway incidents in a near optimal manner, to minimize traffic delays

and reduce the number of secondary incidents.

IV



1. INTRODUCTION

This research report includes descriptions of research efforts. The first research focused on

the development of real-time freeway incident prediction models. The second part describes a

sequential hypothesis testing-based decision-making system for freeway incident response. The

freeway incident probability predicted by the real-time incident prediction model acts as a prior for

the freeway incident response decision making system. The following paragraphs explain both

parts in detail.

Freeway Incident Likelihood Prediction Models

Traditionally, traffic management strategies implemented to mitigate operating problems such

as incident congestion are "reactive" in nature. In other words, control strategies are typically

activated after operating problems have been identified (Davis 1991; Stephanedes 1991). Delaying

the implementation of control strategies until after congestion occurs is generally not the most

efficient manner to manage highway operations. Moreover, a reactive approach to traffic control

impedes the capability to fully exploit route diversion opportunities (Stephanedes 1993).

A better approach to corridor-wide traffic control is to use a system which is "proactive",

rather than reactive. Under such a system, real-time predictions of incident likelihoods are performed,

based on traffic stream and environmental conditions measured by surveillance sensors. Traffic

control and management strategies are immediately implemented to minimize these likelihoods. Thus,

strategies are activated to avoid the occurrence of incidents as well as to mitigate incident-related

problems after they have occurred.



A proactive approach to traffic control will greater enhance capabilities to improve operation

through route diversion. Indeed, managing freeway traffic demand prior to congestion occurrence

mandates the need for efficient route diversion. The manner in which diversion advisories are

transmitted, and the extent to which traffic control devices (traffic signals and ramp meters) are

adjusted to accommodate diversion, largely depend upon forecasts of diversion behavior.

Freeway Incident Response Decision-Making System

The product from this research is a decision-making system for integrated freeway traffic

incident detection and response. This system employs sequential hypothesis testing techniques to

dynamically optimize incident response decisions by systematically considering the tradeoffs between

the possible costs of a delayed incident response decision and the improved decision-making

capabilities which result from delaying action until additional measurements are taken.

The input components to this model include traffic parameters, their distributions under

different traffic conditions, traffic delay costs due to incidents, the costs of implementing response

measures, incident frequencies in time and space, and the distribution ofthe incident durations. The

outputs are optimal incident response policies for each time period. In real-time operations, the

derived optimal policies can be used to select incident response decisions, given various traffic

conditions.

The proposed system is based on a novel approach to the incident response process. This

decision process is modeled as an optimization problem in which the uncertainties in the measured

traffic stream characteristics and the costs associated with incorrect decisions are considered

simultaneously.

Because incident detection and response decisions are made simultaneously, this system can
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be viewed as an incident detection system. Compared to conventional incident detection systems, the

proposed system explicitly accounts for the presence of traffic stream measurement and interpretation

errors, and simultaneously considers incident detection decisions and possible response actions such

as dispatching emergency vehicles and traffic diversion to alternative routes.

2. PROBLEM STATEMENT

Freeway Incident Likelihood Prediction Models

In order to implement the type of proactive traffic control system discussed in the introduction,

two types of prediction models are required:

(i) models for prediction of incident likelihoods,

(ii) models for prediction of driver diversion likelihoods

This research developed the first of these two categories of models, i.e., incidents likelihood

prediction models. Such models will provide forecasts of incident probabilities given various

environmental and traffic stream characteristics. A preliminary literature survey has not found any

prior research in the area of incident prediction. A substantial body of research, on the other hand,

exists in the area of incident detection(Levin 1989).

Freeway Incident Response Decision-Making System

The full potential of freeway traffic management systems has yet to be realized largely

because of an inability to precisely identify when and where control measures should be

implemented. To avoid the costs of needlessly responding to false alarms, freeway management

personnel are reluctant to promptly initiate mitigation measures based solely on incident

information generated from conventional freeway detectors. Thus, expensive surveillance



methods such as closed-circuit television must be installed to provide reliable incident information.

The incident response system developed in this research decision-maker will generate optimal

policies for any given freeway detection system, by properly accounting for the measurement

errors associated with that system, thus reducing the need for expensive surveillance technologies.

State-of-the-art traffic incident detection algorithms can be classified into two categories: those

that use a static threshold and those that use a dynamic threshold. Examples of the first class are the

algorithms of Payne and Tignor (1978), Aultman-Hall et al (1991), Stephanedes and Chassiakos

(1991, 1993), Ritchie and chen (1993), and Hsiao et al (1994). The algorithms developed by Dudek

and Messer (1974), and cook and Cleveland (1974) belong to the second class, where threshold

updating is based on historical data.

3. OBJECTIVES

Freeway Incident Likelihood Prediction Models

The first objective of this research project was to develop models which can be used to provide

real-time predictions of freeway incident likelihoods. Such predictions will serve as the basis for a

proactive corridor-wide traffic control system. In such a system, traffic stream and environmental

conditions measured by surveillance sensors will be used as inputs for predicting incident likelihoods

in near real-time. Traffic control strategies can thus be immediately implemented to reduce the

probability of an incident, as well as to mitigate incident-related problems if they occur.

To prove the feasibility of this concept, it was essential to demonstrate the possibility of

accurate predictions of freeway incident probabilities, based on near real-time measurements of



traffic and weather variables. As described in the following section of this report, we have

successfully developed models for likelihood prediction of two critical types of freeway incidents:

crashes and overheating vehicles. These models capture the influence of various traffic and weather

factors on the probabilities of vehicle crash and overheating vehicle incidents. Furthermore, both

models have high internal and external validity, as demonstrated by their fit to the data and their

predictive accuracy, respectively.

The predictions given by the incident likelihood models can be combined with measurements

obtained by loop detectors to improve the accuracy of the estimates of incident probabilities.

State-of-the-art incident detection algorithms utilize only traffic information. By considering both

traffic and environmental variables, it is possible to achieve a more accurate estimate of incident

probability. This estimate is used as an input to the freeway incident-response decision-making

system developed in the second part of this research.

Freeway Incident Response Decision-Making System

This part of the research developped and demonstrated the effectiveness of a freeway

incident response decision-making system. By exploiting Sequential Hypothesis Testing

techniques, the capabilities of the decision-making system extend well beyond those of

conventional incident detection systems (Stephanedes, 1991). By properly accounting for the

presence of measurement errors and the inherent uncertainties in interpreting measured traffic

stream characteristics, the decision-making system determines if and when prevailing, real-time

conditions actually warrant the implementation of incident response strategies such as dispatching

emergency vehicles and initiating route diversion. All decisions generated by the system are based



upon systematic evaluation of the tradeoff between the costs associated with unwarranted responses

to false alarms and the time-dependent costs of delaying needed mitigation measures until

additional surveillance data confirm the freeway's operating state.

4. WORK PLAN

Freeway Incident Likelihood Prediction Models

The specific tasks performed in this part of research are listed below.

(i) Literature survey: a review of the state-of-the-art in accident modeling methods was

undertaken. Although existing statistical models of traffic accidents are mostly designed to predict

accident rates rather than probabilities, the basic methods used to develop these models were of some

value to our research(Jara-Diaz 1986).

(ii) Development and validation of preliminary models using existing databases ( the Hoosier

Helper accident reports). In developing these models, care has been taken to utilize, as explanatory

variables of incident likelihoods, those factors which can be measured by a freeway surveillance

system such as flow rates, speed variances across lanes, time of day, etc. The specific statistical

methods used in model development included logit and probit modeling techniques and discriminant

analysis.

(iii) Once the models were refined and validated, they were incorporated in a computer program

that can be used to provide realtime predictions of incident probabilities. This program can later be

incorporated in a real-time traffic controller to optimally select control strategies in a proactive

manner.
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Freeway Incident Response Decision-Making System

This part of the research was conducted in three tasks. Tasks 1 and 2 entailed

development and implementation of the decision-making system. The system was demonstrated

and evaluated in the third task. The specific work plan is described below:

Task 1: Model Formulation

The example traffic network used in the model formulation is illustrated in Figure 1 . The

simple network consists of a homogeneous freeway link and a uni-directional surface street. A

pretimed traffic signal controls the junction of the on-ramp and surface street, while the junction of

the off-ramp and the street is uncontrolled. The only freeway traffic management strategy used in

this study is route diversion to the surface street via the dissemination of incident information to

freeway users.

It is assumed that loop detectors are located on the freeway section between points Xj and X2 .

When a disturbance in traffic flow is detected, the freeway control center faces the decision of

whether to declare an incident and respond to it. This decision-making process is formulated as a

sequential hypothesis testing problem. At the beginning of each time period, the traffic control center

obtains measurements of freeway traffic conditions from the surveillance system and thus is

confronted with two mutually exclusive hypotheses, defined as:



Freeway

Xi X2

Surface Street

Figure 1 Example Traffic Network

Hq: no incident has occurred on the freeway section between Xi and X2 and,

H,: an incident has occurred on the freeway.

After each observation, the decision-making system will either:

(1) accept Ho and implement no response,

(2) accept Hj and initiate route diversion from the freeway to the surface street, or

(3) delay the decision to accept either hypothesis for an additional measurement period.

The decision ofwhether to accept either hypothesis or to delay the acceptance is based on the



expected losses associated with these decisions; these losses are:

(1) the loss incurred ifthe traffic control center accepts Ho when there is, in fact, an incident

(a non-response),

(2) the loss incurred if the traffic control center accepts H, when there is no incident (a false

alarm), and

(3) the cost incurred by waiting for one additional measurement period if there is an incident.

The objective of the decision-making system at each time period is to select the decision that

minimizes the expected losses for the current and future time periods. The expected losses are

computed on the basis of the current non-incident probability. This probability is a function of

previously measured traffic conditions and the probability distributions of these measurements under

incident and non-incident situations, as follows:

p f
= ,t=l,2(J)

'

Po fo^^- fo^t^ + (l-Po> fl<*l>™fl<*t>

where

p t
: non-incident probability at time t;

f (z,), f^z,): probability density functions (pdfs) of the traffic measurements under non-

incident and incident conditions, respectively;

z
t

: traffic measurements obtained at the beginning of period t; examples of traffic

measurements include occupancy, speed and flow.

p : the prior non-incident probability; this probability is the output of the incident likelihood

prediction model developed in the first part of the research.



The current non-incident probability can be obtained recursively by Bayesian updating as

follows:

Pt-ifo
{z J

Pt
= =-;

—

n /

1

—v~r-l—r -^a- (2)

The Bayesian updating formula has the advantage of fast computation of the non-incident

probability. The probability density functions f^zj and f^z,) must be calibrated from field data for

specific locations.

The decision-making process proceeds as follows. At the beginning of each period t, the

response decision-making system uses the new traffic measurements z, to update the non-incident

probability by Equation (2) and then selects, among the three available alternatives, the one that

minimizes the sum of present and future expected costs. If either of the two hypotheses is accepted,

the corresponding action is taken. If the optimal decision is to take an additional measurement, then

the same process is repeated in the following time period, t+1. The optimal response decision can

be solved using dynamic programming (Bertsekas 1987). For every time period t, the dynamic

programming recursion is given by:

t (p t
) = min {(l-p

t
)L , p t

Llf (l-p
t
)C+ E [ J

fc+1 (pt+1 ) ]

(3)

where: J,(p
t
): minimum expected cost-to-go function for time period t and state variable pt;

L : loss resulting when no response is made to an incident; given by the expected difference

between the delay incurred with and without diversion.

L{. loss associated with a false response; given by the expected total travel time increase due
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to unwarranted traffic diversion from the freeway to the surface street.

C: cost associated with waiting one more period before making a response, if an incident has

indeed occurred on the freeway. This cost is incurred by the drivers who pass location X2

in Figure 1 during one time period.

The optimal policy can be shown to be stationary if the predicted costs L , Lj and C are

constant, and if the analysis period is sufficiently long. This optimal policy is defined by the closed-

form expression given below (Bertsekas 1987):

d-p
t
)C

accept Hq, if p
fc

> a = 1 -

d-p t
)c

accept Hb if p
fc

< (3 =

wait for an additional period, if (3 < p < O! . (4)

This stationary optimal policy is known in the statistics literature as the Sequential Probability

Ratio Test (SPRT).

Task 2: Algorithmic Implementation

Based on the model formulated in Task 1, a computer algorithm for optimal incident

response was developed and implemented. In developing the computer algorithm, the critical

factor was computational running time, due to the real-time constraints that this algorithm must

satisfy.

One restriction of the SPRT algorithm is the assumption of constant costs. The cost

components in the formulation are assumed constant for all time periods, which is not true for traffic
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delays. On the other hand, this assumption produces a closed-form optimal policy which has the

property of minimal computational complexity, a benefit in on-line traffic management. To exploit

this property while accounting for the dynamic nature of traffic delays, a rolling-horizon

implementation(Gartner 1982) of the decision-making algorithm was used. In this implementation,

illustrated in Figure 2, the predicted costs are assumed constant for the duration of each projection

horizon which makes it possible to use the SPRT policy. This policy is applied only to the first period

of each horizon. At the end of that period, the projection horizon rolls forward, and the cost

functions are updated on the basis of the latest traffic measurements. Thus, at the beginning of each

1st Time |i

Period if

Projection Horizon

K>

^
Projection Horizon

Ro
Period

m i i i I I I II 11 i

<>
Projection Horizon

< M
i I I I I I I I I

I
I I

Figure 2. Rolling Horizon Iplementation

projection horizon, a new incident response policy is derived for that horizon, but applied for the first

time period only. The resulting optimal policy is therefore time-varying because a different

stationary policy is applied to each time period.
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Task 3: Parametric Analysis (Laboratory Testing)

The Optimal Incident Response algorithm was tested and validated through extensive

laboratory simulations. In these experiments, a range of incident locations, traffic volumes and

speeds, and measurement precision was simulated. For each combination of these inputs, the

performance of the algorithm was evaluated. This performance was compared to that of a

classical state-of-the-art incident detection algorithm, for the same range of input parameters.

This exhaustive parametric analysis serves two main purposes:

• to identify the ranges of input values, for which the proposed methodology out-

performs state-of-the-art algorithms; this has important implementation

implications,

• to determine the impact of certain input parameters, this will answer important

questions regarding the design of freeway surveillance systems.

The following cost functions were used in the simulation experiments.

Cost of not responding to an incident. L

Figure 3 is a queueing diagram (Newell 1991) describing incident conditions with and without

response. The slope Q, is the bottleneck capacity for the (undetected) incident; present for duration

tm . Qc
is the freeway section capacity at X

2
following incident removal. Demand (i.e., "desired"

arrival rate) to the restriction in the absence of response is labeled qr Slope q2 is the demand to the

restriction assuming response is immediate and continues for the duration of congestion. The

restoration times after the incident is cleared with and without incident response are r and r',

respectively. The delay to freeway vehicles with and without response, d
r
and cL, respectively, are

13



the areas of the triangular regions bounded by the arrival and departure curves.

The loss (i.e., added delay) from not responding to the incident is the difference between total

freeway and surface street travel times incurred with and without incident response. The latter is

defined as:

—qAt+r') + d , + —q (t+r) + W, — q (t +y ^1 v ID r y ^-SO ID 1 y ^so v ID
f s

(5)

The first two terms in (5) describe total freeway travel time, the remaining terms compute

total travel time on the surface street, where:

L
f

: length of the freeway segment;

Vf: average (free-flow) speed on the freeway segment;

L
s

: length of the surface street;

V
s

: average (free-flow) speed on the surface street;

q^: surface street traffic flow prior to diversion;

W
x

: the average vehicle delay due to signal control, computed by Webster's formula (1958).

Y: traffic signal cycle length;

Total travel time on the network with incident response is:

-q
2
{tw+ r) + d

r
+ —(qso+gi -q2 ) ( tjD+r) + W

2
(gso+gi -g2 ) (tJD

s

(6)

where W
2

is the average vehicle delay due to signal control; it is larger than W du£ to

diversion to the surface street. This assumes no added delay in the surface street due to traffic

14



diversion.

Subtracting (6) from (5), the loss due to not responding to an incident becomes:

d
nr

+^ (r/_r) " T^1
"^ ^w*r) - [W

2 {qso+qi -q2)-Wiqso]-^L
f s

(7)

where d^ denotes the difference between d,. and d,,, the area of triangle AC'CA in Figure 4.

Cost of a false response. L
)

The total network travel time resulting from a (false) response in the absence of an incident

can be expressed as:

L L t— q2
t
d + — iqso

+q1
-q

z ) t
d

+ W
2
— (qso +qrq2

) t (8)

f s

where td is the diversion period.

Total network travel time in the absence of both incident and response is:

L* L t.— q,t. + —-q t . + W.—q t (9)

f s

Subtracting (9) from (8), we obtain the loss resulting from a false diversion decision:

s f

Cost of postponing the decision for one additional time peiod, C

The queueing diagram in Figure 4 illustrates freeway conditions when incident response is

initiated. Curve ABC defines vehicle departures past location X2 due to the incident of duration tD .

15



Curve AEC illustrates vehicle demands to location X, assuming an "immediate" incident response (i.e.

a response made in the current period) which continues for a diversion period td . Curve AA'E'C

defines the demand rate when initiation of response is postponed for one interval.

Thus, the cost of postponing the decision by one time period is :

C = d - d = ( gn A t ) t (11)

Where: At denotes the length of one period

All the variables used in computing C, L and Lj at the beginning of every period can be

obtained using on-line measurements. Traffic flow and speeds for the projection horizon can be

predicted using time-series forecasting techniques such as auto-regressive or moving-average

processes. In this study, we used moving-average techniques to predict both traffic flows and speeds.

Figure 3. Queueing Diagram for Computation of Lo
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5. ANALYSIS OF DATA

Freeway Incident Likelihood Prediction Models

Eight-and-a-half months of incident, traffic and weather data for the Borman expressway were

used for model development. We sampled non-incident data from the non-incident population which

comprises those time periods in which no incidents were observed. Therefore, our sample is a

stratified random sample with two strata, incidents and non-incidents.

Two binary logit incident prediction models are presented in the following paragraphs. These

are models for two types of incidents: (i) overheating vehicles, and (ii) crashes. In Tables 1 & 2 the

column entitled "Independent Variable" lists the explanatory variables used in the model. The

"Estimated Coefficient" column shows the contribution ofeach explanatory variable to the probability

ofthat type of incident and the "t-Statistic" column displays the statistical significance of that variable.

17



A t-statistic larger than 1.65 in absolute value means that the variable is a significant predictor of that

type of incident at the 90% confidence level. The goodness of fit of each model is represented by p
2

;

the larger the value of p
2

, the better the fit of the model to the data. In binary logit models, the

statistic "percent correctly predicted" provides an estimate of the predictive accuracy of each model.

For the overheating vehicle incident likelihood model, the variables peak, merge, temp

(temperature), rain, and spv (speed variance) were found significant.

Table 1 Incident Likelihood Model for Overheating Vehicles

Independent Variable Estimated

Coefficient

t- Statistic

constant -2.45 -5.25

peak 0.40 1.62

merge 0.51 2.19

temp 0.03 4.63

rain -1.06 -2.29

spv -0.05 -2.37

number of

observations

427

percent correctly

predicted

73.53

P
2

0.21

The coefficient for the variable peak has a positive sign, which suggests that an overheating

vehicle incident is more likely to occur in a peak period than a non-peak period. This is expected

because traveling speeds are slower during the peak period. This variable is not significant at the

90% confidence level, as can be seen by the value of its t-statistic (162), possibly because the peak

18



period on the Borman expressway is widely spread out. The coefficient of the variable merge

represents the effect of location relative to on/off ramps on the likelihood of an overheating vehicle

incident. The positive sign of this coefficient indicates that an overheating vehicle incident is more

likely to occur in a merge section than a mid-section. The value of the t-statistic (2.19) suggests that

this effect is significant. The coefficient of the variable temp shows the effect of temperature on the

likelihood ofan overheating vehicle incident. The positive sign suggests that an overheating vehicle

incident is more likely to occur in high temperature conditions than low temperature conditions,

because high temperatures aggravate engine overheating. The high t-statistic (4.63) strongly supports

this explanation. The coefficient of the variable rain has a negative sign which indicates that an

overheating vehicle incident is more likely to occur in sunny (non-rainy) conditions than in rainy

conditions. The t-statistic (-2.29) shows a significant effect for the variable rain. The coefficient of

the variable spv represents the effect of speed variance between lanes on the likelihood of an

overheating vehicle incident. The negative sign means that an overheating vehicle incident is more

likely to occur in lower speed variance conditions than higher speed variance conditions. This is

because when the speed variance is low, there are less overtaking opportunities, which increases the

likelihood of an overheating vehicle incident. The t-statistic (-2.37) suggests that this result is

significant. Overall, this model demonstrates good fit to the data, as can be seen from the value of

p
2
(0.21), and high predictive accuracy, as measured by the high percentage of observations correctly

predicted (74%).

For the crash model, the variables merge, visi (visibility), and rain are found significant. In

Table 2, the coefficient ofthe variable merge has a positive sign, which suggests that a crash is more

likely to occur in a merge section than a non-merge section. Though the t-statistic (1.46) indicates
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that this variable is not strongly significant at the 90% confidence level, it has the correct sign,

because there are more vehicle interactions and therefore a higher crash probability in the merge

sections, where traffic flow is not as smooth as in the mid-sections. The coefficient of the variable

visi has a negative sign, which indicates that a crash is more likely to occur in low visibility

conditions, as expected. This variable is not strongly significant, as can be seen by its t-statistic

(-1.02) possibly because, in our dataset, visibility is measured in miles, a unit which is not sufficiently

precise to capture the effect of low visibility on drivers. The coefficient of the variable

rain has a positive sign, which means that a crash is more likely to occur in rainy conditions than

Table 2 Incident Likelihood Model for Crashes

Independent Variable Estimated

Coefficient

t-Statistic

constant -0.76 -2.23

merge 0.31 1.46

visi -0.02 -1.02

rain 1.48 3.45

number of

observations

434

percent correctly

predicted

71.19

2

P 0.14

non-rainy conditions. This is because the presence of rain reduces visibility and lowers pavement

skid resistance. The high t-statistic (3.45) supports this explanation. The fit of this model is

satisfactory, as shown by its p
2
value (0.14), as is its predictive accuracy (71% of observations

correctly predicted).
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It should be noted that the estimated coefficients in these models are unbiased regardless of

the use of a stratified random sampling scheme in which incidents are oversampled. The only

correction that must be made is for the constant, using the method described in(Ben-Akiva and

Lerman). The effect of this correction is to reduce the probability of an incident by a factor

proportional to the log of the fraction of incident observations in the sample divided by the fraction

of incident observations in the population.

The effects of various atrributes of the incident likelihoods are shown in Figures 5 to 8.

Overheating vehicle incident likelihood model

As can be seen in Figure 5, there is no major difference between actual and historical likelihood

in the low temperature range. However, when the temperature rises above 50 F, the incident

probability curve for extreme conditions deviates upward quickly from the historical probability.

case 1: historical probability (independent of all conditions)

case 2 (extreme conditions): peak hour, merge section, and no rain

case 3 (favorable conditions): off-peak, mid section, and rain

0.35

-•— case 1

-B— case2

-*~ case3

temperature(degree F)

Figure 5. Effect of temperature on the probability of an "overheating vehicle" incident

In Figure 6, it can be seen that for a realistic range of speed variances, the incident

probabilities under extreme conditions are higher than the historical incident probabilities and

those under favorable conditions , though the differences are not significant
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speed variance(mph)

Figure 6. Effect of speed variance on the probability of an "overheating vehicle" incident

Vehicle crash incident likelihood model

In Figure 7, it can be seen that the probability of crash under extreme conditions is

significantly higher than under favorable conditions, which is about the same as the historical

probability

case 1 : historical probability (independent of all conditions)

case 2 (extreme conditions): merge section, and rain

case 3 (favorable conditions): mid section, and no rain

c
vD

O

o

-•— easel

-a- case 2

case 3

visibility(mile)

Figure 7. Effect of visibility on the probability of a "vehicle crash" incident

Other incident types likelihood

For other incident types, no traffic or environmental variables were found to be significant
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explanatory variables of incident likelihood. Figure 8 demonstrates the probability for other five

types of incidents

type 1 abandoned vehicles

type 2 debris on the roadways

type 3 other mechanical problems

type 4 driver pulled over

type 5 tire repair

typel type2 type3 type4

types of incidents

type5

Figure 8. Historical probabilities of other five types of incidents

Freeway Incident Response Decision-Making System

An evaluation of the SPRT incident response algorithm was carried out by comparing it

with a typical sequential incident response algorithm, in which incident detection is based on the

Bayesian algorithm (Levin and Krause 1972), and the response decision is made only after some

verification by using repeated measurements. It is assumed that the verification time is 120

seconds (Jones et al 1991). The incident detection threshold used in the Bayesian algorithm is set

to maximize the probability of correct decisions for both incident and non-incident conditions.

Employing Bayesian concepts, the correct decision probability is expressed as follows:
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where the first term is for the correct decision under normal conditions, and the second term is for

incident conditions. The value z
c , which maximizes expression (12) is calibrated off-line based on

historical data. An incident is declared whenever the traffic measurements exceed this threshold.

In the evaluation, the required traffic measurements are generated from the INTRAS

freeway simulation model (Wicks 1980). The following parameters in the models used by the

SPRT algorithm are kept constant throughout the evaluation: the diversion period (set to 10

minutes), the mean incident duration (15 minutes) and the bottleneck capacity (2000 vph). The

evaluation procedure is illustrated in Figure 9. The inputs to INTRAS consist of traffic flow,

geometric data and incident related data such as incident type, location and duration. Given these

inputs, INTRAS simulates occupancy readings at specified detector locations, in 20 second

intervals. These occupancy readings are then used as inputs for the SPRT and Bayesian

algorithms. The evaluation is based on three criteria: response time, non-response rate, and false

response rate.

In the evaluation we investigate the performance of the algorithms under various

flows and incident locations downstream of the loop detector . The ability of these two

algorithms to deal with the uncertainty in traffic measurements is evaluated. The incidents are
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specified to occur at 1800 feet and 2600 feet downstream of the loop detector respectively. The

freeway traffic flows are varied from 3000 vph to 5000 vph. The variances of the probability

density functions fo(z) and fi(z) indicate the uncertainty in the traffic measurements. By changing

these variances, it is possible to observe the performance of the algorithms under different levels

of uncertainty. The combinations ofthe above mentioned three factors result in twelve incident

scenarios as shown in Table 3.

Borman Expressway

1
Traffic Data 1 [Geometric Datk

(volume, occupancy and speed)

INTRAS
Incident Data
(type, location

and Duration I

SPRT
Algorithm

Bayesian

Algorithm

Evaluation ofAlgorithms*;

Time to respond \Response Kat&ihdlse Response Rat

Figure 9 Simulation Evaluation Framework

Corresponding to each incident scenario, a non-incident situation was simulated with the

same traffic flow and occupancy probability density functions. The statistics, shown in Table 3,

for mean response time and non-response rate were computed using 100 simulation runs under

incident scenarios, whereas those for false response rate were obtained from an equal number of

simulation runs for the non-incident scenarios.

Table 3 clearly shows that for both algorithms, the longer the distance between the

incident site and the detector, the longer the respone time, because the incident shock wave takes
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longer to reach the detectors. The influence of distance on both algorithms is of the same order

of magnitude, as can be seen from the results in Table 3. Table 3 also indicates that under high

traffic flow, incident response is faster. This is due to more drastic changes in the measured

values of occupancy. The influence of traffic flow on both algorithms is also of the same order of

magnitude. It can also be seen that, for both algorithms, incident response is faster for low26

uncertainty conditions.

Both algorithms have similarly low false response rates (0% to 4%); this result is typical

for simulation tests. On-line tests usually reveal higher false-alarm rates. Table 3 also shows that

the mean response time of the SPRT algorithm is lower than that of the Bayesian algorithm under

all conditions. Moreover, it can be seen that the Bayesian algorithm does not respond at all to

incidents when measurement uncertainty is high. The reason is that under high variance, the

threshold z
c
calibrated off-line in the Bayesian algorithm increases, to reduce the false-alarm rate,

thus making it less likely to be exceeded by the measured occupancies. This results in no

detection of the simulated incidents, and thus no response. On the other hand, the SPRT

algorithm only misses 5% of incidents under high variance conditions.

In summary, two conclusions can be made. First, the SPRT algorithm has a significantly

lower non-response rate than the Bayesian algorithm, because the high expected cost associated

with a non-response is explicitly accounted for in the decision-making procedure, and the

appropriate threshold adjusted accordingly. Second, the SPRT algorithm achieves shorter

response time than the Bayesian algorithm, because the number of observations required for

incident verification is optimized online, on the basis of the loss associated with waiting for these

observations, rather than being predetermined. While on-line testing must be performed before
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firm conclusions can be made, the results presented in this research indicate that the Sequential

Hypothesis Tesing based incident response algorithm is promising.

6. CONCLUSIONS

In this research, we have developed a new methodology for freeway incident response

decision-making. This methodology, which is based on the Sequential Hypothesis Testing

framework, explicitly accounts for the losses associated with incorrect detection and response

decisions and optimize the tradeoffs between these expected losses. To facilitate the application

of the decision-making methodology within the constraints of on-line traffic management, a

rolling-horizon implementation was used. Results obtained by simulation indicate that the new

decision-making system has a better ability to handle the uncertainty in the traffic measurements,

without increasing the false-alarm and non-response rates. Moreover the SPRT response

algorithm achieves shorter response time than the tranditional incident detection algorithm. This

superior performance can be attributed to the fact that the new system explicitly minimizes the

sum of the expected losses associated with the response decisions.

7.RECOMMENDATIONS

This section discusses some of the implementation issues for the incident response decision-

making system developed in this research. These issue include: off-line data requirements, on-line

input requirements and computational needs. To date, our decision-making system was calibrated

for on-line inputs received from loop detectors. To accommodate outputs from other types of

detectors, the system's models must first be calibrated off-line using historical data. Using
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multiple detector types within the response algorithm is expected to increase the efficiency of the

decision-making system.

Currently, the decision-making system is operational for a single freeway section as

described in Figure 1 . Therefore, the following discussion will emphasize implementation issues

for a single freeway section including the associated on-ramp, off-ramp and corresponding surface

street section. The implementation of the current version of the decision-making system requires

the presence of three loop detectors: one detector located immediately downstream of the off-

ramp, one located immediately upstream of the on-ramp, and one located on the off-ramp. If a

single measurement of traffic occupancy is used in the SPRT algorithm, the occupancy data is

measured at the first detector. This detector also provides measurements of traffic flow and speed

for cost computation and prediction at the beginning of each control interval. The second

detector provides measurements of traffic flow and speed downstream of the bottleneck, which

are used for cost computation. The traffic volume obtained from the off-ramp detector is used for

measuring and updating the traffic diversion rate from the freeway onto the surface street.

The following parameters must be specified off-line, prior to the operation of the decision-

making system.

1) The type of traffic measurements used; currently, our decision-making system accepts two

types of traffic measurement: upstream detector occupancy or relative spatial occupancy

difference between upstream and downstream freeway detectors.

2) The time interval between two observations; in the parametric analysis performed in this

study, we use 20 seconds.

3) The prior probability of non-incident; this is the output of the incident likelihood
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prediction models.

4) The length of the freeway section.

5) The capacity of the freeway section.

6) The free flow speed of the freeway section.

7) The length of the surface street section.

8) The uncongested speed on the surface street section.

9) The existing surface street flow.

10) The initial fraction of freeway traffic that diverts in incident conditions; this quantity is

updated using the moving average method at the beginning of each control interval, after

obtaining new measurements from the off-ramp loop detector.

1 1) The initial estimate of the length of time period for which diversion from freeway to

surface street is performed.

12) The signal cycle length on the surface street.

13) The signal green time on the surface street for the traffic stream traveling in the direction

parallel to the freeway section.

The decision-making system uses the following on-line inputs, measured by the three loop

detectors, and updated at the start of each control interval:

1) Traffic flow at upstream detector.

2) Average vehicle speed at upstream detector.

3) Upstream detector occupancy.

4) Traffic flow at downstream detector.

5) Average vehicle speed at downstream detector.
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6) Downstream detector occupancy.

To extend the decision-making system to a freeway system consisting of multiple sections,

each equipped with the three detectors described above, the SPRT algorithm can be applied

sequentially one section at a time starting at the downstream end of the freeway system. The

derivation of the incident response decision for each section involves simple algebraic operations,

due to the closed form response policy. Solving for the optimal incident response for one section

took a fraction of a second, when the algorithm was implemented on a Pentium personal

computer during the simulation-testing experiments performed as part of this research project.

Therefore, the computation time required for running the algorithm in the case of a freeway

system consisting ofN sections is less than N seconds. In on-line operations, the optimal

response decision for each freeway section can be activated as soon as it has been solved for, and

before the policies of the upstream sections have been obtained. This means that the SPRT

algorithm can be applied to a freeway system of any length with the use of the standard

computational resources available to Traffic Operations Centers, namely stand-alone Pentium PCs

or Workstations.

References

1. Aultman-Hall L., Hall F.L., Shi Y. and Lyll B.; "A Catastrophe Theory Approach to Freeway

Incident Detection," Proceedings of Second International Conference on the Application of

Advanced Technologies in Transportation Engineering . Minneapolis, MN, pp. 373-377, 1991.

2. Ben-Akiva,M. and Lerman.S. Discrete Choice Analysis: Theory and Application to Travel

Demand , the MIT Press, Cambridge, MA, 1985.

30



3. Bertsekas,D.P., Dynamic Programming: Deterministic and Stochatic Model . Prentice-Hall,

Inc., 1987.

4. Cook A.R. and Cleveland D.E.; "Detection ofFreeway Capacity-Reducing Incidents by Traffic

Stream Measurements," Transportation Research Record 495 . pp. 1-11, 1974.

5. Davis, G., "Dynamic Estimation of Freeway Demand Patterns and a Stochastic Programming

Approach to Freeway Ramp Metering," Proceedings of the 2nd International Conference on

Applications of Advanced Technologies in Transportation Engineering . ASCE, Minneapolis, MN

1991.

6. Dudek C.L. and Messer C.J.; "Incident Detection on Urban Freeways," Transportation

Research Record 495 . pp. 12-24, 1974.

7. Gartner N.A.; "OPAC: A Demand-Responsive Strategy for Traffic Signal Control,"

Transportation Research Record 906 . pp. 75-81, 1982.

8. Hsiao C.-H. Lin C.-T., and Cassidy M.; "Application ofFuzzy Logic and Neural Networks to

Automatically Detect Freeway Traffic Incidents," ASCE Journal of Transportation Engineering .

Vol. 120, No. 5, pp. 753-772, 1994.

9. Hsiao,C.-H., "The Application ofFuzzy Logic and Neural Networks to Freeway Incident

Detection." PhD Dissertation, School of Civil Engineering, Purdue University, 1994.

10. Jara-Diaz, S. and Gonzales, S., "Flexible Models for Road Accidents." Accident Analysis and

Prevention . Vol. 18, No. 2, 1986

11. Jones B. Janssen L. and Mannering F.; "Analysis of the Frequency and Duration ofFreeway

Accidents in Seattle," Accident Analysis & Prevention . Vol. 23, No.4, pp. 239-255, 1991.

12. Levin, M. and Krause, G., " A Probabilistic Approach to Incident Detection on Urban

31



Freeways," Traffic Engineering and Control . March 1989.

13. Madanat S.M. and Liu P.-C; "A Prototype System for Real-Time Incident Likelihood

Prediction," Final Report for the IDEA Program . Transportation Research Board, National

Research Council, Washington, DC, 1995.

14. Newell G.F.; "A Simplified Theory of Kinematic Waves," Research Report UCB-ITS-RR-91-

12, University of California at Berkeley, 1991.

15. Payne,H.J. and Tignor, S.C. " Freeway Incident-Detection Algorithms Based on Decision

Trees with States", Transportation Research Record 682, pp. 30-37, 1978.

16. Ritchie S.G. and Chen R.; "Simulation ofFreeway Incident Detection Using Artificial Neural

Networks," Transportation Research C . Vol. 1, No. 3, pp. 203-217, 1993.

17. Stephanedes Y.J. and Chassiakos A.P.; "A Low Pass Filter for Incident Detection,"

Proceedings of the Second International Conference on the Application of Advanced

Technologies in Transportation Engineering . Minneapolis, Minnesota, pp. 378-382, 1991.

18. Stephanedes Y. and Chassiakos A.P.; "Application of Filtering Techniques for Incident

Detection," ASCE Journal of Transportation Engineering . Vol. 119, No. 1, pp. 13-27,1993.

19. Stephanedes, Y. and Chang, K., "Optimal Ramp-Metering Control for Freeway Corridors,"

Proceedings of the 2nd International Conference on Applications of Advanced Technologies in

Transportation Engineering . ASCE, Minneapolis, MN 1991.

20. Stephanedes, Y., "Adaptive Demand Diversion Prediction for Integrated Control ofFreeway

Corridors," Transportation Research-C . 1C(1), Pergamon Press, 1993.

21. Webster, F.V.; "Traffic Signal Settings," Road Research Technical Paper No. 39, Road

Research Laboratory, Her Majesty's Stationary Office, London, U.K., 1958.

32



22 . Wicks,D.A. and Lieberman E.B. "Development and Testing ofINTRAS, a Microscopic

Freeway Simulation Model", Vol.1, Program Design, Parameter Calibration and Freeway

Dynamics Component Development. Report No. FFP>VA/RD-80/106 . Federal Highway

Administration, Washington DC, 1980

33





z
C3
DC
o
(3

O
Q
_J
<
>

CO
LU
O
CL"

LU
>
o
o


	Purdue University
	Purdue e-Pubs
	1997

	Freeway Incident Likelihood Prediction and Response Decision-Making
	Samer Madanat
	Hongyu Pan
	Pen-Chi Liu
	Hualiang Teng
	Recommended Citation





