
HAL Id: hal-01098360
https://hal.inria.fr/hal-01098360

Submitted on 11 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

A Model-Based Certification Framework for the
EnergyBus Standard

Alexander Graf-Brill, Holger Hermanns, Hubert Garavel

To cite this version:
Alexander Graf-Brill, Holger Hermanns, Hubert Garavel. A Model-Based Certification Framework for
the EnergyBus Standard. 34th Formal Techniques for Networked and Distributed Systems (FORTE),
Jun 2014, Berlin, Germany. pp.84-99, �10.1007/978-3-662-43613-4_6�. �hal-01098360�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49542471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01098360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Model-based Certification Framework
for the EnergyBus Standard

Alexander Graf-Brill1, Holger Hermanns1, and Hubert Garavel2,3,4

1 Saarland University — Computer Science
66123 Saarbrücken, Germany

{grafbrill,hermanns}@cs.uni-saarland.de
http://depend.cs.uni-saarland.de

2 Inria
3 Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

4 CNRS, LIG, F-38000 Grenoble, France
hubert.garavel@inria.fr

http://convecs.inria.fr

Abstract. The EnergyBus is an upcoming industrial standard for elec-
tric power transmission and management, based on the CANopen field
bus. This paper reviews the particularities of the EnergyBus architecture
and reports on the application of formal methods and protocol engineer-
ing tools to build a model-based conformance testing framework that is
considered to become part of the certification process for EnergyBus-
compliant products.

1 Introduction

Light Electric Vehicles (LEVs) are booming in many countries: In the Nether-
lands for instance, a traditionally bike-affine country, the last year has seen LEV
sales outnumber ordinary bike sales with respect to total revenue. Many different
OEMs and unit suppliers, including for instance Bosch and Panasonic, but also
fleet operators such as Deutsche Bahn are active in this new market, and the
annual market growth, especially for pedelecs – pedal assisted electric vehicles –
is predicted to be at least 20% for the coming years. Bike vendors throughout
Europe are feeling this trend and they react by turning into LEV vendors. When
doing so, one of the first problems they face is the multitude of plugs and sock-
ets in use to connect battery packs and chargers. Different OEMs partly use the
same plug type, but with different pin interpretation. Cellphone users may know
this problem, but in the LEV context this problem is safety critical, because the
battery capacities are much larger, and charging them in the wrong way may
make them catch fire.

The EnergyBus association5 is a consortium assembling all major industrial
players (and Saarland University); their intention is not limited to interoper-
ability between chargers and batteries, but broader, namely to ensure interop-
erability between all electric LEV components so that one eventually can freely

5 http://www.energybus.org

http://depend.cs.uni-saarland.de
http://convecs.inria.fr
http://www.energybus.org

2 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

combine battery pack, motor, charger, and even the dashboard, as long as all
devices are EnergyBus-compliant. At the core of this initiative is a universal plug
integrating a CAN-Bus with switchable power lines. The initiative has caught
further momentum by broadening its scope to stationary smart power micro-
grids [1], making it a full-fledged standardisation effort for Energy Management
Systems (EMS).

To make the devices interoperate requires however more than standardised
plugs and sockets. A protocol stack is needed, which orchestrates the exchange
of messages and guarantees safe interoperation. LEV and CAN-bus experts are
progressing fast on the design and standardisation of this protocol stack; version
1.0 of the EnergyBus standard was released on March 2011 and updated with
version 1.0.6 in August 2012 [2]. Version 2.0 is about to be published and serves
as the starting point for the recent work of the IEC/ISO/TC69/JPT61851-3
standardisation commision. This work raises many challenging issues: Are these
protocols correct? Do their implementations (originating from multiple device
manufacturers) conform to the EnergyBus standard?

The authors had the unique opportunity to closely follow and interact with
the standardisation activities, applying state-of-the-art protocol engineering meth-
ods and tools to the EnergyBus specifications under design. To formally describe
the EnergyBus protocol, we used the LOTOS New Technology (LNT) language
[3], a successor of the LOTOS [4] and E-LOTOS [5] ISO/IEC international stan-
dards for the formal specification of communication protocols and distributed
systems. We used the LOTOS and LNT compilers and verification tools of the
CADP toolbox6 [6]. Based on the TGV [7] model-based test generator, we de-
veloped a tool platform for the automatised conformance testing [8] of Energy-
Bus/CANopen implementations against the formal specification. The platform
is ready to be used as a mandatory step in a certification process which is to
be rolled out by the EnergyBus association as soon as first prototype devices
become available seeking the EnergyBus-compliance label. This can be a door
opener for formal methods research in a much broader context than model-based
testing, and in an industrial area with rapidly growing societal and economic im-
pact. To prepare for that, this paper gives a detailed and precise account of the
EnergyBus architecture, together with a discussion of the formal modelling and
testing activities performed.

The paper is organised as follows. Section 2 briefly recalls the principles of the
CANopen field bus and Section 3 presents the main features of the EnergyBus.
Section 4 reports about the formal specification work done for the EnergyBus and
Section 5 describes the model-based framework set up to check the conformance
of EnergyBus implementations. Section 6 discusses related work and Section 7
concludes the paper and draws perspectives about future work.

6 http://cadp.inria.fr

http://cadp.inria.fr

A Model-based Certification Framework for the EnergyBus Standard 3

2 CANopen

The communication backbone of the EnergyBus is the CANopen field bus pro-
tocol [9]. The latter was developed from 1993 to 1995 in the ESPRIT project
ASPIC under chairmanship of Bosch and is a widely adopted field bus protocol
in the automation area. The standard is administrated by the “CAN in Au-
tomation” (CiA) association7, which manages and supports standardisation of
CAN-related applications. CANopen in turn is based on the Controller Area Net-
work (CAN) bus protocol but it is designed in such a way that other protocols
can replace the two lowest (in the sense of the ISO/OSI model) layers.

CANopen, in its original form, is a very robust Carrier Sensing Media Access
protocol with Bit Arbitration (CSMA/BA). In the CAN philosophy, every com-
munication task has its own dedicated message name — the function code —
which is combined with the node-id to form the Communication Object Identifier
(COB-id).

The network itself is built up by several nodes sharing a CAN line, which
is accessed in an equal bit-rate setting and with uniquely assigned node-ids.
CANopen adds several protocols for different communication tasks and a local
interface object for on-top applications — the Object Dictionary (OD). This
is basically a two-dimensional array structure with predefined interpretations
of the different entries. The directory entries are used to exchange data values
between the application and the CANopen network, and to store configuration
parameters for the various CANopen protocols.

Some CANopen protocols are relevant for the discussion that follows. The
Network Management (NMT) protocol enables a dedicated master node to man-
age the basic operation status of other nodes in the network: such “slave” nodes
can be started, stopped, reset, or brought to operational state.

The Service Data Object (SDO) protocol is mainly used for setting up and
configuring the devices inside a network. This is a client/server protocol between
two nodes. Each two nodes use a fixed pair of COB-ids for their communication,
a so-called SDO Channel.

Contrary to SDO, the role of the Process Data Object (PDO) protocol is
the periodic transmission of status information or application data, and event
notification.

Error control service is supported by the Heartbeat protocol, in which each
node periodically sends its current NMT state to the network. A time-out of
these messages is used to signal the ”loss” of the node to every listening node.

Emergency messages (EMCY) are used to report the occurrences of internal
device errors to the network participants.

The so-called Layers Setting Services (LSS) [10] provide basic configuration
mechanisms to assign node-ids and to adjust the communication baud rate of
single network nodes. These services are orthogonal to the other CANopen pro-
tocols and are especially applied to unconfigured devices, for which identification
is derived from the device unique “virtual type” label.

7 http://www.can-cia.org

http://www.can-cia.org

4 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

3 EnergyBus

The EnergyBus Standard [2] aims at a common standard for electric devices in
the context of Energy Management Systems (EMS). This includes the definition
of a connector family, on the one hand, and appropriate communication proto-
cols, on the other hand. The central and innovative role of the EnergyBus is the
transmission and management of electrical power. So the purpose of its protocol
suite is not just to transmit data, but in particular to manage the safe electricity
access and distribution inside an EnergyBus network.

The development of the EnergyBus protocols is in the hands of the Ener-
gyBus e.V. and its members. Conceptually, it extends the underlying CANopen
architecture with several components, and the EnergyBus protocols are devel-
oped in terms of CANopen application profiles endorsed by the CiA associa-
tion [2]. Among these, the ‘Pedelec Profile 1” (PP1) is very detailed and targets
a predominant business context.

3.1 Power Lines and EnergyBus Devices

An EnergyBus network contains one or several power lines, which may be of two
kinds: the main power lines, which carry either DC (ranging from 12 to 250 V)
or AC (from 85 to 265 V), and the auxiliary power line, which carries low-voltage
DC (between 9 and 12 V) and is always powered. The type of the network can
be restricted by application profiles, such as the PP1, which has a single main
power line and an auxiliary power line (12 V).

CANopen devices are physical entities implementing CANopen specifications.
EnergyBus devices are CANopen devices that also implement EnergyBus spec-
ifications. Active devices are connected to the main power lines, while passive
devices are only connected to auxiliary power lines. Since malfunctioning of the
main lines can be lethal, the proper functioning of active devices is crucial for
electrical safety. Yet, passive devices are important too — even if they are low
powered, and even if low- and high-voltage lines are strictly separated — because
passive devices behaving incorrectly may interfere with active ones and put the
network at risk.

3.2 Virtual Devices

The EnergyBus specification adopts the concept of a Virtual Device from the
CANopen standard. Each EnergyBus device supports one Object Dictionary,
several communication services, and can implement several Virtual Devices. The
roles of almost all functional elements operating in an EnergyBus network are
defined in terms of Virtual Devices.

A Virtual Device is usually characterised by: (1) its behaviour, usually spec-
ified as a combination of textual definitions and Finite-State Automata (FSAs);
(2) by dedicated OD entries, namely, electric or physical parameters possibly
influencing the flow of energy; and (3) by its communication settings, such as
PDO definitions [11]. Each instance of a Virtual Device is assigned a set of these

A Model-based Certification Framework for the EnergyBus Standard 5

PDOs together with distinct COB-ids to uniquely identify a PDO’s sender. Vir-
tual devices include:

– General Application Objects, which store the list of all implemented Virtual
Devices, their nominal voltage and current ranges, their status and control
word entries, temperatures, and so on. Each EnergyBus device must imple-
ment this Virtual Device exactly once.

– Battery Packs are the simplest kind of power supply in the EnergyBus. In
general, they are accumulators and so have the capability of being recharged
inside the EnergyBus. Moreover, Battery Packs can be removed from the
network.

– Voltage Converters change the voltage of electrical power sources. There are
different kinds of Voltage Converters offering different operation modi, the
most prominent one being — at least in the LEV and pedelec setting — the
External Charger Station.

– Motor Control Unit (MCU) are Virtual Devices specifying specific status
values and control capabilities of motor equipments and providing protocol
interfaces to them.

– The Human Machine Interface (HMI) is a dashboard that displays informa-
tion to the user. It can be used to start/stop and configure the network, to
turn on/off the lights, to choose support profiles for the motor, etc.

– The most important Virtual Device is the EnergyBus Controller detailed
out in the next subsection.

3.3 EnergyBus Controller

The EnergyBus Controller (EBC) is responsible for managing the distribution
of electric power. In general, several EBCs can coexist in an EnergyBus network,
but to avoid interferences, there is always exactly one EBC active, which has
the fixed node-id “1”, implying highest priority — all the other EBCs being
basically turned off. The active EBC has the authority to turn on/off the entire
EnergyBus and to control its attached devices.

The EBC is supposed to ensure electrical safety of the network, especially
protection against over/under voltage or current, and achieves this by limiting
the power flows according to parameters collected as characteristic and actual
values from the devices attached. To do so, the EBC sets appropriate limits
to other devices and dynamically adjusts these limits according to the actual
settings of the system. Nevertheless, every device is ultimately responsible for
its own safety and must protect itself from damage by disconnecting itself from
power lines if necessary.

The EBC functionality requires the device hosting the EBC to provide the
CANopen NMT master functionality to control the communication behaviour,
and LSS master functionality to initialise and configure the devices as network
nodes. The EBC controls the internal state and monitors the Heartbeat of every
connected device. It maintains SDO channel connections to all slave devices for
controllability reasons. Each Virtual Device (except the EBC itself) maintains
an SDO server channel to the EBC and no client channels.

6 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

3.4 Subtask Protocols

Besides the general task to safely distribute electric power throughout the net-
work, there are special situations in which the EnergyBus uses specific smaller
protocols, e.g. for charging Battery Packs, updating the devices’ software, diag-
nostics, energy saving via sleep mode functionality, etc.

4 Formal Modelling of the EnergyBus

A formal specification is a pre-requisite for modern protocol engineering ap-
proaches; the present section reports about the specification activities carried
out for the EnergyBus.

4.1 CANopen and EnergyBus Specification Documents

As mentioned in Section 3, the EnergyBus is defined on top of CANopen, and
EnergyBus devices are CANopen devices, which inherit features from CANopen
and extend them with additional ones. Thus, a formal specification of the En-
ergyBus requires to model certain CANopen features (e.g., NMT, LSS, OD),
although not in full detail.

The CANopen and EnergyBus specifications are given informally, as a com-
bination of text, protocol flow charts, and FSAs — the latter being used to
summarise the behaviour of devices as seen by other devices. Master devices are
entitled to modify the current states of slave devices by sending special mes-
sages. The CANopen specifications are stable, whereas all EnergyBus protocols
(except perhaps the Boot Loader protocol) have been evolving quickly.

The basic CANopen standard is defined in [9] (about 150 pages). CANopen
associates to each device several data structures (e.g., the OD) and various ser-
vices, among which the NMT, PDO, SDO, EMCY, and (optional) LSS. There
are additional services of CANopen, each represented by its own set of protocols,
being enabled and disabled according to the current state of the NMT FSAs.

Concerning the NMT: The behaviour of each NMT slave node in the net-
work can be seen as a 6-state FSA. Textual explanations are provided for each of
these states: Initialising, Reset Application, and Reset Communication describe
initialisation stages, whereas Pre-Operational, Operational, and Stopped repre-
sent communication configurations. The NMT service enables the NMT master
node to manipulate the NMT FSAs of the NMT slave nodes. The corresponding
NMT protocols are provided in textual form and sequence diagrams.

Concerning the LSS: While being optional in CANopen, this service turns
mandatory in an EnergyBus network. It is defined in [10] (about 60 pages) as
an FSA with four states, and several corresponding protocols.

The EnergyBus standard is defined as a collection of 14 documents [2], 11 of
which describe particular types of Virtual Devices, giving for each device its
specific OD entries and specifying its behaviour as one or several FSAs. The
EnergyBus standard brings various extensions to CANopen, among which the

A Model-based Certification Framework for the EnergyBus Standard 7

Operating

Compatibility
Check

Limiting
(active devices

only)

Running

Connected

Disconnected

Fig. 1. EnergyBus Energy Management System FSA

Energy Management System (EMS) and its Boot Loader and Sleep Mode proto-
cols, each being defined by a specific FSA.

Concerning the EMS: This service is at the core of the EnergyBus; the basic
behaviour and interaction capabilities of an EnergyBus Device, as seen by the
EBC, is represented by the EMS FSA depicted on Fig. 1. A device is in the
Disconnected state when not connected to the EnergyBus, possibly powered
by an external source. A device is in the Connected state when the connector is
plugged, i.e., when it is connected to the CAN network and when the EnergyBus
can be used as an auxiliary power supply. The three states labelled Running
describe the successful connection to the CANopen/EnergyBus network. Devices
in state Compatibility Check are examined to check the compatibility of their
electric/electronic characteristic values to those of already connected devices. If
the device is connected to the main power lines of the EnergyBus, its variable
power settings are being adjusted in state Limiting. Finally, devices in state
Operating can execute their running application. The EBC controls the EMS
FSA of the connected EnergyBus devices via SDO writes to the control word
entry of their Object Directories.

4.2 Formal specification of the EnergyBus in LNT

To formally model the EnergyBus, we chose the LNT specification language [3],
which is the most recent descendent in the family of LOTOS [4] and E-LOTOS
[5] languages. In a nutshell, LNT combines functional languages — to describe
data types and functions operating on typed values — and process calculi —

8 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

to describe concurrent agents that execute in parallel, synchronise using ren-
dezvous, and communicate via message passing. As usual with process calculi,
the operational semantics of LNT is defined in terms of Labeled Transition Sys-
tems (LTSs) and Structural Operational Semantics (SOS) rules. A translator
from LNT to LOTOS exists, thus enabling LNT specifications to be compiled,
executed, and verified using the CADP toolbox [6].

As mentioned above, our formal specification is based on the CANopen and
EnergyBus standards. For the latter, we took into account about 400 pages
of documentation, out of which approximately 300 pages describe OD entries.
The modelling process took six months, with several iterations to follow the
EnergyBus specification updates and to introduce abstractions in the models.

Our LNT model [12, Appendix C] is divided into several parts, each repre-
senting a single aspect (e.g., a specific service) of the CANopen/EnergyBus spec-
ifications. Each part is split into a header file containing the type and channel
definitions, and a file containing the process definitions. These files are assem-
bled together by means of cpp preprocessor directives (e.g., #include, #ifdef,
etc.) to produce a model having about 1700 lines of LNT code and 200 lines of
comments. Table 1 provides data concerning the different parts, the second col-
umn providing best-effort estimations, as information about a given component
being often distributed across multiple documents.

Table 1. Size of informal and formal specifications

Component Documentation (pages) LNT code (lines)

NMT 8 260
Heartbeat 6 200
EMCY/Error 4 145
LSS 62 360
EMS 3 440
PDO 45 60
SDO 25 30
OD/Variables 300 70

The FSAs are directly translated to LNT code by implementing their states
as LNT enumerated types and their corresponding actions as LNT processes. The
different FSAs are intended to run in parallel, loosely coupled to each other. They
synchronise and communicate using a mixed approach that combines message
passing and shared variables. There is also a master/slave hierarchy between
FSAs; for instance, all services must monitor the current state of the NMT
by consulting the corresponding variable’s value. LNT was found sufficiently
expressive to describe this particular model of coordination. Like most process
calculi, LNT does not support shared variables as a primitive communication
paradigm, but it is easy to model them as additional parallel processes.

A straightforward modelling of the OD in LNT would consist of a two-
dimensional array structure hosting different types of data; yet, this would cer-

A Model-based Certification Framework for the EnergyBus Standard 9

tainly cause an explosion in the number of states and transitions in the under-
lying LTS. We therefore chose a refined modelling approach by only modelling
relevant OD entries, and by “specialising” our LNT code depending on the spe-
cific nature of each OD entry: (1) global constants common to all devices are
modelled as LNT constant functions; (2) local constants specific to a particular
device are modelled as parameters of the LNT process(es) corresponding to this
device; (3) local variables internal to a given device are modelled as LNT local
variables; and (4) global variables shared between several devices are modelled,
as explained above, using dedicated LNT processes with communication gates to
read and write these variables and, if needed, an additional channel that notifies
all “listeners” of any value update.

We also specialised the translation of PDOs and SDOs into LNT, and only
modelled their useful aspects, which saved much modelling effort compared to
producing fully-detailed generic process models for them. Each defined PDO [11]
is represented by its own LNT process, parameterised by the PDO’s COB-id and
the actual names of the corresponding variables. SDOs are not represented as
LNT processes, but as pairs of read/write operations affecting specific variables.

4.3 Results and Discussion

As it is often the case, formal modelling revealed problems in textual specification
documents. For instance, it uncovered ambiguities in a former version of the LSS
on how to take the NMT initialisation process into account; also, the Sleep Mode
protocol exhibited gaps [12, Appendix B] preventing its formalization. There
have been several iterations with the industrial partners to solve issues raised by
confusing and non-consistent naming, and mismatches between natural language
and logics.

The LNT specification developed for the EnergyBus standard was mechan-
ically checked using the LNT2LOTOS, CÆSAR.ADT, and CÆSAR compilers
provided by the CADP toolbox [6]. These tools enabled to fix various mistakes,
such as undefined identifiers and typing errors. This is a significant enhance-
ment compared to most protocol standards, which are “only” checked by human
reviewers.

An automated search for deadlocks was performed. More stringent analy-
ses could have been done using the powerful verification capabilities of CADP
(equivalence checking, model checking, etc.), but we decided to focus our work
on conformance testing.

5 Conformance Testing for the EnergyBus

The goal of conformance testing is to examine whether the functional behaviour a
given implementation — referred to as the Implementation Under Test (IUT) —
conforms to a (hopefully formal) specification, which defines the expected correct
behaviour. In the case of certification, there are usually several implementations
from various manufacturers to be compared against the same specification, which

10 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

thus plays the role of an authoritative, central reference and avoids divergence
between implementations.

5.1 Model-based Testing

For the EnergyBus, we used a model-based testing approach in which physical
CANopen/EnergyBus devices are the IUTs, and the LNT specification is the
reference.

In this approach, each IUT is considered as a black box (i.e., each device is
only accessible via its CAN/CANopen interface, without extra means to probe
its internal state). The functional behaviour of the IUT is checked by applying
a suite of test cases derived from the LNT specification. Test generation (i.e.,
the production of test cases) is, to a large extent, automated: taking as input
the LNT specification and a set of high-level scenarios (called test purposes)
provided by a human, a large number of detailed low-level test cases are pro-
duced automatically — thus, avoiding the frequent risk of introducing mistakes
in test cases. Test execution, i.e., the application of test cases to the IUT —
namely, sending inputs to the IUT, observing the outputs of the IUT, and com-
paring them to the correct outputs predicted by the LNT specification — runs
automatically without human intervention.

The general model-based testing framework presented in [13] and especially
[8] is the theoretical basis for this work. For test generation, we chose to use the
TGV tool [7], partly because it is directly applicable to LNT specifications. We
now briefly mention how to instantiate the general framework in this particular
case.

Concerning the formal domain for LNT specifications, we use Input Output
Labeled Transition Systems (IOLTS), i.e., LTSs whose actions are divided into
three classes: inputs, outputs, or internal (τ). As the LNT compiler only pro-
duces LTSs, the user must provide a criterion to distinguish between inputs and
outputs.

Concerning the test assumption, we assume an IOLTS where in every state
every input action is enabled, which exactly models the IUT behaviour. Thus,
we are able to formally reason about a relation between the specification and
the IUT.

The implementation relation presented in [8] is input/output conformance
(ioco), which requires that the implementation, after executing some trace, is
allowed to perform only those output actions permitted in the “matching” states
(i.e., states reached after this same trace) of the specification.

For the EnergyBus, we must use the iocoU implementation relation [14],
which is slightly weaker than ioco and ranges over so-called “underspecified”
traces. The reason is that we perform black box testing of the IUT through
its CAN/CANopen interface, modelled as a test context C[]: thus, the IUT
is a composition of the EnergyBus device with C[], while the specification is
a composition of the device LNT model with C[]. By using iocoU , we avoid
forbidden behaviour due to unspecified interaction between the IUT and C[],
thus preserving the soundness of testing.

A Model-based Certification Framework for the EnergyBus Standard 11

The test purposes given to the TGV tool are finite IOLTSs (specified in LNT
by the user and automatically translated into IOLTSs by the LNT compiler)
that describe “interesting” scenarios, i.e., paths of the EnergyBus specification
that shall be considered for testing. Test purposes can be seen as high-level goals
that restrict the set of possible test cases.

TGV generates so-called test graphs, which are finite IOLTSs. In these graphs,
each execution path starting from the initial state corresponds to a test case, i.e.,
a sequence of inputs sent to the IUT and outputs received from the IUT. Test
graphs are prepared to accept every output, even if erroneous, from the IUT. A
test case terminates when reaching a state labelled with a test verdict, which is
either pass if the path is legal according to the specification, or fail if the last
output of the path is unexpected, or inconclusive when the path leaves the area
of the specification defined by the test purpose when generating the test case.

5.2 Test Platform Architecture

We implemented this model-based testing approach in a hardware/software plat-
form, the architecture of which is depicted on Figure 2.

The left-hand side of the figure represents test generation. The two main
inputs of the TGV tool are the LNT specification of EnergyBus and the test
purpose(s) given in LNT. Using the LNT and LOTOS compilers of CADP, these
LNT files are translated into LTSs accessible via the dedicated OPEN/CÆSAR
API [15]. Additional information about the list of input and output actions
enables to turn these LTSs into IOLTSs. TGV produces as output test graph(s)
encoded in the BCG format of CADP.

The right-hand side of the figure represents test execution. It operates on a
test graph generated by TGV and a physical EnergyBus device, which is accessed
through its CANopen interface. The latter is provided by emtas8, an SME de-
velopping industrial CANopen solutions. The execution engine returns whether
the device complies with the test graph(s).

The test execution software (nearly 3100 lines of C code) is logically split into
modules performing different tasks. The Explorer module uses the BCG library
of CADP to traverse the test graph. In this graph, the Partitioner and IO-
Chooser modules select a test case on the fly, using a uniform random generator
to choose one among several enabled transitions. The Adapter module provides
software and hardware interface based on an industrial CANopen stack. The
Instantiator module replaces abstract data values by concrete ones in transition
actions, so as to provide the Driver with parameters used in the Adapter func-
tions. Finally, the Driver module connects both worlds, checks test verdicts, and
emits test results.

Although TGV can also extract test cases from test graphs, we do not use
this feature and stop TGV right after test graph generation, thus avoiding the
non-deterministic choices between inputs and outputs made by TGV. This way,
we fit better with the theory of [8] and our test cases can handle the situation —

8 http://www.emtas.de

http://www.emtas.de

12 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

likely to happen in a multi-layer communication protocol — where a particular
action takes non-negligible time and is interrupted by an output of the IUT.

Fig. 2. Tool architecture

5.3 Abstractions

When modelling real-world examples, one often faces the state-space explosion
problem. Initially, the implicit LTS representation and on-the-fly algorithms pro-
vided by CADP’s OPEN/CÆSAR framework [15] (upon which TGV is built)
have been sufficient to handle the complexity of our models. But adding the LSS
and PDO protocols in full led to state-space explosion arising from data types,
such as 8-byte message data.

To overcome the issue, we applied various abstraction techniques to appro-
priate areas of our model. The most effective approach was data abstraction [16]:
data ranges for LSS addresses, and other identifying parameter values were re-
duced to either two-value domains (e.g., own id and wrong id with binary tests
for equality) or three-value domains (e.g. smaller id, own id, and bigger id with
accordingly abstracted order relations). Data abstraction was also applied to
energy management components. Such abstraction is perfectly compatible with
the intended behaviour, which checks whether a given variable is above or below
certain thresholds (absolute measurements) or compares it against its previous
value (relative measurements). From a conformance testing point of view, such
abstractions can be seen as a simple application of action refinement [17], trans-
ferring the complexity from the LNT model to the adapter component.

5.4 Results and Discussion

Discussions with EnergyBus developers were distilled into test purposes covering
realistic scenarios, such as the initialisation of unconfigured nodes via combina-
tions of LSS communications, or the boot-up procedure of configured nodes,
including the transmission of its PDOs with dynamic and static variable values.
These test purposes are of manageable size (about 80 lines of LNT code on av-
erage) and generate complex test graphs (e.g., 600 states and 1100 transitions
each) that would be difficult to produce manually.

These test purposes provide the initial database for setting up a model-based
certification process for EnergyBus-compliance. Since no EnergyBus devices are
thus far available on the market, we emulated them with C code, using the same

A Model-based Certification Framework for the EnergyBus Standard 13

software stack and hardware as the adapter component, bridged by a CAN con-
nection. This provides us with a fully automatic way to exercise, debug and tune
the testing platform itself, and to prepare for the arrival of the first prototype
devices to be certified.

As our LNT specification models CANopen aspects (via the test context
C[]), our platform can be applied for the testing of CANopen devices as well. In
fact, this enabled us to detect three deviations in the CANopen software stack
[12, Appendix E] used.

1. missing counter value data in SYNC message reception;
2. missing state change in the LSS FSA during configuration process by slave

devices;
3. wrong behaviour of unconfigured slaves in the LSS Fastscan protocol (not

confirmed yet).

Notably, deviation (1) was not signalled by a fail test verdict, but by a
timeout of test execution followed by a manual inspection of the test results log
file. This is due to the fact that IOLTSs do not model quantitative time: the
LNT specification allowed to stay in the current quiescent state, from which a
sequence of internal actions could lead to the expected output; this could have
been avoided in a timed setting.

6 Related work

Model-based conformance testing [13] [8] is an established technology supported
by various tools, such as TGV [7] [18], TorX [19], and Uppaal-Tron [20] that
generate tests for real-time systems. Model-based testing has been discussed for
automotive [21] and fieldbus [22] settings, though without focussing on formal
conformance testing or product certification. Formal verification was performed
for TTP [23]. Deep investigations of CAN and FlexRay efficiency [24] and tim-
ing [25] have been carried out. The specific aspects of the electric vehicle domain
have been detailed out in [26]. Formal models for smart energy systems have been
discussed in [27]. To the best of our knowledge, the combination of formal mod-
elling, model-based testing, and component certification has not been discussed
so far in the literature, for sure not in the context of mobile energy management.

7 Conclusion and Future Work

Energy management networks are rapidly gaining importance for small- and
medium-scale applications, including electric vehicles, caravans, combinations of
solar panels and storage devices, etc. Our work pushes forward formal specifi-
cation and model-based testing approaches via the EnergyBus standard. Har-
vesting a close interaction of the authors in the standardisation activities, state-
of-the-art protocol engineering technology has been used to model and check
EnergyBus specifications, in parallel to setting up a testing framework ready-to-
use for device compliance certification. Apart from preparing for certification,
our concrete contributions are threefold:

14 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

1. We produced a formal specification [12, Appendix C] in LNT of the key
aspects of the EnergyBus, including the required CANopen features. This
specification, which has been submitted to the EnergyBus association, pro-
vides a readable and compact model that can be used as a basis for future
corporate work and automated analyses.

2. This specification work and the computer analysis of the formal specifications
have revealed various ambiguities and inconsistencies [12, Appendix B] in the
EnergyBus description.

3. A model-based platform for the conformance testing of EnergyBus/CANopen
implementations against our formal specification has been developed. We
detected three inconsistencies [12, Appendix E] in an industrial CANopen
implementation; two of them have been acknowleged as defects and the con-
firmation for the third one is pending.

Thus, there is already a clear return on the investment in developing formal
specifications. Our work shows that model-based testing approaches are appli-
cable — if not directly out of the box, at least without too much stretching, i.e.,
using simple abstraction techniques. The LNT language, which had not been
used priorly for field bus protocols, has shown to be a beginner-friendly notation
and provided a formal basis for discussing with the EnergyBus experts. Fur-
thermore the CADP tools (especially the LNT translator) benefited from the
EnergyBus modelling feedback.

Our work is to some extent driving as well as driven by the evolution of
the EnergyBus forthcoming standard. A current focus is on the subtask pro-
tocols (see Section 3.4), including the Charging Protocol. The testing platform
will be connected to EnergyBus device prototypes as soon as they are avail-
able. The EnergyBus association considers a strict certification process for any
device asking for the EnergyBus-compliance label: model-based testing has the
potential to become a mandatory step in this process, as a supplement to con-
ventional integration testing already used by the CiA association. To the best
of our knowledge, this would then be the first time that applied formal meth-
ods are an integral and mandatory step in the introduction of a new industrial
standard. It also can be seen as a spearhead for deeper modelling and analysis
activities, especially with respect to real-time and power flow properties. This
asks for timed and hybrid automata models, together with effective model check-
ing techniques. As a whole, the greater LEV domain appears as a very promising
arena for applied formal methods.

Acknowledgments

This work has been performed under the aegis of the Alexander-von-Humboldt
foundation, partly in the framework of the German transregional DFG project
AVACS9 and of the European IST FP7 projects SENSATION10 and MEALS11.

9 http://www.avacs.org
10 http://sensation-project.eu
11 http://meals-project.eu

http://www.avacs.org
http://sensation-project.eu
http://meals-project.eu

A Model-based Certification Framework for the EnergyBus Standard 15

It benefited from scientific exchanges with EnergyBus e.V, with the CAN in
Automation association, and with the emtas company. Ackowledgements are due
to Dr. Wendelin Serwe for his advices on the best way of using the TGV tool,
and to the anonymous reviewers for their comments about the present paper.

References

1. Vetter, M., Rohr, L., Ortiz, B., Schies, A., Schwunk, S., Wachtel, J.: Dezentrale net-
zgekoppelte PV-Batteriesysteme. In: VDI-Konferenz Elektrische Energiespeicher
– Stationäre Anwendungen und Industriebatterien. (2011) 101–112

2. CAN in Automation International Users and Manufacturers Group e.V., Energy-
Bus e. V.: CiA 454 Work Draft Application profile for energy management systems
– Document series 1 to 14, v. 1.0.6. (2012)

3. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McKinty, C.,
Powazny, V., Serwe, W., Smeding, G.: Reference Manual of the LOTOS NT
to LOTOS Translator (Version 5.8). Technical report, INRIA/VASY and IN-
RIA/CONVECS (2013)

4. ISO/IEC: LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807 (1989)

5. ISO/IEC: Enhancements to LOTOS (E-LOTOS). International Standard
15437:2001 (2001)

6. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. Software Tools for Technology
Transfer (STTT) 15 (2013) 89–107

7. Jard, C., Jéron, T.: TGV: Theory, Principles, and Algorithms. Software Tools for
Technology Transfer (STTT) 7 (2005) 297–315

8. Tretmans, J.: Model-based Testing with Labelled Transition Systems. In Hierons,
R.M., Bowen, J.P., Harman, M., eds.: Formal Methods and Testing. Springer-
Verlag (2008) 1–38

9. CAN in Automation International Users and Manufacturers Group e.V.: CiA 301
CANopen Application Layer and Communication Profile, v. 4.2.0. (2011)

10. CAN in Automation International Users and Manufacturers Group e.V.: CiA 305
Layer setting services (LSS) and protocols, v. 3.0.0. (2013)

11. CAN in Automation International Users and Manufacturers Group e.V., Energy-
Bus e. V.: CiA 454 Work Draft Application profile for energy management systems
– Part 3: PDO communication, v. 1.0.2. (2012)

12. Graf-Brill, A.: Model-based Testing Approaches for the EnergyBus. Re-
ports of SFB/TR 14 AVACS 96, SFB/TR 14 AVACS (2014) ISSN: 1860–9821,
http://www.avacs.org.

13. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A., eds.: Model-
Based Testing of Reactive Systems – Advanced Lectures. Volume 3472 of Lecture
Notes in Computer Science., Springer (2005)

14. van der Bijl, M., Rensink, A., Tretmans, J.: Compositional Testing with ioco. In
Petrenko, A., Ulrich, A., eds.: FATES. Volume 2931 of Lecture Notes in Computer
Science., Springer (2003) 86–100

15. Garavel, H.: OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation, and Testing. In Steffen, B., ed.: Proceedings of the 4th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’98), Lisbon, Portugal. Volume 1384 of Lecture Notes in Computer
Science., Springer (1998) 68–84

16 Alexander Graf-Brill, Holger Hermanns, and Hubert Garavel

16. Prenninger, W., Pretschner, A.: Abstractions for Model-Based Testing – Proceed-
ings of the International Workshop on Test and Analysis of Component Based
Systems (TACoS 2004). Electronic Notes in Theoretical Computer Science 116
(2005) 59–71

17. van der Bijl, H.M., Rensink, A., Tretmans, G.J.: Atomic Action Refinement in
Model Based Testing. Technical Report TR-CTIT-07-64, Centre for Telematics
and Information Technology University of Twente, Enschede (2007)

18. Garavel, H., Viho, C., Zendri, M.: System Design of a CC-NUMA Multiprocessor
Architecture Using Formal Specification, Model Checking, Co-simulation, and Test
Generation. Software Tools for Technology Transfer (STTT) 3 (2001) 314–331

19. Tretmans, J., Brinksma, E.: TorX: Automated Model Based Testing – Côte de
Resyste (2003)

20. Hessel, A., Larsen, K., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing
Real-Time Systems Using UPPAAL. In Hierons, R., Bowen, J., Harman, M., eds.:
Formal Methods and Testing. Volume 4949 of Lecture Notes in Computer Science.
Springer (2008) 77–117

21. Bringmann, E., Krämer, A.: Model-Based Testing of Automotive Systems. In:
ICST, IEEE Computer Society (2008) 485–493

22. Gerke, M., Ehlers, R., Finkbeiner, B., Peter, H.J.: Model Checking the FlexRay
Physical Layer Protocol. In Kowalewski, S., Roveri, M., eds.: Formal Methods for
Industrial Critical Systems. Volume 6371 of Lecture Notes in Computer Science.
Springer (2010) 132–147

23. Rushby, J.: An Overview of Formal Verification for the Time-Triggered Archi-
tecture. In Damm, W., Olderog, E.R., eds.: Proceedings of the 7th Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’02), Oldenburg, Germany. Volume 2469 of Lecture Notes in Computer
Science., Springer (2002) 83–106

24. Milbredt, P., Vermeulen, B., Tabanoglu, G., Lukasiewycz, M.: Switched FlexRay:
Increasing the Effective Bandwidth and Safety of FlexRay Networks. In: Emerging
Technologies and Factory Automation (ETFA), IEEE (2010) 1–8

25. Krause, J., Hintze, E., Magnus, S., Diedrich, C.: Model Based Specification, Verifi-
cation, and Test Generation for a Safety Fieldbus Profile. In Ortmeier, F., Daniel,
P., eds.: Computer Safety, Reliability, and Security. Volume 7612 of Lecture Notes
in Computer Science. Springer (2012) 87–98

26. Goswami, D., Lukasiewycz, M., Kauer, M., Steinhorst, S., Masrur, A.,
Chakraborty, S., Ramesh, S.: Model-based Development and Verification of Con-
trol Software for Electric Vehicles. In: Proceedings of the 50th Annual Design
Automation Conference (DAC’13), Austin, Texas, USA, ACM (2013) 96:1–96:9

27. Hartmanns, A., Hermanns, H.: Modelling and Decentralised Runtime Control
of Self-stabilising Power Micro Grids. In Margaria, T., Steffen, B., eds.: ISoLA.
Volume 7609 of Lecture Notes in Computer Science., Springer (2012) 420–439

	A Model-based Certification Framework for the EnergyBus Standard

